JPH03183682A - Single crystal growth method and device - Google Patents
Single crystal growth method and deviceInfo
- Publication number
- JPH03183682A JPH03183682A JP31782089A JP31782089A JPH03183682A JP H03183682 A JPH03183682 A JP H03183682A JP 31782089 A JP31782089 A JP 31782089A JP 31782089 A JP31782089 A JP 31782089A JP H03183682 A JPH03183682 A JP H03183682A
- Authority
- JP
- Japan
- Prior art keywords
- raw material
- melt
- crystal
- small opening
- material melt
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
- Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明はSi、Gc等の半導体、GaAs、 InP等
のm−v族化合物半導体、Zn5e、 CdTe等の■
−■族化合物半導体及びBSO,LNO等の酸化物、な
どのli結結晶縦型温度勾配の下で育成する方法及びそ
の装置に関する。[Detailed description of the invention] (Industrial application field) The present invention is applicable to semiconductors such as Si and Gc, m-v group compound semiconductors such as GaAs and InP, and semiconductors such as Zn5e and CdTe.
- A method and an apparatus for growing Li crystals of group compound semiconductors and oxides such as BSO and LNO under a vertical temperature gradient.
(従来の技術)
従来、M型容器円の原料融液に温度勾配を付して、その
一端より固化成長させる方法は垂0゛(ブリッジマン法
(VB法)、縦型温度勾配法(VGF法)として知られ
ている。例えば、J。(Prior art) Conventionally, there have been methods for applying a temperature gradient to the raw material melt in an M-shaped container circle and solidifying and growing from one end. For example, J.
CrystaIGrowLh 64(1983)285
〜290にはVB法によりCdTcfli結晶を育成す
る方法が記載されている。CrystaIGrowLh 64 (1983) 285
290 describes a method of growing CdTcfli crystals by the VB method.
この秤の方法では、縦42容器の下部に逆円錐形部を設
けて、結晶核の発生を抑制したり逆円錐形部の先端に種
結晶を配置して所定のlj桔結晶育成が行われている。In this weighing method, an inverted conical part is provided at the bottom of the vertical 42 container to suppress the generation of crystal nuclei, and a seed crystal is placed at the tip of the inverted conical part to grow a specified lj box crystal. ing.
」二部の方法は、原料融液を調製する間に種結晶を高温
にさらすために、種結晶を溶失したり、種付は温度が低
すぎて多結晶化することがあり、これを防止するために
は厳密な温度制御が必要となる。また、この方法は、種
付けの状態を直接確認することができないので、所定の
種付けを繰り返し実施することも容易なことではなかっ
た。さらに、この方法では、上部の原料融液の重重が総
て成長結晶にかかるため、その!nみで成長結晶内部に
多数の欠陥が生ずることもあり、欠陥の多い結晶しか育
成することができなかった。In the second method, the seed crystals are exposed to high temperatures during the preparation of the raw material melt, which may cause the seed crystals to melt and disappear, or the seeding temperature may be too low, resulting in polycrystals. To prevent this, strict temperature control is required. Furthermore, with this method, it is not possible to directly check the state of seeding, so it is not easy to repeatedly carry out predetermined seeding. Furthermore, in this method, all the weight of the upper raw material melt is applied to the growing crystal, so! In some cases, a large number of defects are generated inside the grown crystal, and only crystals with many defects can be grown.
そこで、本発明者は、上記の欠点を解消するために、上
部に小開口を有する縦型円筒容器を用い、該小開口内の
原料融液にF5結晶を浸して棟付けし、温度勾配を下方
に移動して1一方より固化成長させ、単結晶を育成する
方法及びその装置を特廓昭63−322025号として
堤寮した。Therefore, in order to eliminate the above-mentioned drawbacks, the present inventor used a vertical cylindrical container with a small opening at the top, immersed the F5 crystal in the raw material melt in the small opening, and fixed it therein to reduce the temperature gradient. The method and apparatus for growing a single crystal by moving it downward and solidifying it from one side and the apparatus therefor were published as Tokuya No. 63-322025.
(発明が解決しようとする課題)
しかし、原料融液の同化に際し、体積膨張する11結晶
については、容器を破損して結晶のiT成を不可能にし
たり、また、体積膨張にけう月二力が成長結晶に加わる
ために、従来のVIS法やVGF法と同様に成長結晶内
部に欠陥をもたらすなどの不都合があった。(Problems to be Solved by the Invention) However, when assimilating the raw material melt, the volume of the 11 crystals expands. is added to the growing crystal, and as with the conventional VIS method and VGF method, this method has disadvantages such as causing defects inside the growing crystal.
そこで、本発明は、上記の欠点を解消し、体積膨張する
111結晶についても、容器を破損することなく、また
、成長結晶に圧力を加わえることもなく、容易に良質の
単結晶を育成することを可能にした単結晶の育成方法及
びその装置を提供しようとするものである。Therefore, the present invention solves the above-mentioned drawbacks and makes it possible to easily grow high-quality single crystals even for volume-expanding 111 crystals without damaging the container or applying pressure to the growing crystals. The purpose of the present invention is to provide a single crystal growing method and apparatus that make it possible to do so.
(課題を解決するための手段)
本発明は、(1)縦型円筒容器内の原料融液を温度勾配
の下で一端より固化成長させるqt結結晶育成方法にお
いて、M型円筒容落下部小開口を密閉し、上部小開口よ
り原料を投入し、該容器全体を原料の融点より高温に加
熱して原料溶融し、原料融液の表面を」二部小開口内に
保ち、」二部小開口内原料融液の温度をほぼ原料の融点
に、かつ、それより下方を融点よりij’5 Qとする
温度勾配を形成し、次(1で、種結晶を」二部小開口の
原料融液に浸して種付けし、上部小開口が成長結晶で密
閉された後に、下部小開口の栓を抜いて過剰の原料融液
の流出を可能とし、そして、上記温度勾配を一+−、−
eh#lLw++−++Ll+1−+レジql’E/し
rffiff−させろことを特徴とするQ1結品のYt
成方法、及び、(2)縦型温度勾配炉に原料融液を収容
するwc型円筒容器を配置し、その一端より固化成長さ
せる単結晶の育成装置において、該容器の−に部を略円
錐形部となし、その先端に種付は川の小開口ををする頚
部を形成し、該頚部を介して原ネ゛)チャージ用受け部
を接続し、かつ、詠容器下部に過剰の原料融液を流出さ
せる小開口を設けて縦や円筒容器を構成し、上記頚部の
原料融液に種結晶を浸して種付けするための種結晶支持
用1軸を設け、流出する原料融液を受けるための受けm
tを下軸の先端に取り付け、かつ、受け1mの中央に下
部小開1’lを密閉するための栓を付設し、そして、温
度勾配を下方に移動する手段を備えたことを特徴とする
j11100育成装置である。(Means for Solving the Problems) The present invention provides (1) a qt crystal growth method in which a raw material melt in a vertical cylindrical container is solidified and grown from one end under a temperature gradient; The opening is sealed, the raw material is introduced through the small opening at the top, the entire container is heated to a temperature higher than the melting point of the raw material to melt the raw material, and the surface of the raw material melt is kept within the small opening. A temperature gradient is formed so that the temperature of the raw material melt inside the opening is approximately at the melting point of the raw material, and the temperature below that is ij'5 Q below the melting point. After the upper small opening is sealed with the growing crystal, the lower small opening is unplugged to allow excess raw material melt to flow out, and the temperature gradient is adjusted to 1 + -, -.
eh#lLw+++-++Ll+1-+Register ql'E/Shrffiff- Yt of Q1 product characterized by
(2) A single crystal growth apparatus in which a WC-type cylindrical container containing a raw material melt is placed in a vertical temperature gradient furnace, and the single crystal is solidified and grown from one end, in which the negative part of the container is formed into a substantially conical shape. A neck is formed at the tip with a small opening for the seed, and a charge receiving part for the raw material is connected through the neck, and the excess raw material is melted at the bottom of the container. A vertical or cylindrical container is formed by providing a small opening through which the liquid flows out, and a single axis for supporting a seed crystal is provided for soaking and seeding a seed crystal in the raw material melt at the neck, and for receiving the raw material melt flowing out. receiving m
t is attached to the tip of the lower shaft, a stopper is attached to the center of the receiver 1m for sealing the small opening 1'l at the bottom, and means is provided for moving the temperature gradient downward. j11100 breeding device.
(作用)
第1図は、本発明の単結晶育]戊方法を実施するための
1具体例装置の説明図であり、同]りI 1−)l−)
u 7F1田燃やす9tご田1士小眉璽4ル零(^1
た状態を示した図であり、(h)は原料を溶融して種付
けする状態を示した図であり、(c)は該容器」一部の
小開口が成長結晶により密閉され、下部小開口の栓を抜
いた状態を示した因であり、(d)は成長結晶が該容器
の直胴部まで成長した状態を示した同である。そして、
笛2図は、第1図(d)の縦軸方向の(1′L置と一致
させて描いた炉内中心部の温度分布図である。(Function) FIG. 1 is an explanatory diagram of a specific example of an apparatus for carrying out the single crystal growth method of the present invention.
u 7F1 rice field burn 9t rice field 1 person small eyebrow seal 4 le zero (^1
(h) is a diagram showing a state in which raw materials are melted and seeded, and (c) is a diagram showing a state in which the raw material is melted and seeded, and (c) is a diagram showing a state in which a part of the small opening of the container is sealed by the growing crystal, and a lower small opening is closed. (d) shows the state in which the growing crystal has grown up to the straight body of the container. and,
Figure 2 is a temperature distribution diagram at the center of the furnace, drawn to match the position (1'L) in the vertical axis direction of Figure 1(d).
本発明では、小結晶が縦型円筒容器の白壁に沿って形成
される。該容器は、固体原料20を容器内にチャージす
るための受け部1と、神付けするために小開口を設けた
垂部2と、成長結晶にX1部を形成するための略円錐部
3と、11°〔胴部4と、テール部5と、原料融液の流
出を可能にする下部小間口6とを備えている。該容器の
材質はAIN、 AItO+、 SiC,TiC,マグ
ネシア、 BN、 pnN等のセラミックス、Mo、
II、 Ta等の耐熱性金属、カーボン、石英、又は、
これらの組み合わせの中から遺択することができる。な
お、第11ス1では、該容器を支持具23てチャンバー
18に固定しているが、別の軸に固定して、該容器を5
4降11J能にしてもよい。In the present invention, small crystals are formed along the white walls of a vertical cylindrical container. The container has a receiving part 1 for charging a solid raw material 20 into the container, a hanging part 2 provided with a small opening for engraving, and a substantially conical part 3 for forming an X1 part in the growing crystal. , 11° [It is equipped with a body portion 4, a tail portion 5, and a lower booth opening 6 that allows the raw material melt to flow out. The material of the container is ceramics such as AIN, AItO+, SiC, TiC, magnesia, BN, pnN, Mo,
II, heat-resistant metal such as Ta, carbon, quartz, or
You can choose from among these combinations. In addition, in the 11th class 1, the container is fixed to the chamber 18 using the support 23, but it is fixed to another shaft and the container is fixed to the chamber 18 using the support 23.
It is also possible to set the performance to 11J with 4 drops.
一方、該容器の下方には、流出する原料融液16を受け
る受け1+1113を下軸IIの先端に取り付けて配直
し、該受けIIn ! 3の中央には下部小開(」6を
密閉するための栓12を設ける。他方、該容器の」ニガ
には、種結晶15を1、軸IOで支持し、該容器の頚部
2内の原料融液14に浸して種付は可能にする。そして
、該容器の周囲には、t!度勾配を形成するためのヒー
タ7.8.9を配置し、上方には、種付は監視用のぞき
窓19を付設し、全体をチャンバー18に収容する。On the other hand, below the container, a receiver 1+1113 for receiving the flowing raw material melt 16 is attached to the tip of the lower shaft II and rearranged, and the receiver IIn! A stopper 12 is provided in the center of the container for sealing the lower opening (6).On the other hand, a seed crystal 15 is supported by the axis IO in the container's neck 2. Seeding is possible by dipping it into the raw material melt 14. Heaters 7.8.9 for forming a t! degree gradient are placed around the container, and a seeding monitor is placed above. A viewing window 19 is attached, and the entire body is housed in a chamber 18.
次に、本発明の操作F順を説明する。まず、第1図(a
)のように、縦型円筒容器の下部小開rl 6を下軸1
1に取り付けた栓4で密閉した状態で、固体原料20を
充填し、次いで、ヒータ7.8.9に通電して第20の
点線■のような温度勾配を形成して固体原料を溶融し、
第2図中の点線■から実線■に向かう矢印のように、該
温度勾配を保持したまま温度勾配を下方に移動して、頚
部2内の原料融液I4の温度をほぼ融点に保持して、第
1図(b)のように、」二軸10を下降させて種結晶1
5を該原料融液14に浸し、のぞき窓19から監視しな
がら種付けする。このように、小開口における種付けは
、原料融液表面が小さいために、容易にlli結晶化さ
せることができ、かつ、種付は時に発生する結晶欠陥を
大福に抑制することができる。また、のぞき窓19より
種付けの状況を監視することができるので、FfI結品
結晶損することもなく容易に種付けを行うことができる
。頚部2内を成長結晶22が満たして顎部の小開口を密
閉した段階で、第11”(I(c)のように、下軸11
を下降させ、該容器下部の小開lコロの栓12を抜き、
」二記温度勾配を下方に移動させながら、第1図(d)
のように、小結晶22を成長させ、該容器内の原料融液
2Iの過剰分16は、該容器下部小開【」6から、下軸
11に取り付けた受け皿13に流出してff1Tられる
。その際、原料融液lは周囲から加熱されるため、周囲
の方が高温となり固液界面10を、第1図(d)のよう
に下に凸の状態で維持することができ、周囲から発生し
易い種々の結晶欠陥を排除することができる。Next, the order of operations F in the present invention will be explained. First, Figure 1 (a
), insert the small opening rl 6 at the bottom of the vertical cylindrical container into the lower shaft 1.
The solid raw material 20 is filled in a sealed state with the stopper 4 attached to 1, and then the heater 7.8.9 is energized to form a temperature gradient as indicated by the 20th dotted line (■) to melt the solid raw material. ,
As shown by the arrow pointing from the dotted line ■ to the solid line ■ in FIG. 2, the temperature gradient is moved downward while maintaining the temperature gradient, and the temperature of the raw material melt I4 in the neck 2 is maintained at approximately the melting point. , as shown in FIG. 1(b), the seed crystal 1 is
5 is immersed in the raw material melt 14 and seeded while being monitored through the viewing window 19. In this way, seeding in a small opening allows easy crystallization because the raw material melt surface is small, and seeding can suppress crystal defects that sometimes occur. Further, since the seeding situation can be monitored through the viewing window 19, seeding can be easily performed without causing loss of FfI crystals. At the stage where the growing crystal 22 fills the inside of the neck 2 and the small opening of the jaw is sealed, the lower shaft 11
lower the container, remove the small open roller stopper 12 at the bottom of the container,
” While moving the temperature gradient downward, as shown in Figure 1(d)
As shown in the figure, small crystals 22 are grown, and the excess 16 of the raw material melt 2I in the container flows out from the small opening 6 at the bottom of the container into the saucer 13 attached to the lower shaft 11 and is ff1T. At this time, the raw material melt l is heated from the surroundings, so the surroundings become hotter and the solid-liquid interface 10 can be maintained in a downwardly convex state as shown in FIG. 1(d). Various crystal defects that are likely to occur can be eliminated.
第1図の装置では、」二部の温度勾配の移動は、ヒータ
7.8.9の出力を制御して行うが、該容器に昇降手段
を付設することにより、ヒータにより形成された温度勾
配を固定したまま、語呂成長を行うこともできる。In the apparatus shown in FIG. 1, the temperature gradient in the second part is moved by controlling the output of the heater 7.8.9. It is also possible to grow the vocabulary while keeping it fixed.
このように、本発明は、先に提案した特願昭63−32
2025号の方法と比較して、精品成長過程で、過剰の
原料融液を縦型円筒容器下部の小開口から流出させるこ
とができるので、原料融液が固化して体積が膨張しても
、該容器に圧力を加えて破損することもなく、かつ、成
長結晶に圧力を加えて結晶内部に欠陥をもたらすことも
なく、種結晶で方位を確実に制御することができ、結晶
欠陥を大Uに低下させた所望形状の良質のI1111部
育1戊することができるようになった。As described above, the present invention is based on the previously proposed patent application No. 63-32.
Compared to the method of No. 2025, excess raw material melt can be flowed out from the small opening at the bottom of the vertical cylindrical container during the refined product growth process, so even if the raw material melt solidifies and expands in volume, The orientation of the seed crystal can be reliably controlled without damaging the container by applying pressure, and without applying pressure to the growing crystal and causing defects inside the crystal. It is now possible to produce high-quality I1111 parts with a desired shape.
(実施例)
第1図の装置dを用いてG a A s 711結品を
育成した。縦型円筒容器は、円筒部の内径を50mm、
直胴部?=’:rさを100111ffi、円錐形の1
1部のテーバ16度を45“、」一部小開口の内径を8
mm、下部小開口の内i¥を1mm、同長さを5mm、
容器の壁のPIさを5w+a+とするpBNコーティン
グのカーボンで容2gを作り、n’(胴部で上下に2分
割してi′(脱iiJ能な容2にとした。(Example) Ga As 711 seeds were grown using the apparatus d shown in FIG. For vertical cylindrical containers, the inner diameter of the cylindrical part is 50 mm,
Direct torso? =': r size 100111ffi, conical 1
One part has a 16 degree taper of 45", and one part has a small opening with an inner diameter of 8".
mm, i ¥ of the lower small opening is 1 mm, the same length is 5 mm,
A 2g volume was made of pBN-coated carbon with a PI of 5w+a+ for the wall of the container, and was divided into upper and lower halves at the n' (body) to form a 2-g capacity that could be removed by i'(i').
詠容器には、GaAs多結品1結晶0g及び11 、0
。In the chanting container, GaAs polycrystalline product 1 crystal 0g and 11,0
.
100g ’;:: 没入L 、チャンバーに18at
mのアルゴンガスを満たした。次いで、縦型温度勾配力
により、固液界面付近の温度勾配を約10℃/cmとす
るように炉巾の温度分布を調整した。原料は高温領域で
溶融してから、上記温度勾配を下方に移動して、上部小
開口の原料融液の表面温度を1240〜1245℃に低
下させ、種結晶を該原ネ1融液に浸して種付けした。秤
付けは覗き窓から監視することができたので、極めて容
部であるとともに確実に行うことができた。上部小開口
が結晶で密閉されてから、下相を下げて下部小開]コの
栓を抜き、−[−記温度勾配を徐々に下方に移動させて
11結品を育成した。その間に過剰の原料融液は下部小
開「」から流出させた。100g';:: Immersion L, 18at in the chamber
m of argon gas. Next, the temperature distribution across the furnace width was adjusted using a vertical temperature gradient force so that the temperature gradient near the solid-liquid interface was approximately 10° C./cm. The raw material is melted in a high temperature region, and then moved down the temperature gradient to lower the surface temperature of the raw material melt in the upper small opening to 1240 to 1245 °C, and the seed crystal is immersed in the raw material melt. I sowed the seeds. Since the weighing process could be monitored through a viewing window, it was extremely convenient and reliable. After the upper small opening was sealed with crystals, the lower phase was lowered and the stopper of the lower small opening was removed, and the temperature gradient was gradually moved downward to grow 11 crystals. During this time, excess raw material melt was flowed out through the small opening at the bottom.
このようにして、GaAsf11結品を再現性良く育成
することができ、該単結晶から切り出した]1゛〔径2
インチのウェハ面内の平均IE P Dは2000以ド
で、比低抗が5XIO’Ωcm、移動度5200cm’
/■Sの高品質のG a A s fi1桔品結晶るこ
とができた。In this way, GaAsf11 crystals could be grown with good reproducibility, and cut out from the single crystal]1゛[diameter 2
The average IEP D within the inch wafer surface is 2000 degrees or more, the specific resistance is 5XIO'Ωcm, and the mobility is 5200cm'.
I was able to crystallize a high quality G a As fi1 product.
(発明の効果)
本発明は、」二記の構I戊を採用することにより、種結
晶の溶損や多結晶化を防ぎ、秤付けの11■現JII!
:、を確保することができ、また、原料融液の固化時に
膨張する原料についても、容器を破損することなく、か
つ、原料融液の圧力を成長結晶に加えることもなく、種
付は時及び固化成長時の結晶欠陥の発生を抑制し直胴部
の直径が均一で良質の月1結晶を育成することを可能に
した。(Effects of the Invention) The present invention prevents melting and polycrystalization of seed crystals by adopting the structure described in 2.
: Also, even for raw materials that expand when the raw material melt solidifies, seeding can be done in a timely manner without damaging the container and without applying pressure from the raw material melt to the growing crystal. It also suppresses the occurrence of crystal defects during solidification growth, making it possible to grow high-quality moon crystals with a uniform diameter in the straight body.
4.1×1面のI!’I Illな説明第1[χ1(a
)〜((1)は本発明の1具体例である(11結品のを
成装置の概念図であり、第2図はm1図(d)の育成装
置1″i、内の温度分布の1例を示した説明図である。4.1×1 side I! 'I Ill Explanation 1st [χ1(a
) to ((1) is a conceptual diagram of a device for growing 11 products, which is a specific example of the present invention, and FIG. It is an explanatory diagram showing one example.
Claims (2)
より固化成長させる単結晶の育成方法において、縦型円
筒容器下部小開口を密閉し、上部小開口より原料を投入
し、該容器全体を原料の融点より高温に加熱して原料溶
融し、原料融液の表面を上部小開口内に保ち、上部小開
口内原料融液の温度をほぼ原料の融点に、かつ、それよ
り下方を融点より高温とする温度勾配を形成し、次いで
、種結晶を上部小開口の原料融液に浸して種付けし、上
部小開口が成長結晶で密閉された後に、下部小開口の栓
を抜いて過剰の原料融液の流出を可能とし、そして、上
記温度勾配を下方に移動することにより上方より固化成
長させることを特徴とする単結晶の育成方法。(1) In a method for growing a single crystal in which a raw material melt in a vertical cylindrical container is solidified and grown from one end under a temperature gradient, the small opening at the bottom of the vertical cylindrical container is sealed, the raw material is introduced through the small opening at the top, The entire container is heated to a temperature higher than the melting point of the raw material to melt the raw material, the surface of the raw material melt is maintained within the small opening at the top, and the temperature of the raw material melt within the small upper opening is approximately equal to and lower than the melting point of the raw material. A temperature gradient is created that makes the lower part higher than the melting point, and then the seed crystal is immersed in the raw material melt in the upper small opening for seeding.After the upper small opening is sealed with the growing crystal, the stopper in the lower small opening is removed. A method for growing a single crystal, characterized in that the excess raw material melt is allowed to flow out, and the single crystal is solidified and grown from above by moving the temperature gradient downward.
器を配置し、その一端より固化成長させる単結晶の育成
装置において、該容器の上部を略円錐形部となし、その
先端に種付け用の小開口を有する頚部を形成し、該頚部
を介して原料チャージ用受け部を接続し、かつ、該容器
下部に過剰の原料融液を流出させる小開口を設けて縦型
円筒容器を構成し、上記頚部の原料融液に種結晶を浸し
て種付けするための種結晶支持用上軸を設け、流出する
原料融液を受けるための受け皿を下軸の先端に取り付け
、かつ、受け皿の中央に下部小開口を密閉するための栓
を付設し、そして、温度勾配を下方に移動する手段を備
えたことを特徴とする単結晶の育成装置。(2) In a single crystal growth apparatus in which a vertical cylindrical container containing a raw material melt is placed in a vertical temperature gradient furnace and solidified and grown from one end, the upper part of the container is a substantially conical part, and the tip of the container is solidified and grown from one end. A vertical cylindrical container is formed with a neck portion having a small opening for seeding, a receiving portion for charging raw material is connected through the neck portion, and a small opening is provided at the bottom of the container to allow excess raw material melt to flow out. comprising an upper shaft for supporting a seed crystal for dipping and seeding a seed crystal in the raw material melt in the neck, a receiving tray for receiving the flowing raw material melt at the tip of the lower shaft, and a receiving tray. 1. A single-crystal growth device, comprising: a stopper for sealing a small opening at the bottom in the center thereof; and means for moving the temperature gradient downward.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31782089A JPH03183682A (en) | 1989-12-08 | 1989-12-08 | Single crystal growth method and device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31782089A JPH03183682A (en) | 1989-12-08 | 1989-12-08 | Single crystal growth method and device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03183682A true JPH03183682A (en) | 1991-08-09 |
Family
ID=18092414
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP31782089A Pending JPH03183682A (en) | 1989-12-08 | 1989-12-08 | Single crystal growth method and device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03183682A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5603763A (en) * | 1994-02-21 | 1997-02-18 | Japan Energy Corporation | Method for growing single crystal |
JP2001019591A (en) * | 1999-06-29 | 2001-01-23 | Kyocera Corp | Silicon casting equipment |
RU2494176C1 (en) * | 2012-03-11 | 2013-09-27 | Федеральное государственное бюджетное учреждение науки Институт геологии и минералогии им. В.С. Соболева Сибирского отделения Российской академии наук (Институт геологии и минералогии СО РАН, ИГМ СО РАН) | Method of crystal growth by kiropulos method |
-
1989
- 1989-12-08 JP JP31782089A patent/JPH03183682A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5603763A (en) * | 1994-02-21 | 1997-02-18 | Japan Energy Corporation | Method for growing single crystal |
JP2001019591A (en) * | 1999-06-29 | 2001-01-23 | Kyocera Corp | Silicon casting equipment |
RU2494176C1 (en) * | 2012-03-11 | 2013-09-27 | Федеральное государственное бюджетное учреждение науки Институт геологии и минералогии им. В.С. Соболева Сибирского отделения Российской академии наук (Институт геологии и минералогии СО РАН, ИГМ СО РАН) | Method of crystal growth by kiropulos method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH03183682A (en) | Single crystal growth method and device | |
JPH04104988A (en) | Growth of single crystal | |
US4764350A (en) | Method and apparatus for synthesizing a single crystal of indium phosphide | |
JP3550495B2 (en) | Single crystal manufacturing apparatus and single crystal manufacturing method | |
JPS5933552B2 (en) | crystal growth equipment | |
KR20010032297A (en) | Charge for vertical boat growth process and use thereof | |
JP2690420B2 (en) | Single crystal manufacturing equipment | |
JP2733898B2 (en) | Method for manufacturing compound semiconductor single crystal | |
JP2531875B2 (en) | Method for producing compound semiconductor single crystal | |
JPH02167882A (en) | Growth of single crystal and apparatus therefor | |
JPH0920596A (en) | Device for producing lithium tetraborate single crystal | |
JPH01294592A (en) | Growth of single crystal | |
JPH02221181A (en) | Single crystal growth equipment | |
JPH03122092A (en) | Method for growing polycrystal ingot | |
JPH03261694A (en) | Single crystal pulling method and device | |
JPS5836997A (en) | Producing device for single crystal | |
JPH024126Y2 (en) | ||
JP3125313B2 (en) | Single crystal growth method | |
JPH0426593A (en) | Apparatus for producing compound single crystal and production thereof | |
JPS60204700A (en) | Single crystal manufacturing method | |
JPS6012318B2 (en) | Single crystal pulling method and device | |
JPH0952789A (en) | Production of single crystal | |
JPS62275086A (en) | Method for removing residue in crucible for crystal growth | |
JPS63285183A (en) | Production of compound semiconductor single crystal | |
JPH02311390A (en) | Device for producing single crystal |