[go: up one dir, main page]

JPH0318179A - Color conversion method - Google Patents

Color conversion method

Info

Publication number
JPH0318179A
JPH0318179A JP1150568A JP15056889A JPH0318179A JP H0318179 A JPH0318179 A JP H0318179A JP 1150568 A JP1150568 A JP 1150568A JP 15056889 A JP15056889 A JP 15056889A JP H0318179 A JPH0318179 A JP H0318179A
Authority
JP
Japan
Prior art keywords
color
space
tetrahedron
point
mapping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1150568A
Other languages
Japanese (ja)
Other versions
JP2872690B2 (en
Inventor
Masatoshi Kato
雅敏 加藤
Noriko Tanaka
紀子 田中
Keiichi Koike
小池 桂一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP1150568A priority Critical patent/JP2872690B2/en
Publication of JPH0318179A publication Critical patent/JPH0318179A/en
Application granted granted Critical
Publication of JP2872690B2 publication Critical patent/JP2872690B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Image Processing (AREA)
  • Editing Of Facsimile Originals (AREA)
  • Facsimile Image Signal Circuits (AREA)
  • Color Image Communication Systems (AREA)

Abstract

PURPOSE:To improve color reproducibility by dividing a 1st color space into a tetrahedron having n-point of apexes, converting an optional point into a map point in the tetrahedron in a 2nd color space, obtaining the coordinate and outputting it as a color signal. CONSTITUTION:An LUT 21 sets mapping images Xi,Yi, Zi zetai, xsii, phii, i=1-n from an X, Y, Z space into zetaxsiphi space to cubes V, W representing a color space. The XYZ space (cube V) is divided into a 1st tetrahedron (T) taking 4 points as its apex. Then an optional color is read from an original to make it corresponding to an optional point P in the XYZ space. The 1st tetrahedron Tp including the point P is selected, Let apexes of the tetrahedron Tp be A-D, then coefficients alpha, beta, gamma having a relation of vector AP=alphaAB+betaAC+gammaAD are obtained. A point Q of a tetrahedron Ua (apexes E-H) in the zetaxsiphi space corresponding to the tetrahedron Tp having a relation of vector EQ=alphaEF+betaEG +gammaEH is obtained. Thus, a map point Q in the tetrahedron U0 with respect to the point P is obtained. The coordinate is outputted as a color signal of a 2nd display system.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、或る表色系の色信号を他の表色系の色信号
に変換する色変換方法に関し、特に高精度の色再現性を
実現した色変換方法に関するものである. [従来の技術] 一般に、カラー画像の入力装置においては、補色系の色
フィルタを介したカラーイメージセンサ等で光電変換を
行い、例えば補色系の色信号を得ている.しかし、この
色信号を原色系のR〈赤〉、G(緑)、B(青)の色信
号に変換したり、又は、ハードコピーとして出力するた
めに、RG Bffi号から更にY(黄)、M(マゼン
タ)、C(シアン)等の他の色信号に変換する場合、表
色系を変換する必要がある. 第5図は、例えば『画像電子学会誌」(第12巻、第4
号、1983年)の「カラー光電変換」(第265頁〜
第271頁)の第268頁に記載された一般的な光電変
換系を示すIII戒図である. 図において、カラー原稿(1)には光源(2)の光が照
射され、カラー原稿(1)の照射面醐にはロツドレンズ
アレイ(3)が配置されている.ロッドレンズアレイ(
3)の結像面には、CCD(C harge C ou
pled D evice)からなるラインセンサチッ
プ(4)が配置され、このラインセンサチップ(4)は
、セラミック基板(5)上に配列されている. 第6図はラインセンサチップ(4)上で光電変換を行う
受光部の配列を示す説明図である.図において、W(白
)に対応する受光部(4H)には色フィルタが無く、Y
(黄)に対応する受光部(4Y)の表面には黄色の色フ
ィルタが設けられ、C(シアン)に対応する受光部(4
C〉の表面にはシアンの色フィルタが設けられている. 次に、第5図及び第6図に示した光電変換系の動作につ
いて説明する. カラー原稿(1)上のカラー画像は、光源(2)により
照明され、ロッドレンズアレイ(3〉を通して、ライン
センサチップ(4〉上に等倍の正立実像として結像され
る.ラインセンサチップ(4)上の各受光部(4−)、
(4Y)、(4C)は、色フィルタにより分離された各
色成分を示す電気信号を、w,y,cの色信号として出
力する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a color conversion method for converting a color signal of a certain color system to a color signal of another color system, and particularly relates to a color conversion method for converting a color signal of a certain color system into a color signal of another color system. This paper relates to a color conversion method that achieves this. [Prior Art] Generally, in a color image input device, photoelectric conversion is performed using a color image sensor or the like via a complementary color filter to obtain, for example, a complementary color signal. However, in order to convert this color signal into the primary color R (red), G (green), and B (blue) color signals, or to output it as a hard copy, Y (yellow) is added from RG Bffi. , M (magenta), C (cyan), etc., it is necessary to convert the color system. Figure 5 shows, for example, "Journal of the Institute of Image Electronics Engineers" (Volume 12, 4
1983), “Color Photoelectric Conversion” (p. 265~
This is a diagram III showing a general photoelectric conversion system described on page 268 of page 271). In the figure, a color original (1) is irradiated with light from a light source (2), and a rod lens array (3) is arranged on the irradiated surface of the color original (1). Rod lens array (
3) On the imaging plane, there is a CCD (Charge Coupon).
A line sensor chip (4) made of PLEDD device is disposed, and this line sensor chip (4) is arranged on a ceramic substrate (5). Figure 6 is an explanatory diagram showing the arrangement of the light receiving parts that perform photoelectric conversion on the line sensor chip (4). In the figure, the light receiving part (4H) corresponding to W (white) has no color filter, and
A yellow color filter is provided on the surface of the light receiving section (4Y) corresponding to (yellow), and a yellow color filter is provided on the surface of the light receiving section (4Y) corresponding to C (cyan).
A cyan color filter is provided on the surface of C>. Next, the operation of the photoelectric conversion system shown in FIGS. 5 and 6 will be explained. The color image on the color original (1) is illuminated by a light source (2), and is focused through a rod lens array (3) onto a line sensor chip (4) as an erect real image at the same size as the line sensor chip. (4) Each upper light receiving section (4-),
(4Y) and (4C) output electrical signals indicating each color component separated by the color filter as w, y, and c color signals.

次に、こうして得られたW.Y.Cの色信号に基づいて
、R.G.Bの原色系の色信号を得るための、従来の色
変換方法について説明する.RGB信号の値は、例えば
川上元郎他のli集による「色彩の事典J(朝倉書店、
1987年)の第28頁に記載されているように、 R= S S(λ)r(λ)dλ G= S S(λ)g(λ〉dλ      ・・・■
B= i S(λ)b(λ)dλ で表わされる.但し、S(λ)はカラー原稿(1)がら
の反射光の分光エネルギ分布であり、r(λ)、g(λ
)、b(λ)は、RGBのそれぞれに対する等色関数で
ある. 従って、ラインセンサチップ(4)の分光特性が、?−
 y.cの各色信号に対し、 W=c.[r(λ)十g(λ)+b(λ)]Y=c2[
r(λ)+g(λ)]     ・・・■C = c 
,[g (λ〉+b(λ〉1但し、C l■ C * 
:定数 を満足する場合は、R,G.Hの値は、R = W −
 1.12c G = Y +1.l2C−W         ・・
・■B =W− Y で表わされる.この一次変換式■により、カラー原稿(
1〉上の色をWYC信号から原色系のR G B信号に
変換することができる. 尚、色空間としては、上述したようなWYC空間、RG
B空間及びYMC空間の他に、二次元の色座標にし1(
輝度)座標を付加したL”a’b”空間及びL”u”v
”空間等、種々あるが、他の表色系の色信号に変換する
場合も、同様の一次変換式が用いられる. [発明が解決しようとする課題] 従来の色変換方法は以上のように、一次変換することに
より、他の表色系の色信号例えばRGB信号を得ている
.しかしながら、カラーイメージセンサ等のラインセン
サチップ(4)の分光特性は、各受光部(4Y)及び(
4C)に設けられた色フィルタの分光特性と受光素子の
分光感度特性とによって決定するため、等色間数r(λ
)、g(λ)、b(λ)からずれている.従って、ライ
ンセンサチップ(4)の分光特性が■式で表わされるこ
とはほとんどなく、一次変換式■により高精度の色再現
性を実現することは困難である. このような問題点を解決するため、例えば、特願昭62
−332535号明細書に記載されているように、各色
空間を有限な小空間に分割し、それぞれの小空間に対し
て異なる一次変換式を適用する方法が考えられる.しか
し、この方法においては、各小空間が立方体であるうえ
一次変換式を用いているので、隣接する小空間の境界部
に不連続部が生じ、境界部の原稿色を再現する際に、不
連続部による疑似輪郭が発生するという問題点があった
.この発明は上記のような問題点を解決するためになさ
れたもので、疑似輪郭を生じることなく、高精度の色再
現性を実現した色変換方法を得ることを目的とする. [課題を解決するための手段] この発明に係る色変換方法は、第1の表色系を示す第1
の色空間から第2の表色系を示す第2の色空間に変換す
る写像をそれぞれn点について設定するステップと、第
1の色空間を、n点のうちの各4点を頂点として、互い
に重なることなく且つ第1の色空間内の任意の点を必ず
含むような複数の第1の四面体に分割するステップと、
第1の表色系に従った任意の色信号を第1の色空間内の
任意の点に対応させるステップと、任意の点を含む第1
の四面体を選択するステップと、第1の四面体に対応し
た第2の色空間丙の第2の四面体に対する任意の点に対
応する写像点を線形演算により求めるステップと、を備
えたものである.[作用] この発明においては、第1の色空間から第2の色空間へ
の写像をn点について予め与えておき、四面体分割アル
ゴリズムを導入して第1の色空間をn点を頂点とした複
数の第1の四面体に分割し、第1の四面体内の任意の点
を、写像によって対応させた第2の色空間内の第2の四
面体内の写像点に変換し、この写像点の座標を線形演算
によって求め、これを第2の表色系の色信号として出力
することにより色再現性を向上させる. 『実施例] 以下、この発明の一実施例を図について説明する.第1
図はこの発明の一実施例を示すフローチャート図、第2
図はこの発明を実現するための回路構戒を示すブロック
図、第3図は第1及び第2の色空間を示す説明図、第4
図は第1及び第2の四面体を示す説明図である.尚、こ
の発明に適用される光電変換系のit或は、第5図及び
第6図に示した通りである. いま、第3図のように、異なる表色系からなる任意の2
つの色空間を考え、XYZ空間を第1の色空間、ζξψ
空間を第2の色空間とする.ここで、XYZ空間はWY
C空間に対応し、ζξψ空間はRGB空間に対応すると
考えることができる,各色空間内で取り得る座標の上限
値は、第5図に示した光源(2)の照度やラインセンサ
チップ(4)の感度等によって与えられる.従って、各
色空間は、上限値X麟、Y鯖、Zs、ζLξ輪、ψ一に
より、第1の立方体V及び第2の立方体Wとして画成さ
れる. 例えば、ラインセンサチップ(4)からの色信号が8ビ
ットにAD変換されるとすると、第5図及び第6図の光
電変換系から出力されるWYC信号の取り得る範囲は0
〜255となる.従って、いかなる色のカラー原稿(1
)を読み取っても、その色信号に対応するXYZ空間内
の点Pは、 V ((X.Y.Z) l o=x=x m,05Y3
Ym,0≦2≦Z Mlで表わされる第1の立方体V内
の座標(X,Y,Z)に含まれることになる.同様に、
XYZ空間内の点Pに対応するζξψ空間内の点Qは、 W{(ζ,ξ.φ)10≦ζ≦ζ輸,0≦ξ≦ξ請.0
≦ψ≦ψ輸}で表わされる第2の立方体W内の座ill
(ζ.ξ,ψ)に含まれることになる. 従って、第1図に示すように、まず、各立方体V及びW
に対して、XYZ空間からζξψ空間へのn点の写像(
X.,Y..Z. →ζ,.ξ1.ψ+ : i = 
l〜n)を設定する(ステップS1). この写像は、■式のような単純な一次変換でもなく、又
、解析的関数系に従う変換でもなく、以下のように求め
られる. 即ち、標準サンプルとなるn色の色票を用意して、分光
光度計等を用いて各色票の分光反射特性を測定する.例
えば、i番目の色票の分布反射特性から分光エネルギ分
布S(λ)のデータを求め、このデータからの式を用い
てRGBの値を求めると、このRGB値は、ζξψ空間
での色票の位置座標を示す点Q,に対応する. 一方、同じi番目の色票を前述のようにラインセンサチ
ップ(4)を用いて読み取り、得られた色信号を+ X
YZ空間での色票の位置座標を示す点P.とする. 以上の操作を繰り返して、i(=1〜n〉番目の色票の
色信号を順次読み取っていくと、 P ,(X.,Y.,Z.)→Q.(ζ1ξiψI)に
変換する写像がn点について求められ、ステップS1が
終了する.この写像は、逆に、Q.→P1の変換にも用
いることができる.又、このとき、用いられる色票の種
類数nは、代表的なカラー及び白黒を含む数種類が最低
限必要であり、実用的な変換精度を確保するためには、
100〜zoos類程度が必要である. 次に、XYZ空間即ち第1の立方体Vを、n点のうちの
各4点を頂点とする複数の第1の四面体Tに分割する(
ステップS2). このとき、各四面体Tは、互いに重なることなく且つ第
1の立方体V内の任意の点を必ず含むように画成される
Next, the thus obtained W. Y. Based on the color signal of R. G. A conventional color conversion method for obtaining a color signal of the B primary color system will be explained. The value of the RGB signal can be found, for example, in "Encyclopedia of Colors J" by Motoro Kawakami et al.
(1987), page 28, R= S S(λ) r(λ) dλ G= S S(λ) g(λ>dλ ・・・■
B= i S(λ) b(λ) dλ. However, S(λ) is the spectral energy distribution of the reflected light from the color original (1), and r(λ), g(λ
), b(λ) are color matching functions for each of RGB. Therefore, the spectral characteristics of the line sensor chip (4) are? −
y. For each color signal of c, W=c. [r(λ) 10g(λ)+b(λ)]Y=c2[
r(λ)+g(λ)]...■C = c
, [g (λ〉+b(λ〉1) However, C l■ C *
: If the constant is satisfied, R, G. The value of H is R = W −
1.12c G = Y +1. l2C-W...
・■B = W− Y. This primary conversion formula ■ allows color originals (
1> The above colors can be converted from WYC signals to primary color RGB signals. In addition, the color space is WYC space as mentioned above, RG
In addition to B space and YMC space, the two-dimensional color coordinates are 1 (
Luminance) L”a’b” space with added coordinates and L”u”v
``Although there are various spatial, etc., similar linear conversion formulas are used when converting to color signals of other color systems. [Problems to be solved by the invention] Conventional color conversion methods are as described above. , by performing linear conversion, color signals of other color systems, such as RGB signals, are obtained. However, the spectral characteristics of the line sensor chip (4) such as a color image sensor are different from each light receiving part (4Y) and (
4C) and the spectral sensitivity characteristics of the light-receiving element, the isochromatic interval number r(λ
), g(λ), and b(λ). Therefore, the spectral characteristics of the line sensor chip (4) are almost never expressed by the formula (2), and it is difficult to achieve highly accurate color reproducibility using the linear conversion formula (2). In order to solve such problems, for example,
As described in Japanese Patent Application No. 332535, a method can be considered in which each color space is divided into finite small spaces and a different linear transformation formula is applied to each small space. However, in this method, each small space is a cube and a linear transformation formula is used, so discontinuities occur at the boundaries of adjacent small spaces, which causes discontinuities when reproducing the original color at the boundaries. There was a problem that false contours were generated due to continuous parts. This invention was made to solve the above-mentioned problems, and aims to provide a color conversion method that achieves highly accurate color reproducibility without producing false contours. [Means for Solving the Problems] A color conversion method according to the present invention provides a first color system representing a first color system.
a step of setting a mapping for converting the color space from the color space to a second color space representing a second color system for each of the n points; dividing into a plurality of first tetrahedra that do not overlap each other and always include any point in the first color space;
a step of making an arbitrary color signal according to a first color system correspond to an arbitrary point in the first color space;
the step of selecting a tetrahedron in the second color space C corresponding to the first tetrahedron, and the step of calculating by linear calculation a mapping point corresponding to an arbitrary point on the second tetrahedron in a second color space C corresponding to the first tetrahedron. It is. [Operation] In this invention, a mapping from the first color space to the second color space is given in advance for n points, and a tetrahedral division algorithm is introduced to transform the first color space with n points as vertices. The mapped point is divided into a plurality of first tetrahedrons, and any point in the first tetrahedron is converted into a mapped point in the second tetrahedron in the second color space that corresponds to the mapped point by mapping. The color reproducibility is improved by finding the coordinates of by linear calculation and outputting them as color signals of the second color system. ``Example'' An example of the present invention will be described below with reference to the drawings. 1st
The figure is a flowchart diagram showing one embodiment of this invention.
The figure is a block diagram showing the circuit configuration for realizing this invention, Figure 3 is an explanatory diagram showing the first and second color spaces, and Figure 4 is an explanatory diagram showing the first and second color spaces.
The figure is an explanatory diagram showing the first and second tetrahedrons. The photoelectric conversion system applied to this invention is as shown in FIGS. 5 and 6. Now, as shown in Figure 3, any two
Consider two color spaces, and let XYZ space be the first color space, ζξψ
Let space be the second color space. Here, the XYZ space is WY
It can be thought that the ζξψ space corresponds to the C space, and the ζξψ space corresponds to the RGB space.The upper limit of the coordinates that can be taken within each color space is determined by the illuminance of the light source (2) and the line sensor chip (4) shown in Figure 5. It is given by the sensitivity etc. Therefore, each color space is defined as a first cube V and a second cube W by the upper limit values X, Y, Zs, ζLξwheel, and ψ1. For example, if the color signal from the line sensor chip (4) is AD converted into 8 bits, the possible range of the WYC signal output from the photoelectric conversion system in FIGS. 5 and 6 is 0.
~255. Therefore, any color original (1
), the point P in the XYZ space corresponding to that color signal is V ((X.Y.Z) l o=x=x m,05Y3
Ym, 0≦2≦Z It will be included in the coordinates (X, Y, Z) in the first cube V represented by Ml. Similarly,
The point Q in the ζξψ space corresponding to the point P in the XYZ space is W{(ζ,ξ.φ)10≦ζ≦ζtransport, 0≦ξ≦ξcon. 0
≦ψ≦ψtransport} in the second cube W
It will be included in (ζ.ξ, ψ). Therefore, as shown in FIG.
, the mapping of n points from XYZ space to ζξψ space (
X. ,Y. .. Z. →ζ、. ξ1. ψ+: i=
l to n) (step S1). This mapping is not a simple linear transformation like the formula ■, nor is it a transformation according to an analytical function system, but can be obtained as follows. That is, n color patches are prepared as standard samples, and the spectral reflection characteristics of each color patch are measured using a spectrophotometer or the like. For example, if the data of the spectral energy distribution S(λ) is obtained from the distributed reflection characteristics of the i-th color patch, and the RGB values are obtained using the formula from this data, this RGB value will be calculated from the color chart in the ζξψ space. It corresponds to point Q, which indicates the position coordinates of . On the other hand, the same i-th color patch is read using the line sensor chip (4) as described above, and the obtained color signal is +X
Point P indicating the position coordinates of the color patch in YZ space. Suppose that By repeating the above operation and sequentially reading the color signals of the i (=1 to n> color patches), a mapping is obtained that converts P, (X., Y., Z.) → Q. (ζ1ξiψI) is obtained for n points, and step S1 ends.This mapping can also be used to convert Q.→P1.Also, at this time, the number n of types of color chips used is Several types including color and black and white are required as a minimum, and in order to ensure practical conversion accuracy,
Approximately 100~zoos level is required. Next, the XYZ space, that is, the first cube V, is divided into a plurality of first tetrahedrons T, each of which has four points among the n points as vertices (
Step S2). At this time, each tetrahedron T is defined so that it does not overlap with each other and always includes any point within the first cube V.

又、第4図のように、複数の第1の四面体Tpのうちの
1つの各項点をA〜Dとすれば、ステップSlで得られ
た写像に従って、第2の立方体W内にも、第1の四面体
Tpに対応して、各4点E〜Hを頂点とする第2の四面
体UQが画成される.次に、カラー原稿(1)から任意
の色を読み取ったと仮定して、第1の表色系に従った或
る色信号を選択し、これをXYZ空間内の任意の点Pに
対応させる(ステップS3). そして、第1の立方体V内の任意の点Pが、複数の第1
の四面体Tのうちのどれに含まれるかを判断し、第4図
のように、任意の点Pを含む第1の四面体T.(フP)
を選択する(ステップS4〉.このとき,複数の第1の
四面体Tは、ステップS2において互いに重なり合わな
いように設定されているため、第1の四面体Tpは一意
的に決定される. 次に、第1の四面体Tpの頂点をA〜Dとし、を満たす
係数α、β、γを求める(ステップS5)。
Furthermore, as shown in FIG. 4, if each term point of one of the plurality of first tetrahedra Tp is A to D, then according to the mapping obtained in step Sl, there are also points in the second cube W. , a second tetrahedron UQ having vertices at each of the four points E to H is defined corresponding to the first tetrahedron Tp. Next, assuming that an arbitrary color is read from the color original (1), a certain color signal according to the first color system is selected, and this is made to correspond to an arbitrary point P in the XYZ space ( Step S3). Then, any point P within the first cube V is
is included in the first tetrahedron T that includes any point P, as shown in FIG. (FuP)
(Step S4>) At this time, since the plurality of first tetrahedrons T are set not to overlap each other in step S2, the first tetrahedron Tp is uniquely determined. Next, the vertices of the first tetrahedron Tp are defined as A to D, and satisfying coefficients α, β, and γ are determined (step S5).

このとき、前述のように、第1の四面体T,に対応する
第2の四面体U0の頂点E〜Hは、ステップS1におい
て設定されたn点の写像に含まれるため、頂点A−D(
第1の四面体T.)は頂点E〜H(第2の四面体U.)
に写像される。
At this time, as described above, since the vertices E to H of the second tetrahedron U0 corresponding to the first tetrahedron T are included in the n-point mapping set in step S1, the vertices A to D (
The first tetrahedron T. ) are vertices E to H (second tetrahedron U.)
mapped to

又、各四面体T,及びU.の内部が線形であると仮定ス
ルト、XYZ空間ノ任意ノ点P (xp,ylP,zp
)からζξψ空間に写像された点Q(ζQ,ξq,ψQ
)は、 EQ−αEF+βEC+γEl+        ・・
・■を満たすことになる。従って、線形演算に基づく■
式から、変換後のζξψ空間内の第2の四面体U.に対
する写像点Qを求めることができる(ステップS6). 以上の操作は、第2図のように、XYZ空間及びζξψ
空間の各座標値に対応して設けられた複数のLUT(ル
ックアップテーブル)<21)〜(23)により実行さ
れる, L U T (21) 〜(23)は、n点に
対応した写像が格納されたROMで構成され、デジタル
信号からなるXYZ値をζξψ値を出力するようになっ
ている. 従って、L U T (21)〜(23)は、上述のよ
うにして得られた写像点Qを、任意の点Pをζξψ空間
に写像させた点として出力する(ステップS7).この
とき、ステップS1の測定によって求められたn点につ
いては、測定値通りの出力値ζξψが得られるので、ノ
イズ成分を無視すれば色差はOとなり、従来の一次変換
と比べて色再現性が著しく向上する. 又、各四面体T及びUの内部を線形であると仮定して、
XYZ空間内の各点Pに対するζξψ空間内の写像(変
換)点Qを求めているので、各四面体の境界面における
連続性が常に確保される6従って、従来のように境界部
の不連続性により疑似輪郭が発生することはなく、変換
された色信号を高精度に再現することができる。
Moreover, each tetrahedron T, and U. Assuming that the interior of is linear, any point P in XYZ space (xp, ylP, zp
) mapped from point Q (ζQ, ξq, ψQ
) is EQ-αEF+βEC+γEl+...
・■ will be satisfied. Therefore, ■ based on linear operations
From the equation, the second tetrahedron U. in the ζξψ space after transformation. The mapping point Q can be found for (step S6). The above operations are performed in the XYZ space and ζξψ as shown in Figure 2.
LUT (21) to (23) are mappings corresponding to n points, which are executed by a plurality of LUTs (lookup tables) <21) to (23) provided corresponding to each coordinate value in space. It is composed of a ROM that stores , and is designed to output XYZ values consisting of digital signals as ζξψ values. Therefore, L U T (21) to (23) output the mapped point Q obtained as described above as a point obtained by mapping an arbitrary point P to the ζξψ space (step S7). At this time, for the n points determined by the measurement in step S1, the output value ζξψ is obtained according to the measured value, so if the noise component is ignored, the color difference becomes O, and the color reproducibility is improved compared to the conventional linear conversion. Significant improvement. Also, assuming that the interior of each tetrahedron T and U is linear,
Since the mapping (transformation) point Q in the ζξψ space for each point P in the XYZ space is determined, continuity at the boundary surface of each tetrahedron is always ensured. Therefore, the converted color signal can be reproduced with high precision without generating false contours due to the color difference.

尚、第1及び第2の色空間となるXYZ空間及びζξψ
空間は、それぞれWYC空聞及びRGB空間等に限らず
、どのような色空間であっても同等の効果を奏すること
は言うまでもない.[発明の効果] 以上のようにこの発明によれば、第1の表色系を示す第
1の色空間から第2の表色系を示す第2の色空間に変換
する写像をそれぞれn点について設定するステップと、
第1の色空間を、n点のうちの各4点を頂点として、互
いに重なることなく且つ第1の色空間内の任意の点を必
ず含むような複数の第1の四面体に分割するステップと
、第1の表色系に従った任意の色信号を第1の色空間内
の任意の点に対応させるステップと、任意の点を含む第
1の四面体を選択するステップと、第1の四面体に対応
した第2の色空間内の第2の四面体に対する任意の点に
対応する写像点を線形演算により求めるステップと、を
備え、四面体分割アルゴリズムを導入して、第1の色空
間の四面体内の任意の点を、写像によって対応させた第
2の色空間の四面体内の点に線形演算変換するようにし
たので、疑似輪郭を生じることなく、且つ高精度の色再
現性を実現した色変換方法が得られる効果がある.
Note that the XYZ space and ζξψ are the first and second color spaces.
It goes without saying that the space is not limited to WYC space, RGB space, etc., but any color space will have the same effect. [Effects of the Invention] As described above, according to the present invention, the mapping for converting from the first color space representing the first color system to the second color space representing the second color system is performed at n points. Steps to configure for
dividing the first color space into a plurality of first tetrahedra that do not overlap each other and always include any point in the first color space, with each of the n points having four points as vertices; a step of associating an arbitrary color signal according to the first color system with an arbitrary point in the first color space; a step of selecting a first tetrahedron including the arbitrary point; and a step of calculating by a linear operation a mapping point corresponding to an arbitrary point on the second tetrahedron in the second color space corresponding to the tetrahedron, and introducing a tetrahedral division algorithm. Since any point within the tetrahedron in the color space is linearly converted into a corresponding point within the tetrahedron in the second color space through mapping, false contours are not generated and color reproducibility is highly accurate. This has the effect of providing a color conversion method that achieves this.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例を示すフローチャート図、
第2図はこの発明を実現するための回路構成の一例を示
すブロック図、第3図は第1及び第2の色空間を示す説
明図、第4図は第1及び第2の四面本を示す説明図、第
5図は色変換に用いられる一般的な光電変換系を示す構
成図、第6図は第5図内のラインセンサチップの受光部
の色フィルタ配列を示す説明図である. ■・・・第1の色空間の立方体 W・・・第2の色空間の立方体 T1・・第1の四面#   U.・・・第2の四面体P
・・・任意の点     Q・・・写像点A−D.E〜
H・・・頂点 S1・・・写像を設定するステップ S2・・・複数の第1の四面体に分割するステップS3
・・・色信号を任意の点に対応させるステップS4・・
・任意の点を含む四面体を選択するステップ55〜S6
・・・写像点を求めるステップ尚、図中、同一符号は同
一又は相当部分を示す。
FIG. 1 is a flow chart diagram showing an embodiment of the present invention;
Fig. 2 is a block diagram showing an example of a circuit configuration for realizing the present invention, Fig. 3 is an explanatory diagram showing the first and second color spaces, and Fig. 4 shows the first and second four-sided book. 5 is a configuration diagram showing a general photoelectric conversion system used for color conversion, and FIG. 6 is an explanatory diagram showing a color filter arrangement of the light receiving part of the line sensor chip in FIG. 5. ■... Cube W in first color space... Cube T1 in second color space... First four sides #U. ...Second tetrahedron P
...Arbitrary point Q...Mapped point A-D. E~
H... Vertex S1... Step S2 of setting a mapping... Step S3 of dividing into a plurality of first tetrahedra
...Step S4 of making the color signal correspond to an arbitrary point...
・Steps 55 to S6 of selecting a tetrahedron containing an arbitrary point
. . . Step of determining mapped points In the drawings, the same reference numerals indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】 任意の色信号を第1の表色系から第2の表色系に変換す
る色変換方法において、 前記第1の表色系を示す第1の色空間から前記第2の表
色系を示す第2の色空間に変換する写像をそれぞれn点
について設定するステップと、前記第1の色空間を、前
記n点のうちの各4点を頂点として、互いに重なること
なく且つ前記第1の色空間内の任意の点を必ず含むよう
な複数の第1の四面体に分割するステップと、 前記第1の表色系に従った任意の色信号を前記第1の色
空間内の任意の点に対応させるステップと、 前記任意の点を含む第1の四面体を選択するステップと
、 前記第1の四面体に対応した前記第2の色空間内の第2
の四面体内に対する前記任意の点に対応する写像点を線
形演算により求めるステップと、を備えたことを特徴と
する色変換方法。
[Scope of Claims] A color conversion method for converting an arbitrary color signal from a first color system to a second color system, comprising: converting an arbitrary color signal from a first color space indicating the first color system to the second color space; a step of setting a mapping for each of the n points to be converted into a second color space showing a color system of and dividing an arbitrary color signal according to the first color system into a plurality of first tetrahedra that necessarily include an arbitrary point in the first color space; selecting a first tetrahedron that includes the arbitrary point; and selecting a second tetrahedron in the second color space that corresponds to the first tetrahedron.
A color conversion method comprising the step of determining a mapping point corresponding to the arbitrary point in the tetrahedron by linear calculation.
JP1150568A 1989-06-15 1989-06-15 Color conversion method Expired - Fee Related JP2872690B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1150568A JP2872690B2 (en) 1989-06-15 1989-06-15 Color conversion method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1150568A JP2872690B2 (en) 1989-06-15 1989-06-15 Color conversion method

Publications (2)

Publication Number Publication Date
JPH0318179A true JPH0318179A (en) 1991-01-25
JP2872690B2 JP2872690B2 (en) 1999-03-17

Family

ID=15499733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1150568A Expired - Fee Related JP2872690B2 (en) 1989-06-15 1989-06-15 Color conversion method

Country Status (1)

Country Link
JP (1) JP2872690B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5477334A (en) * 1991-04-17 1995-12-19 Bemis Manufacturing Company Method of and apparatus for determining if a given data point falls within a population of data points
US5619427A (en) * 1995-06-22 1997-04-08 Fuji Photo Film Co., Ltd. Color conversion method and color conversion table generating apparatus
JP2015149581A (en) * 2014-02-06 2015-08-20 富士通株式会社 Information processing device, color interpolation method, program and table generating method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5477334A (en) * 1991-04-17 1995-12-19 Bemis Manufacturing Company Method of and apparatus for determining if a given data point falls within a population of data points
US5619427A (en) * 1995-06-22 1997-04-08 Fuji Photo Film Co., Ltd. Color conversion method and color conversion table generating apparatus
JP2015149581A (en) * 2014-02-06 2015-08-20 富士通株式会社 Information processing device, color interpolation method, program and table generating method

Also Published As

Publication number Publication date
JP2872690B2 (en) 1999-03-17

Similar Documents

Publication Publication Date Title
CA1312290C (en) Method of describing a color image using a triaxial planar vector color space
US6437792B1 (en) Image processing apparatus and method, color gamut conversion table creating apparatus and method, storage medium having image processing program recorded therein, and storage medium having recorded therein color gamut conversion table creating program
EP0779736B1 (en) Data conversion table changing
JP3174604B2 (en) Color image reproducing apparatus and method
US5692071A (en) Color image processing method and apparatus for generating device-dependent color signals
US5087126A (en) Method of estimating colors for color image correction
US5642197A (en) System and method for enhancing color seperation utilizing multiple pass scanner in a single pass color scanner
JP2000311243A (en) Image color correction method and device
JPH07322079A (en) Method and equipment for 4-color printer proofreading
KR970058032A (en) Color processing method and device using 2D chromatic division
JP2000341715A5 (en)
JPH05506343A (en) Method and apparatus for creating a printing table in digital form for printing colors in an image reproduction device
Molada‐Tebar et al. Camera characterization for improving color archaeological documentation
US4910589A (en) Method of converting light data to color data with use of matrix coefficients
JP2005045446A (en) Color conversion matrix calculation method and color correction method
JPH1084550A (en) Color conversion method
JPH0318179A (en) Color conversion method
JP2006090897A (en) Spectral reflectance estimation method using two types of light sources
EP0917353A2 (en) Method of color matching between color image processing devices, by interpolation of relatively small number of color data sets
JPH08111784A (en) Color image processor
JPH11220630A (en) Method for generating three-dimensional look up table, image processor executing the same and digital color printer provided with the same
JP4066334B2 (en) Video signal processing device
JP3070827B2 (en) Method and apparatus for obtaining color gamut
JPH11298746A (en) Producing method of color signal conversion table and color signal converting method
JP4136820B2 (en) Color conversion matrix calculation method and color correction method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees