JPH03181008A - magnetic head - Google Patents
magnetic headInfo
- Publication number
- JPH03181008A JPH03181008A JP31747389A JP31747389A JPH03181008A JP H03181008 A JPH03181008 A JP H03181008A JP 31747389 A JP31747389 A JP 31747389A JP 31747389 A JP31747389 A JP 31747389A JP H03181008 A JPH03181008 A JP H03181008A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic
- film
- ferromagnetic film
- magnetic head
- ferromagnetic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000005291 magnetic effect Effects 0.000 title claims abstract description 53
- 230000005294 ferromagnetic effect Effects 0.000 claims abstract description 43
- 239000000758 substrate Substances 0.000 claims abstract description 16
- 229910052742 iron Inorganic materials 0.000 claims abstract description 11
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 7
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 6
- 229910052721 tungsten Inorganic materials 0.000 claims abstract description 6
- 229910052802 copper Inorganic materials 0.000 claims abstract description 5
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 5
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 5
- 229910052725 zinc Inorganic materials 0.000 claims abstract description 5
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 4
- 229910000889 permalloy Inorganic materials 0.000 abstract description 18
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 abstract description 14
- 229910052760 oxygen Inorganic materials 0.000 abstract description 14
- 239000001301 oxygen Substances 0.000 abstract description 14
- 239000000463 material Substances 0.000 abstract description 13
- 239000011521 glass Substances 0.000 abstract description 11
- 230000004907 flux Effects 0.000 abstract description 5
- 238000009792 diffusion process Methods 0.000 abstract description 4
- 230000005415 magnetization Effects 0.000 abstract description 2
- 238000012856 packing Methods 0.000 abstract 1
- 239000010408 film Substances 0.000 description 43
- 229910000859 α-Fe Inorganic materials 0.000 description 14
- 229910052751 metal Inorganic materials 0.000 description 9
- 239000002184 metal Substances 0.000 description 9
- 230000000694 effects Effects 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 230000035699 permeability Effects 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 229910052758 niobium Inorganic materials 0.000 description 3
- 229910052720 vanadium Inorganic materials 0.000 description 3
- 229910052726 zirconium Inorganic materials 0.000 description 3
- 229910000640 Fe alloy Inorganic materials 0.000 description 2
- 229910003271 Ni-Fe Inorganic materials 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000003302 ferromagnetic material Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 229910052735 hafnium Inorganic materials 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 238000000682 scanning probe acoustic microscopy Methods 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 229910000549 Am alloy Inorganic materials 0.000 description 1
- 229910001257 Nb alloy Inorganic materials 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 229910000808 amorphous metal alloy Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000002050 diffraction method Methods 0.000 description 1
- 238000004453 electron probe microanalysis Methods 0.000 description 1
- 238000005429 filling process Methods 0.000 description 1
- -1 i and Fe Chemical class 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 238000004452 microanalysis Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000001552 radio frequency sputter deposition Methods 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 229910000702 sendust Inorganic materials 0.000 description 1
- 229910002058 ternary alloy Inorganic materials 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Landscapes
- Magnetic Heads (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は磁気ディスク装置、VTRなどに用いられる磁
気ヘッドに係り、特に高飽和磁束密度。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a magnetic head used in magnetic disk drives, VTRs, etc., and particularly relates to a magnetic head with a high saturation magnetic flux density.
高透磁率、高耐熱性、高耐食性を有する強磁性膜を磁極
材料に用いた磁気ヘッドに関する。The present invention relates to a magnetic head using a ferromagnetic film having high magnetic permeability, high heat resistance, and high corrosion resistance as a magnetic pole material.
近年、磁気記録技術の発展は著しく、記録密度の向上が
進められている。記録密度を高くするためには高保磁力
の記録媒体を使用する必要があり。In recent years, magnetic recording technology has made remarkable progress, and recording density is being improved. In order to increase the recording density, it is necessary to use a recording medium with high coercive force.
また高保磁力の記録媒体を磁化するためには、高飽和磁
束密度を有する磁極材料が必要となる。このため、従来
のフェライトなどに代ってNi−Fe合金(パーマロイ
)やCo系非晶質合金薄膜が磁極材料として使われ始め
ている。さらに、磁極材料は高飽和磁束密度であるほか
に、記録再生効率の向上の点から高透磁率を有すること
が必要とされる。また、磁気ヘッドを形成する工程にお
ける加熱工程に耐えて高透磁率を保持することの可能な
耐熱性や耐食性も要求される。Furthermore, in order to magnetize a recording medium with a high coercive force, a magnetic pole material having a high saturation magnetic flux density is required. For this reason, Ni--Fe alloy (permalloy) and Co-based amorphous alloy thin films are beginning to be used as magnetic pole materials in place of conventional ferrite and the like. Furthermore, in addition to having a high saturation magnetic flux density, the magnetic pole material is required to have a high magnetic permeability in order to improve recording and reproducing efficiency. It is also required to have heat resistance and corrosion resistance that can withstand the heating process in the process of forming a magnetic head and maintain high magnetic permeability.
このような磁極材料としては特開昭63−236304
。As such a magnetic pole material, Japanese Patent Application Laid-Open No. 63-236304
.
特開昭64−042108に示されているように、Fe
にB、C,N、Pの群より選ばれる元素とTi。As shown in Japanese Patent Application Laid-Open No. 64-042108, Fe
an element selected from the group of B, C, N, and P; and Ti.
Zr、I(f、V、Nb、Ta、Mo、W等の群より選
ばれる元素を同時に添加した材料が報告されている。ま
た、特開昭63−39106によれば強磁性酸化物より
なる磁気コア内に強磁性金属膜を被着させて磁気ヘン1
〜を構成する際、磁気コアと強磁性金属膜との境界面に
高透磁率材料よりなる下地膜を介在させることにより疑
似ギャップの影響が抑えられることが報告されている。A material to which elements selected from the group of Zr, I(f, V, Nb, Ta, Mo, W, etc.) are simultaneously added has been reported. Also, according to JP-A-63-39106, a material made of a ferromagnetic oxide Magnetic Hen 1 by depositing a ferromagnetic metal film inside the magnetic core
It has been reported that when configuring .
本発明者らはFe−Ta−C系強磁性材料を高透磁率の
パーマロイ層を介してMn−Znフェライトコア内に形
成して、磁気ヘッドを作製し、記録再生特性を検討し、
上述した報告の追試実験をおこなった。しかし、本発明
者らはこの実験の結果、400℃以上の温度でガラスボ
ンディングにより磁気コアを接着すると疑似ギャップの
影響が現れて、再生波形が歪むことを確認した。これは
400℃以上で強磁性材料中のTaがパーマロイ層を通
ってMn−Znフェライト中の酸素と反応し、界面にT
a酸化物が析出するためと考えられる。また、このとき
ダミーとして作製した試料をオージェ電子分光法によっ
て深さ方向に分析したところ、パーマロイの成分である
NiはM n −ZnフェライトとF e −T a
−C系強磁性膜の界面にほとんど拡散すること無く存在
することが確認された。なお、この実験で、磁気コアと
強磁性金属膜との境界にパーマロイを挿入しない場合は
Fe−Ta−C系強磁性膜とM n −Z nフェライ
トコアが反応してFe−Ta−C系強磁性膜が酸化し、
軟磁気特性を示さなくなることを見出した。The present inventors fabricated a magnetic head by forming a Fe-Ta-C-based ferromagnetic material in a Mn-Zn ferrite core via a high permeability permalloy layer, and examined the recording and reproducing characteristics.
A supplementary experiment to the above report was conducted. However, as a result of this experiment, the present inventors confirmed that when the magnetic core is bonded by glass bonding at a temperature of 400° C. or higher, the effect of a pseudo gap appears and the reproduced waveform is distorted. This is because Ta in the ferromagnetic material passes through the permalloy layer and reacts with oxygen in the Mn-Zn ferrite at temperatures above 400°C, resulting in T at the interface.
This is thought to be due to precipitation of a oxide. In addition, when the sample prepared as a dummy was analyzed in the depth direction by Auger electron spectroscopy, it was found that Ni, which is a component of permalloy, is mixed with Mn-Zn ferrite and Fe-Ta.
It was confirmed that it existed at the interface of the -C-based ferromagnetic film with almost no diffusion. In this experiment, if permalloy was not inserted at the boundary between the magnetic core and the ferromagnetic metal film, the Fe-Ta-C ferromagnetic film and the Mn-Zn ferrite core would react and form the Fe-Ta-C system. The ferromagnetic film oxidizes,
It has been found that the material no longer exhibits soft magnetic properties.
すなわち、パーマロイ層の挿入はFe−Ta−C系強磁
性膜とM n −Z nフェライトコアの反応を防止す
る役割を持つことが確認されたが、このパーマロイ層で
は酸素の拡散が抑制できないため、疑似ギャップの影響
を抑制することはできず、再生信号に擬似信号が現れた
ものと考えられる。In other words, it was confirmed that the insertion of the permalloy layer has the role of preventing the reaction between the Fe-Ta-C ferromagnetic film and the Mn-Zn ferrite core, but this permalloy layer cannot suppress oxygen diffusion. It is considered that the influence of the pseudo gap could not be suppressed, and a pseudo signal appeared in the reproduced signal.
したがって、本発明の目的は、上述の従来技術の欠点を
解消し、さらに高温でガラス充填等の熱処理を行なって
も軟磁気特性が保たれ、再生信号には擬似信号の無い新
規な高飽和磁化軟磁性膜を用いた磁気ヘッドを提供する
ことにある。Therefore, an object of the present invention is to solve the above-mentioned drawbacks of the prior art, and to provide a novel high-saturation magnetization method that maintains soft magnetic properties even after heat treatment such as glass filling at high temperatures, and that produces no pseudo signals in the reproduced signal. An object of the present invention is to provide a magnetic head using a soft magnetic film.
本発明者らは上述の問題点を解決するために、鋭意研究
を続けてきたが、FeもしくはCoを主成分とし、IV
a、Va、VIa族元素およびmb。The present inventors have continued intensive research to solve the above-mentioned problems.
a, Va, group VIa elements and mb.
rvb、vb族元素を含有した強磁性膜1代表的な一例
としては、FeもしくはCoを70%以上含む三元合金
を酸化物基板上に形成せしめてなる磁気ヘッドにおいて
は、強磁性膜と酸化物基板の間にCr + M n 、
F e g Co e N x * Cu y Z n
tSi、Mo、Wの群より選ばれる少なくとも一種の
元素からなり、少なくともその一部が酸化物である下地
層を挿入すれば良いことを見出した。ここで、望ましい
下地層の厚さは工から50nmであることも確認された
。Ferromagnetic film containing rvb, vb group elements 1 As a typical example, in a magnetic head formed by forming a ternary alloy containing 70% or more of Fe or Co on an oxide substrate, a ferromagnetic film and an oxide Cr + M n between the physical substrates,
F e g Co e N x * Cu y Z n
It has been found that it is sufficient to insert an underlayer made of at least one element selected from the group of tSi, Mo, and W, and at least a portion of which is an oxide. Here, it was also confirmed that the desirable thickness of the underlayer is 50 nm.
上述のように、強磁性金属膜と酸化物基板の間にCr、
Mn、Fe、Co、Ni、Cu、Zn。As mentioned above, between the ferromagnetic metal film and the oxide substrate, Cr,
Mn, Fe, Co, Ni, Cu, Zn.
Si、Mo、Wの群より選ばれる少なくとも一種の元素
からなり、少なくともその一部が酸化物である下地層を
挿入することにより、擬似ギャップの影響のない磁気ヘ
ッドが得られることが確認された。本発明者らが検討し
た結果、これらの下地材料を挿入した場合は600℃ま
で加熱しても、はとんど下地材料が強磁性膜中に拡散す
ることなく強磁性金属膜と酸化物基板の間に存在してい
ることが確認された。It has been confirmed that a magnetic head free from the effects of pseudo gaps can be obtained by inserting an underlayer made of at least one element selected from the group of Si, Mo, and W, at least a portion of which is an oxide. . As a result of studies conducted by the present inventors, we found that when these underlying materials are inserted, the ferromagnetic metal film and the oxide substrate do not diffuse into the ferromagnetic film even when heated to 600°C. It was confirmed that there exists between
パーマロイを用いた場合もほとんど拡散が認められなか
ったが、酸素の濃度分布が異なることに気がついた。6
00℃熱処理後の磁性膜を、EPMA(Electro
n Probe Micro Analysis)法に
よって分析した結果、強磁性膜中の酸素濃度に注目した
ところ、Cr、Mn、Fe、Go、Ni、Cu。Although almost no diffusion was observed when permalloy was used, it was noticed that the oxygen concentration distribution was different. 6
After heat treatment at 00°C, the magnetic film was coated with EPMA (Electro
As a result of analysis using the ferromagnetic film (n Probe Micro Analysis) method, attention was paid to the oxygen concentration in the ferromagnetic film, and it was found that Cr, Mn, Fe, Go, Ni, and Cu.
Zn、Si、Mo、W等の下地材料を挿入したときは強
磁性膜中の酸素濃度が0.5から1.5 a t%であ
ったが、パーマロイを下地層として用いた場合は2から
5at%であることが判明した。すなわち、パーマロイ
を下地層として用いた場合はパーマロイ自身の拡散はな
いが、酸化物基板から発生するM素を通しやすく、強磁
性膜を部分的に酸化してしまうことが明らかになった。When a base material such as Zn, Si, Mo, or W is inserted, the oxygen concentration in the ferromagnetic film is 0.5 to 1.5 at%, but when Permalloy is used as the base layer, it is 2 to 2%. It turned out to be 5 at%. In other words, it has become clear that when Permalloy is used as an underlayer, Permalloy itself does not diffuse, but M elements generated from the oxide substrate easily pass through, partially oxidizing the ferromagnetic film.
従来、センダスト合金等をフェライト基板上に形成して
ヘッドを作製するときは、パーマロイを下地層として用
いると、このような強磁性膜の酸化が生じず、擬似ギャ
ップの影響が現れなかった。Conventionally, when a head is manufactured by forming a sendust alloy or the like on a ferrite substrate, if permalloy is used as an underlayer, such oxidation of the ferromagnetic film does not occur and the influence of the pseudo gap does not appear.
本発明における強磁性膜を用いた場合に酸化が生じる原
因は強磁性膜中に存在するIVa、va族元素が同しく
強磁性膜中のmb、rvb族と結合して炭化物や硼化物
を形成していても、酸素との親和性が高いために酸化物
基板を還元して強磁性膜中に酸素を呼び込んでしまうも
のと推察される。すなわち、本発明における強磁性膜は
従来の強磁性膜に比べて酸化しやすいものと思われる。The cause of oxidation when using the ferromagnetic film of the present invention is that the IVa and VA group elements present in the ferromagnetic film combine with the MB and RVB groups in the ferromagnetic film to form carbides and borides. Even if the ferromagnetic film has a high affinity for oxygen, it is presumed that the oxide substrate is reduced and oxygen is drawn into the ferromagnetic film. That is, it seems that the ferromagnetic film of the present invention is more easily oxidized than the conventional ferromagnetic film.
これに対し、本発明の下地材料は自身の拡散がないだけ
でなく、パーマロイに比べて酸素を通しにくいことがわ
かった。On the other hand, it was found that the base material of the present invention not only does not diffuse itself, but also is less permeable to oxygen than permalloy.
なお、本発明者らは他に下地層としてFe−AM系合金
、Co −N b系合金等についても同様の検討を行っ
たが、AQやNbが多い組成では擬似ギャップの影響が
現れることが確認された。同様に、パーマロイとは異な
る組成のNi−Fe合金についても検討を行ったが、N
iやFeの単体金属、あるいは合金でも異種元素の添加
量の少ない場合に擬似ギャップの影響の無い優れた再生
特性が得られることが明らかになった。The present inventors have also conducted similar studies on Fe-AM alloys, Co-Nb alloys, etc. as underlayers, but found that pseudo-gap effects may appear in compositions containing a large amount of AQ and Nb. confirmed. Similarly, we also investigated a Ni-Fe alloy with a composition different from permalloy, but N
It has become clear that excellent regeneration characteristics without the influence of pseudo gaps can be obtained when the amount of different elements added is small, even with single metals such as i and Fe, or alloys.
以下に本発明の実施例を挙げ、図表を参照しながらさら
に具体的に説明する。Examples of the present invention will be given below and will be explained in more detail with reference to figures and tables.
[実施例1]
Fe、Coを主成分とする強磁性膜および下地層の形成
はRFスパッタリング装置を用いてMn−Znフェライ
ト基板上に行った。スパッタリングは以下の条件で行っ
た。[Example 1] A ferromagnetic film containing Fe and Co as main components and an underlayer were formed on a Mn-Zn ferrite substrate using an RF sputtering device. Sputtering was performed under the following conditions.
スパッタリングガス・・・・・・Ar
装置内Arガス圧力・・・・・・1.5Pa入力電力・
・・・・・・・・・・・・・・・・・・・・350Wタ
一ゲツト基板間距離・・・55mm
基板温度・・・・・・・・・・・・・・・・・・・・・
50〜100℃以上の条件であらかじめ脱脂洗浄した、
鋸歯状に表面を加工したM n −Z nフェライト基
板上に第1表に示す下地層を形成した後、その上に強磁
性膜を作製した。下地層の厚さは20nm、強磁性膜の
厚さは3μmとした。Sputtering gas...Ar Ar gas pressure in the device...1.5Pa Input power
・・・・・・・・・・・・・・・・・・・・・ 350W target board distance・・・55mm Substrate temperature・・・・・・・・・・・・・・・・・・・・・・・・・・・
Degreased and cleaned in advance at a temperature of 50 to 100°C or higher.
After forming the underlayer shown in Table 1 on a Mn-Zn ferrite substrate whose surface was processed into a sawtooth shape, a ferromagnetic film was formed thereon. The thickness of the underlayer was 20 nm, and the thickness of the ferromagnetic film was 3 μm.
第1表
得られた試料は一旦磁場中で500℃、1時間の熱処理
を行なって磁気異方性を制御した後、ギャップ層である
5iOzを0.1μm形威形成。The samples obtained in Table 1 were once heat-treated in a magnetic field at 500°C for 1 hour to control the magnetic anisotropy, and then a gap layer of 5iOz with a thickness of 0.1 μm was formed.
ついで、480℃でガラス充填を行なって強磁性膜とM
n −Z nフェライトからなる磁気へラドコアを作
製した。第1図および第2図にこのようにして作成した
磁気へラドコアの構造を示す。Next, glass filling was performed at 480°C to form the ferromagnetic film and M
A magnetic herad core made of n-Zn ferrite was fabricated. FIGS. 1 and 2 show the structure of the magnetic herad core produced in this manner.
保磁力1600 0eの磁気テープを用いて、得られた
磁気ヘッドコアの記録再生特性を評価した。このとき測
定した擬似ギャップの影響による擬似信号の出力を第1
表に示す。表には参考のため、パーマロイを下地層に用
いた場合、およびパーマロイ組成に近いNi−Fe合金
を下地層に用いた場合の擬似信号の出力も示した。表か
ら明らかなように、パーマロイ組成近傍のNi−Fe合
金を下地層に用いたときは擬似信号が3dB以上の値を
示すが、Ni、Feの単体金属、もしくは異種元素を数
%程度の微量だけ添加したNi。The recording and reproducing characteristics of the obtained magnetic head core were evaluated using a magnetic tape with a coercive force of 1600 0e. The output of the pseudo signal due to the influence of the pseudo gap measured at this time is
Shown in the table. For reference, the table also shows the output of pseudo signals when Permalloy is used as the base layer and when a Ni--Fe alloy having a composition similar to Permalloy is used as the base layer. As is clear from the table, when a Ni-Fe alloy with a composition close to permalloy is used for the underlayer, the pseudo signal shows a value of 3 dB or more, but a trace amount of only a few percent of single metals such as Ni or Fe or different elements is used as the underlayer. Only Ni added.
Feを下地層に用いたときは擬似信号が2dB以下に減
少した。また、Ni、Fe以外にもCr。When Fe was used for the underlayer, the pseudo signal was reduced to 2 dB or less. In addition to Ni and Fe, Cr.
Mn、Co、Cu、Zn、Si、Mo、W等の金属を下
地層に用いた場合も2dB以下の擬似信号を示し、フェ
ライトから強磁性膜への酸素の通過を抑制することが確
認された。It was confirmed that even when metals such as Mn, Co, Cu, Zn, Si, Mo, and W were used as the underlayer, a pseudo signal of 2 dB or less was exhibited, and the passage of oxygen from the ferrite to the ferromagnetic film was suppressed. .
表中、強磁性金属膜および下地層は膜形成時のターゲッ
トの組成を示す。従って、ヘッドコア形成後はガラス充
填のプロセスを経ているため1組成が変化していること
が予想される。例えば、下地層をオージェ電子分光法に
よって深さ方向に分析した結果、下地層の存在する所に
酸素も検出されており、部分的に下地層が酸化されてい
ることが明らかになった。In the table, the ferromagnetic metal film and underlayer indicate the composition of the target during film formation. Therefore, it is expected that one composition will change after the head core is formed because it undergoes a glass filling process. For example, when the underlying layer was analyzed in the depth direction using Auger electron spectroscopy, oxygen was also detected where the underlying layer existed, and it became clear that the underlying layer was partially oxidized.
本発明の強磁性膜はFe、Coを主成分とし、これにI
Va、Va族元素であるTi、Zr、Hf。The ferromagnetic film of the present invention has Fe and Co as main components, and I
Va, Va group elements Ti, Zr, and Hf.
V、Nb、Ta等の元素とllIb、IVb族元素のB
。Elements such as V, Nb, Ta, etc. and B of group IIIb and IVb elements
.
C,N等の元素を添加したものである。この強磁性膜は
膜形成時、あるいは熱処理を行なうことによってFe、
Coを主成分とする微結晶膜になり、軟磁気特性を示す
。実際に、xi回折法によって検討した結果、400℃
で熱処理した膜の結晶構造はFeを主成分とした場合、
体心立方構造、Coを主成分とした場合、六方細密充填
構造であった。ただし、主成分のX線回折ピークは極め
てブロードであり、微結晶粒からなることが明らかにな
った。このとき、Fe、Goを主成分とする微結晶膜を
形成するために好ましいIVa、Va族元素の添加量は
0.5 から10at%であり、llIb、IVb族
元素の添加量は1から20at%であった。It contains elements such as C and N. This ferromagnetic film is made of Fe,
It becomes a microcrystalline film mainly composed of Co and exhibits soft magnetic properties. In fact, as a result of examination using the xi diffraction method, 400℃
The crystal structure of the film heat-treated with Fe is the main component.
It had a body-centered cubic structure, and when Co was the main component, it had a hexagonal close-packed structure. However, the X-ray diffraction peak of the main component was extremely broad, making it clear that it was composed of microcrystalline grains. At this time, in order to form a microcrystalline film containing Fe and Go as main components, the preferred addition amount of IVa and Va group elements is 0.5 to 10 at%, and the addition amount of IIIb and IVb group elements is 1 to 20 at%. %Met.
なお、この強磁性膜がガラス充填のときにフェライトか
ら酸素を吸収して酸化しやすいのはIV a 。Incidentally, when this ferromagnetic film is filled with glass, it absorbs oxygen from ferrite and is easily oxidized at IVa.
Va族元素であるTi、Zr、Hf、V、Nb。Ti, Zr, Hf, V, and Nb, which are Va group elements.
Ta等の元素の酸素との親和性が高いからであると考え
られる。ところで、これらのIVa、Va族元素を含む
本発明の強磁性膜はフェライト等の酸化物基板からの酸
素と反応するだけでなく、充填ガラスと反応することも
ある。このときは本発明の下地層を強磁性膜と充填ガラ
スの間に挿入することによって反応を防止することが出
来た。このときの下地層の厚さは5から1100nが好
ましい値であった。This is thought to be because elements such as Ta have a high affinity with oxygen. By the way, the ferromagnetic film of the present invention containing these IVa and Va group elements not only reacts with oxygen from an oxide substrate such as ferrite, but also reacts with the filled glass. In this case, the reaction could be prevented by inserting the underlayer of the present invention between the ferromagnetic film and the filled glass. The thickness of the base layer at this time was preferably 5 to 1100 nm.
[実施例2]
実施例工において下地層の厚さを変化させて、実施例1
と同様の実験を行ない、擬似ギャップの影響を検討した
。第3図には一例として強磁性膜にFe7aTaδC1
4を用い、下地層にNiを挿入したときの下地層厚が擬
似信号におよぼす影響を示す。図から明らかなように、
擬似信号は下地層の厚さが増加するにしたがって減少し
、2Onm付近で最小になった後、再び増加する傾向を
示した。[Example 2] By changing the thickness of the base layer in the example construction, Example 1
We conducted a similar experiment to examine the effects of the pseudo gap. As an example, Fig. 3 shows Fe7aTaδC1 in the ferromagnetic film.
4 is used to show the influence of the thickness of the underlayer on the pseudo signal when Ni is inserted into the underlayer. As is clear from the figure,
The pseudo signal decreased as the thickness of the underlying layer increased, reached a minimum around 2 Onm, and then showed a tendency to increase again.
すなわち、下地層の厚さが1から1100nのときに擬
似信号が2dB以下になり、擬似ギャップの影響が減少
した。他の下地材料を用いたときも、概ね同様の傾向を
示し、好ましい下地層厚は1から1100nであった。That is, when the thickness of the underlayer was from 1 to 1100 nm, the pseudo signal became 2 dB or less, and the influence of the pseudo gap was reduced. When other base materials were used, similar trends were generally observed, and the preferred base layer thickness was 1 to 1100 nm.
ここで、下地層厚が20nmを超えると擬似信号が増加
する理由は必ずしも明確になっている訳ではないが、本
発明者らは下地層の軟磁気特性に関係しているものと推
察している。すなわち、下地層が厚い場合は、下地層自
身の軟磁気特性が良くないと、下地層自身が擬似ギャッ
プとして作用してしまい、擬似信号が現れてしまうもの
と思われる。Here, the reason why the spurious signals increase when the underlayer thickness exceeds 20 nm is not necessarily clear, but the inventors speculate that it is related to the soft magnetic properties of the underlayer. There is. That is, if the underlayer is thick and the soft magnetic properties of the underlayer itself are not good, it is thought that the underlayer itself will act as a pseudo gap, resulting in the appearance of a pseudo signal.
以上詳細に説明したごとく、本発明による磁気ヘッドは
擬似ギャップの影響による擬似信号の少ない良好な記録
再生特性を示す。すなわち、この耐熱高飽和磁束密度膜
を磁気記録装置の磁気ヘッド、特にメタルインギャップ
型の磁気ヘッドに用いた場合、500℃以上の高温でガ
ラス充填を行うことができるようになり、十分な強度を
持つガラス層を形成することができる。As described in detail above, the magnetic head according to the present invention exhibits good recording and reproducing characteristics with few pseudo signals due to the influence of pseudo gaps. In other words, when this heat-resistant high saturation magnetic flux density film is used in a magnetic head of a magnetic recording device, especially a metal-in-gap type magnetic head, glass filling can be performed at a high temperature of 500°C or higher, and it has sufficient strength. It is possible to form a glass layer with
第1図は本発明のメタルインギャップ型ヘッドの斜視図
、第2図はギャップ部近傍を示す平面図、第3図は下地
層の厚さが擬似信号出力におよぼす影響を示すグラフの
図である。
1・・・M n −Z nフェライト基板、2・・・強
磁性金属図
乙
兄り算、力゛7入Fig. 1 is a perspective view of the metal-in-gap type head of the present invention, Fig. 2 is a plan view showing the vicinity of the gap, and Fig. 3 is a graph showing the influence of the thickness of the underlayer on the pseudo signal output. be. 1...M n -Z n ferrite substrate, 2... Ferromagnetic metal diagram Otsui calculation, power 7 inputs
Claims (1)
族元素のうちから選ばれた少なくとも一種の元素、およ
びIIIb、IVb、Vb族元素のうちから選ばれた少なく
とも一種の元素を含有した強磁性膜を酸化物基板上に形
成せしめてなる磁気ヘッドにおいて、強磁性膜と酸化物
基板の間にCr、Mn、Fe、Co、Ni、Cu、Zn
、Si、Mo、Wの群より選ばれる少なくとも一種の元
素からなり、少なくともその一部が酸化物である下地層
を有することを特徴とする磁気ヘッド。 2、前記強磁性膜が結晶質であることを特徴とする特許
請求の範囲第1項に記載の磁気ヘッド。 3、前記下地層の厚さが1から100nmであることを
特徴とする特許請求の範囲第1項に記載の磁気ヘッド。[Claims] 1. Fe or Co as the main component, IVa, Va, VIa
A magnetic head in which a ferromagnetic film containing at least one element selected from group elements and at least one element selected from group IIIb, IVb, and Vb elements is formed on an oxide substrate. , Cr, Mn, Fe, Co, Ni, Cu, Zn between the ferromagnetic film and the oxide substrate.
, Si, Mo, and W, and at least a portion thereof is an oxide. 2. The magnetic head according to claim 1, wherein the ferromagnetic film is crystalline. 3. The magnetic head according to claim 1, wherein the underlayer has a thickness of 1 to 100 nm.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31747389A JPH03181008A (en) | 1989-12-08 | 1989-12-08 | magnetic head |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31747389A JPH03181008A (en) | 1989-12-08 | 1989-12-08 | magnetic head |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03181008A true JPH03181008A (en) | 1991-08-07 |
Family
ID=18088625
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP31747389A Pending JPH03181008A (en) | 1989-12-08 | 1989-12-08 | magnetic head |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03181008A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6430013B1 (en) | 1999-12-06 | 2002-08-06 | International Business Machines Corporation | Magnetoresistive structure having improved thermal stability via magnetic barrier layer within a free layer |
-
1989
- 1989-12-08 JP JP31747389A patent/JPH03181008A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6430013B1 (en) | 1999-12-06 | 2002-08-06 | International Business Machines Corporation | Magnetoresistive structure having improved thermal stability via magnetic barrier layer within a free layer |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5290629A (en) | Magnetic film having a magnetic phase with crystallites of 200 A or less and an oxide phase present at the grain boundaries | |
JP2963003B2 (en) | Soft magnetic alloy thin film and method of manufacturing the same | |
KR970011188B1 (en) | Magnetic thin film & its using magnetic head | |
JP2635422B2 (en) | Magnetic head | |
JPH03181008A (en) | magnetic head | |
JPH04214206A (en) | Ferromagnetic thin film and its manufacturing method | |
JP2775770B2 (en) | Method for manufacturing soft magnetic thin film | |
JPH03292705A (en) | Ferromagnetic film and magnet head using thereof | |
JP3279591B2 (en) | Ferromagnetic thin film and manufacturing method thereof | |
JPH04252006A (en) | Corrosion-resistant magnetically soft film and magnetic head using the same | |
JPS58118015A (en) | Magnetic head | |
JP3386270B2 (en) | Magnetic head and magnetic recording device | |
JP3243256B2 (en) | Soft magnetic thin film and magnetic head | |
JP2979557B2 (en) | Soft magnetic film | |
JPH07249519A (en) | Soft magnetic alloy film, magnetic head, and method for adjusting coefficient of thermal expansion of soft magnetic alloy film | |
JPH0316203A (en) | Magnetic film and magnetic head using the same | |
KR940008644B1 (en) | Amorphous Magnetic Alloy Thin Film for Magnetic Head | |
JPH0488605A (en) | Highly corrosion-resistant soft magnetic material | |
JP3452594B2 (en) | Manufacturing method of magnetic head | |
JPH05290330A (en) | Target for corrosion resistant magnetic film and magnetic head formed by using this target | |
JPS6398823A (en) | Magnetic recording medium and its manufacturing method | |
JPH0529139A (en) | Corrosion resistant magnetic film and magnetic head using the same | |
JPH04278207A (en) | Member for magnetic head | |
JPH0617244A (en) | Corrosion resistant magnetic film target and magnetic head using the same | |
JPH04245606A (en) | Soft magnetic multilayered film |