JPH0318068A - Photoelectric conversion element - Google Patents
Photoelectric conversion elementInfo
- Publication number
- JPH0318068A JPH0318068A JP1152918A JP15291889A JPH0318068A JP H0318068 A JPH0318068 A JP H0318068A JP 1152918 A JP1152918 A JP 1152918A JP 15291889 A JP15291889 A JP 15291889A JP H0318068 A JPH0318068 A JP H0318068A
- Authority
- JP
- Japan
- Prior art keywords
- state
- polyaniline
- benzonoid
- condition part
- amine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000006243 chemical reaction Methods 0.000 title claims description 25
- 229920000767 polyaniline Polymers 0.000 claims abstract description 50
- AZQWKYJCGOJGHM-UHFFFAOYSA-N 1,4-benzoquinone Chemical compound O=C1C=CC(=O)C=C1 AZQWKYJCGOJGHM-UHFFFAOYSA-N 0.000 claims abstract description 30
- 150000001412 amines Chemical class 0.000 claims abstract description 23
- 229910000071 diazene Inorganic materials 0.000 claims abstract description 20
- XLHUBROMZOAQMV-UHFFFAOYSA-N 1,4-benzosemiquinone Chemical compound [O]C1=CC=C(O)C=C1 XLHUBROMZOAQMV-UHFFFAOYSA-N 0.000 claims abstract description 17
- RAABOESOVLLHRU-UHFFFAOYSA-N diazene Chemical compound N=N RAABOESOVLLHRU-UHFFFAOYSA-N 0.000 claims abstract description 16
- 108091008695 photoreceptors Proteins 0.000 claims description 19
- 150000003863 ammonium salts Chemical class 0.000 claims description 12
- 239000004020 conductor Substances 0.000 claims description 5
- 238000000034 method Methods 0.000 abstract description 14
- 238000010521 absorption reaction Methods 0.000 abstract description 7
- 230000002040 relaxant effect Effects 0.000 abstract 1
- 150000003839 salts Chemical class 0.000 abstract 1
- 239000000203 mixture Substances 0.000 description 9
- 238000006116 polymerization reaction Methods 0.000 description 7
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 239000007864 aqueous solution Substances 0.000 description 4
- RILZRCJGXSFXNE-UHFFFAOYSA-N 2-[4-(trifluoromethoxy)phenyl]ethanol Chemical compound OCCC1=CC=C(OC(F)(F)F)C=C1 RILZRCJGXSFXNE-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- 229910052976 metal sulfide Inorganic materials 0.000 description 3
- 229910052763 palladium Inorganic materials 0.000 description 3
- -1 polyethylene terephthalate Polymers 0.000 description 3
- 229920000139 polyethylene terephthalate Polymers 0.000 description 3
- 239000005020 polyethylene terephthalate Substances 0.000 description 3
- 230000000379 polymerizing effect Effects 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 241000238631 Hexapoda Species 0.000 description 2
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical compound OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 238000001069 Raman spectroscopy Methods 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- 238000004430 X-ray Raman scattering Methods 0.000 description 1
- 238000000862 absorption spectrum Methods 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 125000002490 anilino group Chemical group [H]N(*)C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000002484 cyclic voltammetry Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000002848 electrochemical method Methods 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/549—Organic PV cells
Landscapes
- Light Receiving Elements (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、光強度を電気信号に変換する高分子修飾型の
新規な光電変換素子に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a novel polymer-modified photoelectric conversion element that converts light intensity into an electrical signal.
〔従来の技術及び発明が解決しようとする課題〕従来、
光電変換素子としては、光電子増倍管,金属硫化物半導
体などがある。[Problems to be solved by conventional techniques and inventions] Conventionally,
Examples of photoelectric conversion elements include photomultiplier tubes and metal sulfide semiconductors.
しかし、各種電子機器の小型化が望まれる中で上記光電
子増倍管や金属硫化物半導体は、小型化が困難であると
いう問題点を有する。即ち、光電子増倍管にあっては、
その奥行きを短かくすることが構造上難かしく、また金
属硫化物半導体にあっては、受光面を大きく取る必要が
あり、いずれも現状以上の小型化が困難である。However, while miniaturization of various electronic devices is desired, the photomultiplier tube and metal sulfide semiconductor have the problem that miniaturization is difficult. That is, in a photomultiplier tube,
It is structurally difficult to shorten the depth, and metal sulfide semiconductors require a large light-receiving surface, making it difficult to miniaturize them further than the current size.
一方、近年有機導電材料としてポリアニリンが注目され
ており、各種電子部品への応用が期待されている。最近
このポリアニリンについて、電解液中でサイクリックボ
ルタモグラム測定中に光照射すると異常に大きな電流が
流れること(E. M.Genies, M. Lap
kowski : Synth, Net. 24.
69(1988))及び電解液中で無くても2sv (
620nm)付近の光照射により、その電子状態が高い
導電性を示すと推定される状態に変化すること(Y.
H. Kijt, C. Fostar, J. Ch
iang, A. J. Heeger :Synth
. Net, 26. 49 (1988))が報告さ
れた.しかし、上記報告がなされたにもかかわらず、い
まだポリアニリンを用いた有用な光電変換素子は提案さ
れていないのが現状である。On the other hand, polyaniline has recently attracted attention as an organic conductive material, and its application to various electronic components is expected. Recently, it has been reported that when this polyaniline is irradiated with light during cyclic voltammogram measurement in an electrolytic solution, an abnormally large current flows (E. M. Genies, M. Lap
kowski: Synth, Net. 24.
69 (1988)) and 2sv (
620 nm), its electronic state changes to a state that is estimated to exhibit high conductivity (Y.
H. Kijt, C. Foster, J. Ch
iang, A. J. Heeger:Synth
.. Net, 26. 49 (1988)) was reported. However, despite the above reports, no useful photoelectric conversion element using polyaniline has yet been proposed.
本発明は,上記事情に鑑みなされたもので、ポリアニリ
ンを用いた小型で有用な新規光電変換素子を提供するこ
とを目的とする.
〔課題を解決するための手段及び作用〕本発明者は、上
記目的を達成するため鋭意検討を行なった結果,ポリア
ニリンとしてキノン=ジイミン状態になっている部分が
50〜3%(モル%、以下同じ),好ましくは25〜5
%、ペンゾノイド=アミン状態になっている部分が90
〜40%,好ましくは80〜50%、ドープ=セミキノ
ンラジカル状態になっている部分が0〜30%、好まし
くは0〜20%、ベンゾノイド=アンモニウム塩状態に
なっている部分が0〜5%、好ましくは0〜1%である
ポリアニリンが光照射によりその導電性を感度よく変化
させることができ、光電変換素子の受光体として好適に
利用し得ることを知見した.
即ち、本発明省の研究によれば、ポリアニリンは通常下
記式(A)〜(D)(なお、式(B),(C)は負イオ
ン種がCQの例である)に示す如く、ペンゾノイド=ア
ミン状態(式A)、ベンゾノイド=アンモニウム塩状態
(式B),ドープ=セミキノンラジカル状態(式C)及
びキノン=ジイミン状態(式D)の混合状態よりなるも
のであり、また上記各状態のポリアニリンの内、キノン
=ジイミン状態、ベンゾノイド=アミン状態及びペンゾ
ノイド=アンモニウム塩状態のものは導電性が低く,ド
ープ=セミキノンラジカル状態のものは高い導電性を示
すものである.そこで
本発明者は、上記各状態のポリアニリンの持つ導電特性
の差に鑑み、光電変換素子に有効に利用し得るポリアニ
リンの状態組成を見い出すべく以下の実験を行ない,有
益な実験結果を得た。The present invention was made in view of the above circumstances, and an object of the present invention is to provide a small and useful new photoelectric conversion element using polyaniline. [Means and effects for solving the problem] As a result of intensive studies to achieve the above object, the inventor of the present invention found that the proportion of polyaniline in the quinone-diimine state is 50 to 3% (mol%, hereinafter referred to as same), preferably 25-5
%, the portion in penzonoid = amine state is 90
-40%, preferably 80-50%, dope = semiquinone radical state 0-30%, preferably 0-20%, benzonoid = ammonium salt state 0-5% It has been found that polyaniline, preferably at a concentration of 0 to 1%, can have its conductivity changed with good sensitivity by light irradiation, and can be suitably used as a photoreceptor for photoelectric conversion elements. That is, according to research conducted by the Ministry of the Invention, polyaniline is usually a penzonoid as shown in the following formulas (A) to (D) (formulas (B) and (C) are examples in which the negative ion species is CQ). = amine state (Formula A), benzonoid = ammonium salt state (Formula B), dope = semiquinone radical state (Formula C), and quinone = diimine state (Formula D). Among polyanilines, those in the quinone=diimine state, benzonoid=amine state, and penzonoid=ammonium salt state have low conductivity, while those in the doped=semiquinone radical state exhibit high conductivity. Therefore, in view of the differences in the conductive properties of polyaniline in each of the above states, the present inventor conducted the following experiments to find a state composition of polyaniline that can be effectively used in photoelectric conversion elements, and obtained useful experimental results.
(i)各状態のポリアニリンにつき紫外一可視吸収スペ
クトル分析を行なったところ、ベンゾノイド=アミン状
態及びペンゾノイド=アンモニウム塩状態のポリアニリ
ンには近紫外領域に吸収端があって可視領域には吸収を
持たず,ドーブ=セミキノンラジカル状態のポリアニリ
ンは410nm付近と600nm付近から近赤線領域に
まで及ぶ吸収を示し、キノン=ジイミン状態のポリアニ
リンは680nm付近に吸収を示した.
(五)キノン=ジイミン状態とペンゾノイド=アミン状
態との2戒分のみからなるポリアニリンを632.8n
mの光で励起したところ,ポリアニリンのキノン=ジイ
ミン状態になっている部分が光エネルギーを吸収し,次
にこのエネルギーをペンゾノイド=アミン状態になって
いる部分に緩和して、ベンゾノイド=アミン゛状態部分
の電子状態がドープ=セミキノンラジカル状態の電子状
態に非常に近似の状態になった.
(団)ペンゾノイド=アミン状態のみからなるポリアニ
リンを上記(五)と同様に632.8nmの光で励起し
たところ、ドープ=セミキノンラジカル状態の電子状態
に近似の電子状態はWAil!されなかった.これは,
共鳴による効果的なエネルギー吸収過程が起こらなかっ
たためと考えられる.上記実験結果と既知の研究結果と
をまとめて検討した結果,導電性の低いキノン=ジイミ
ン状態部分は、光照射によりその光エネルギーを吸収し
,このエネルギーを同じく導電性の低いペンゾノイド=
アミン状態部分へ緩和する.この場合ペンゾノイド=ア
ミン状態部分の電子状態が導電性の高いドープ=セミキ
ノンラジカル状態の電子状態と非常に近似の状態となり
,この現象を利用して光電変換素子を構威し得ること、
またそれ自体高い導電性を示すドープ=セミキノンラジ
カル状態はその増減により暗電流量を調節できること、
ペンゾノイド=アンモニウム塩状態は光電変換性能より
,むしろその腐食性からこれを実質的に含まないのが好
ましいことをそれぞれ見い出した.本発明者は、上記知
見に基づき、光強度により感度よくその導電性が変化し
、光電変換素子に好適に用いられるポリアニリンの具体
的な状態組成について更に検討を進めた結果、キノン=
ジイミン状態になっている部分が50〜3%、好ましく
は25〜5%、ベンゾノイド=アミン状態になっている
部分が90〜40%、好ましくは80〜50%,ドープ
=セミキノンラジカル状態になっている部分が0〜30
%,好ましくは0〜20%、ベンゾノイド=アンモニウ
ム塩状態になっている部分が0〜5%、好ましくは0〜
1%であるポリアニリンは、光照射によりその導電性が
感度よく変化し、光電変換素子に好適に利用し得ること
を知見すると共に,このポリアニリンで導電体よりなる
互いに離間した複数個の集電極間を互いに電気的に接続
する受光体を構成することにより、小型で高感度な光電
変換素子を構威し得ることを見い出し、本発明を完成す
るに至ったものである.従って、本発明は、導電体より
なる互い離間した複数個の集電極と,該集電極間を互に
電気的に接続すると共に、集電極間に電圧を印加したと
きに照射された光の強度変化に応じて集電極間に流れる
電流値を変化させる受光体とを具備する光電変換素子に
おいて,上記受光体がキノン=ジイミン状態になってい
る部分が50〜3モル%、ベンゾノイド=アミン状態に
なっている部分が90〜40モル%,ドープ=セミキノ
ンラジカル状態になっている部分が0〜30モル%、ベ
ンゾノイド=アンモニウム塩状態になっている部分が0
〜5モル%であるポリアニリンを含有してなることを特
徴とする光電変換素子を提供するものである.以下,本
発明につき更に詳しく説明する.本発明の光電変換素子
は導電体よりなる互に離間した複数個の集電極間を特定
のポリアニリンを含有してなる受光体を介して電気的に
接続したものである.
この場合,集電極の材質に制限はないが、炭素,金属若
しくは金属酸化物又はこれらを用いた蒸着膜,印刷物な
どが好適に使用される.この集電極は後述する受光体を
介して電気的に接続するほかは互に絶縁しておき、この
集電極間を電気的に接続している受光体の導電性変化に
より光強度の変化を電気信号に変換するものである.な
お、集電極間の距離は、特に限定されないが、2〜50
0μとすることが好ましく,これが2lmより狭いと導
電性変化の検出が困難であったり、電気的にショートす
る場合があり、一方500/Jlより広いと集電極間の
抵抗が大きくなりすぎる場合がある.また、上記集電極
間を互いに電気的に接続する受光体を構威するポリアニ
リンは、上述したようにキノン=ジイミン状態になって
いる部分が50〜3%,好ましくは25〜5%、ベンゾ
ノイド=アミン状態になっている部分が90〜40%,
好ましくは80〜50%,ドープ=セミキノンラジカル
状態になっている部分が0〜30%,好ましくは0〜2
0%、ベンゾノイド=アンモニウム塩状態になっている
部分が0〜5%,好ましくは0〜1%のものである.こ
こで,キノン=ジイミン状態の部分が3%未満及び/又
はペンゾノイド=アミン状態の部分が40%未満である
と光の強度変化による導電性の変化が小さく、このため
光電変換が良好に行なわれず、また両者或いは一方がそ
れぞれその上限である50%,90%を超える場合も同
様の不都合を生じる.更に、ドープ=セミキノンラジカ
ル状態の部分が30%を超えると常に高い導電性を示す
こととなり、やはり光の強度変化による導電性の変化が
小さくなり、良好な光電変換を行なうことができなくな
る.またペンゾノイド=アンモニウム塩状態の部分が5
%を超えるとその腐食性が無視できないものとなり種々
の不都合を生じることとなる.
このような状態組威のポリアニリンを特定する方法とし
ては,X線光電子分光分析法,ラマン散乱分析法等公知
の方法又はこれらの方法を組み合わせて行なうことがで
きる.具体的にはX線光電子分光分析法と電気化学的方
法とを併用する方法、更にはこれにラマン分光分析法や
NMR法を組み合わせる方法(特願昭63−14246
0号参照)を好ましく採用することができる。(i) Ultraviolet-visible absorption spectrum analysis was performed on polyaniline in each state, and it was found that polyaniline in the benzonoid = amine state and penzonoid = ammonium salt state has an absorption edge in the near-ultraviolet region and no absorption in the visible region. , polyaniline in the dove-semiquinone radical state showed absorption extending from around 410 nm and around 600 nm to the near-infrared region, and polyaniline in the quinone-diimine state showed absorption around 680 nm. (5) Polyaniline consisting of only two precepts, quinone = diimine state and penzonoid = amine state, is 632.8n
When excited by light of m, the part of the polyaniline that is in the quinone-diimine state absorbs the light energy, and then this energy is relaxed to the part that is in the penzonoid-amine state, resulting in the benzonoid-amine state. The electronic state of the part became very similar to the electronic state of the doped semiquinone radical state. When polyaniline consisting only of (group) penzonoid = amine state was excited with 632.8 nm light in the same manner as in (5) above, the electronic state approximated to the electronic state of the doped = semiquinone radical state was WAil! It wasn't done. this is,
This is thought to be because an effective energy absorption process due to resonance did not occur. As a result of combining the above experimental results and known research results, we found that the quinone = diimine state part, which has low conductivity, absorbs the light energy when irradiated with light, and this energy is transferred to the penzonoid = which also has low conductivity.
Relaxes to amine state. In this case, the electronic state of the penzonoid=amine state part becomes a state very similar to the electronic state of the highly conductive doped=semiquinone radical state, and this phenomenon can be used to construct a photoelectric conversion element.
In addition, the amount of dark current can be adjusted by increasing or decreasing the doped semiquinone radical state, which itself exhibits high conductivity.
It has been found that it is preferable to substantially exclude penzonoids from ammonium salts because of their corrosive properties rather than their photoelectric conversion performance. Based on the above findings, the present inventor further investigated the specific state composition of polyaniline, whose conductivity changes sensitively depending on the light intensity and is suitable for use in photoelectric conversion elements, and found that quinone =
The portion in the diimine state is 50-3%, preferably 25-5%, the benzonoid = amine state is 90-40%, preferably 80-50%, and the dope = semiquinone radical state. 0 to 30
%, preferably 0 to 20%, and the portion in benzonoid=ammonium salt state is 0 to 5%, preferably 0 to 20%.
It was discovered that the conductivity of polyaniline, which has a concentration of 1%, changes sensitively when irradiated with light, and that it can be suitably used for photoelectric conversion elements. The inventors discovered that it is possible to construct a compact and highly sensitive photoelectric conversion element by configuring a photoreceptor that electrically connects the photoelectric transducers to each other, leading to the completion of the present invention. Therefore, the present invention provides electrical connection between a plurality of collector electrodes made of a conductor spaced apart from each other, and the intensity of light irradiated when a voltage is applied between the collector electrodes. In a photoelectric conversion element comprising a photoreceptor that changes the value of current flowing between collecting electrodes in accordance with the change, 50 to 3 mol% of the portion of the photoreceptor that is in the quinone=diimine state is in the benzonoid=amine state. 90 to 40 mol% of the part that is doped = semiquinone radical, 0 to 30 mol% of the part that is in the doped = semiquinone radical state, and 0 of the part that is in the benzonoid = ammonium salt state.
The present invention provides a photoelectric conversion element characterized by containing polyaniline in an amount of 5 mol %. The present invention will be explained in more detail below. The photoelectric conversion element of the present invention has a plurality of spaced-apart collector electrodes made of a conductor, electrically connected through a photoreceptor containing a specific polyaniline. In this case, there is no restriction on the material of the collector electrode, but carbon, metal, metal oxide, vapor deposited film, printed matter, etc. using these are preferably used. These collector electrodes are insulated from each other, except for being electrically connected via a photoreceptor, which will be described later. Changes in light intensity can be detected electrically by changes in the conductivity of the photoreceptor that electrically connects the collector electrodes. It converts it into a signal. Note that the distance between the collector electrodes is not particularly limited, but is between 2 and 50 mm.
It is preferable to set it to 0μ; if it is narrower than 2 lm, it may be difficult to detect conductivity changes or cause electrical short-circuits, while if it is wider than 500/Jl, the resistance between the collector electrodes may become too large. be. In addition, as mentioned above, the polyaniline that constitutes the photoreceptor that electrically connects the collector electrodes to each other has a portion in the quinone=diimine state of 50 to 3%, preferably 25 to 5%, and a benzonoid=diimine state of 50 to 3%, preferably 25 to 5%. 90-40% of the part is in amine state,
Preferably 80 to 50%, the portion in the dope = semiquinone radical state is 0 to 30%, preferably 0 to 2
0%, and the portion in the benzonoid=ammonium salt state is 0 to 5%, preferably 0 to 1%. Here, if the portion in the quinone = diimine state is less than 3% and/or the portion in the penzonoid = amine state is less than 40%, the change in conductivity due to changes in light intensity will be small, and therefore photoelectric conversion will not be performed well. , and if either or both of them exceed their upper limits of 50% and 90%, a similar problem will occur. Furthermore, if the portion in the doped semiquinone radical state exceeds 30%, it will always exhibit high conductivity, and changes in conductivity due to changes in light intensity will become small, making it impossible to perform good photoelectric conversion. Also, the penzonoid = ammonium salt state part is 5
%, the corrosiveness cannot be ignored and various problems will occur. As a method for identifying polyaniline in such a state composition, known methods such as X-ray photoelectron spectroscopy and Raman scattering analysis, or a combination of these methods can be used. Specifically, a method that combines X-ray photoelectron spectroscopy and electrochemical methods, and a method that combines these with Raman spectroscopy and NMR methods (Japanese Patent Application No. 14246/1983)
(see No. 0) can be preferably employed.
また、上記ポリアニリンを製造する方法としては,特に
限定はなく、アニリンを含む水溶液から触媒を用いて化
学的に酸化重合する方法、同様の水溶液から電解酸化重
合する方法等を採用することができるが、本発明者らの
研究によればアニリンを含む塩酸,ホウフッ化水素酸,
硫酸,過塩素酸等の酸性水溶液から電解重合法によりペ
ンゾノイド=アミン状態と、ペンゾノイド=アンモニウ
ム塩状態と、ドープ=セミキノンラジカル状態との混合
状態のポリアニリンを重合し、これを0.01〜5M/
flのアルカリ性溶液(例えば、水酸化ナトリウム、水
酸化カリウム、アンモニアなどの水溶液)で洗浄してペ
ンゾノイド=アンモニウム塩状態をペンゾノイド=アミ
ン状態に、ド一プ=セミキノンラジカル状態をキノン=
ジイミン状態にそれぞれ変化させ,更に水洗を施して安
定化させる方法が簡単に本発明に用いるポリアニリンの
状態組成にURll得ることから好適に採用される.
本発明の光電変換素子は、上述した互いに所定間隔離間
した複数個の集電極間を上記ポリアニリンを導電成分と
する受光体で電気的に接続したものであるが、この場合
上記受光体はポリアニリンのみからなるものであっても
、ポリアニリンを含む組成物からなるものであってもよ
い。ここで.ポリアニリンを含む組成物としては、例え
ば酸化重合したポリアニリンを塩化ビニルなどの樹脂と
共にジメチルフォルムアミドなどにキャストしたものな
どが好適に使用できる.
本発明の光電変換素子を構成する方法としては、特に制
限はないが、例えば後述する実施例に示すようにポリエ
チレンテレフタレート等の不導電性基板上にパラジウム
蒸着膜等の導電体からなる複数個の集電極を互に所定間
隔離間して形威し、上記各集電極にまたがる形で集電極
上にポリアニリンを電解重合してポリアニリンからなる
受光体を形或する方法が好適に採用される.この場合、
上記各集電極間の間隔は、上述したように2〜500l
lIaとすることが好ましい。The method for producing the polyaniline is not particularly limited, and methods such as chemical oxidative polymerization using a catalyst from an aqueous solution containing aniline, electrolytic oxidative polymerization from a similar aqueous solution, etc. can be adopted. According to the research of the present inventors, hydrochloric acid, fluoroboric acid,
Polyaniline in a mixed state of penzonoid = amine state, penzonoid = ammonium salt state, and dope = semiquinone radical state is polymerized by an electrolytic polymerization method from an acidic aqueous solution such as sulfuric acid or perchloric acid, and this is 0.01 to 5M. /
Washing fl with an alkaline solution (e.g., aqueous solution of sodium hydroxide, potassium hydroxide, ammonia, etc.) changes the penzonoid = ammonium salt state to the penzonoid = amine state, and the dop = semiquinone radical state to the quinone =
A method in which the polyaniline is changed into a diimine state and further stabilized by washing with water is preferably employed because it easily obtains the state composition of the polyaniline used in the present invention. In the photoelectric conversion element of the present invention, the plurality of collecting electrodes spaced apart from each other by a predetermined distance are electrically connected by a photoreceptor containing polyaniline as a conductive component, but in this case, the photoreceptor consists of only polyaniline. or a composition containing polyaniline. here. As a composition containing polyaniline, for example, a composition obtained by casting oxidatively polymerized polyaniline together with a resin such as vinyl chloride in dimethylformamide or the like can be suitably used. There are no particular limitations on the method for constructing the photoelectric conversion element of the present invention, but for example, as shown in the Examples described later, a plurality of conductive materials such as palladium vapor-deposited films are formed on a non-conductive substrate such as polyethylene terephthalate. A preferred method is to form a photoreceptor made of polyaniline by forming collecting electrodes at a predetermined distance from each other and electrolytically polymerizing polyaniline on the collecting electrodes so as to span the respective collecting electrodes. in this case,
The distance between each collector electrode is 2 to 500l as mentioned above.
It is preferable to set it as lIa.
本発明の光電変換素子を用いて光の強度変化を電気信号
に変換する場合、集電極間に定電圧装置を接続し、集電
極間に所定電圧,好ましくはlOOmv〜10V、より
好ましくは500mV〜5vの一定電圧を印加すると共
に、受光体に光を照射し,この光の強度変化に応じて変
化する集電極間に流れる電流値を検出する.即ち、受光
体中のポリアニリンのキノン=ジイミン状態部分が照射
された光からそのエネルギーを吸収し、そのエネルギー
がペンゾノイド=アミン状態部分に緩和してペンゾノイ
ド=アミン状態部分の電子状態が導電性の高い状態に変
化し、ポリアニリンの導電性が向上する.一方照射光の
強度が低下すると(又は照射をやめると)、導電性の高
い状態に変化したペンゾノイド=アミン状態部分の電子
状態が部分的に(又は全部が)元の状態に変化し、導電
性が低下する.このような照射光強度に応じたポリアニ
リンの導電性の変化により集電極間に流れる電流値が変
化し、その電流値の変化を検出することにより、光の強
度変化を電気信号に変換するものである.なお、上記集
電極間に印加する電圧が100mVより小さいと検出さ
れる電流値も小さくなり,電気信号の検出が困難となる
場合があり、一方10vを超える電圧を印加すると,ポ
リアニリンが劣化する場合がある。When converting a change in light intensity into an electrical signal using the photoelectric conversion element of the present invention, a constant voltage device is connected between the collector electrodes, and a predetermined voltage is applied between the collector electrodes, preferably lOOmv to 10V, more preferably 500mV to While applying a constant voltage of 5V, light is irradiated onto the photoreceptor, and the value of the current flowing between the collecting electrodes is detected, which changes in response to changes in the intensity of this light. In other words, the quinone-diimine state part of polyaniline in the photoreceptor absorbs the energy from the irradiated light, and that energy is relaxed into the penzonoid-amine state part, and the electronic state of the penzonoid-amine state part becomes highly conductive. The conductivity of polyaniline improves. On the other hand, when the intensity of the irradiation light decreases (or when the irradiation is stopped), the electronic state of the penzonoid = amine state part, which has changed to a highly conductive state, partially (or completely) changes to its original state, and it becomes conductive. decreases. This change in the conductivity of polyaniline according to the intensity of the irradiated light causes a change in the value of the current flowing between the collecting electrodes, and by detecting the change in the current value, the change in light intensity is converted into an electrical signal. be. In addition, if the voltage applied between the collector electrodes is less than 100 mV, the detected current value will also be small, making it difficult to detect the electrical signal. On the other hand, if a voltage exceeding 10 V is applied, the polyaniline may deteriorate. There is.
以上説明したように、本発明の光電変換素子は,ポリア
ニリン中のキノン=ジイミン状態部分の光共鳴吸収によ
り光エネルギーを吸収し,そのエネルギーが緩和過程に
よりペンゾノイド=アミン状態部分に分配され、その電
子状態が励起されることによりポリアニリンの導電性が
変化することを利用した新規なものであり、従って、従
来の光電子増倍管や金属硫化物半導体などのように管の
奥行を長くするとか、受光面を特別に広くするといった
必要がなく、素子を小型化することができるものである
。As explained above, the photoelectric conversion element of the present invention absorbs optical energy through optical resonance absorption of the quinone=diimine state moiety in polyaniline, and the energy is distributed to the penzonoid=amine state moiety through the relaxation process, and its electron This is a new product that takes advantage of the fact that the conductivity of polyaniline changes when its state is excited. There is no need to make the surface particularly wide, and the device can be made smaller.
以下、実施例,比較例を示し、本発明を具体的に説明す
るが、本発明は下記実施例に制限されるものではない。EXAMPLES Hereinafter, the present invention will be specifically explained with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples.
第1〜3図に示すように、3 0 mm X↓6+nm
のパラジウム蒸着lしたポリエチレンテレフタレートフ
ィルム2の上記蒸着膜1に虫ピンで200μ幅の傷3を
つけ、絶縁された2枚の平行電極4,4を作製した。次
に両電極にまたがる形で、10mmX16nnの幅にス
テンレス電極を対極としてポリアニリンを電解重合する
ことにより受光体5を形成した。この場合、電解液は、
アニリン5 cc .42%ホウフッ化水素酸15cc
、イオン交換水30ccからなり、16mAの定電流で
重合電気量が1.2Cとなるまで重合した。As shown in Figures 1 to 3, 30 mm X↓6+nm
A scratch 3 having a width of 200 μm was made with an insect pin on the vapor-deposited film 1 of the polyethylene terephthalate film 2 on which palladium was vapor-deposited, and two parallel insulated electrodes 4 were prepared. Next, a photoreceptor 5 was formed by electrolytically polymerizing polyaniline with a width of 10 mm x 16 nn across both electrodes using a stainless steel electrode as a counter electrode. In this case, the electrolyte is
Aniline 5 cc. 42% fluoroboric acid 15cc
and 30 cc of ion-exchanged water, and polymerization was carried out at a constant current of 16 mA until the amount of polymerization electricity reached 1.2 C.
次いで、このポリアニリン(受光体)を0. 1M水酸
化ナトリウムに24時間浸漬し、更に蒸留水で洗浄して
真空乾燥し、第1〜3図に示す構或の光電変換素子を作
製した。このポリアニリンの組成は、キノン=ジイミン
状態になっている部分が30モル%、ペンゾノイド=ア
ミン状態になっている部分が70モル%であった。Next, this polyaniline (photoreceptor) was heated to 0. The photoelectric conversion element was immersed in 1M sodium hydroxide for 24 hours, washed with distilled water, and vacuum-dried to produce a photoelectric conversion element having the structure shown in FIGS. 1 to 3. The composition of this polyaniline was 30 mol% of the portion in the quinone=diimine state and 70 mol% of the portion in the penzonoid=amine state.
この素子の両集電極4,4間にIVの電圧を印加し、暗
電流を測定したところ、4nAの電流が流れた.次に.
30■の距離から60Wの白熱電灯で照射したところ、
電流値は152nAと30倍以上に増大した。When a voltage of IV was applied between both collector electrodes 4 and 4 of this element and the dark current was measured, a current of 4 nA flowed. next.
When irradiated with a 60W incandescent light from a distance of 30cm,
The current value increased more than 30 times to 152 nA.
実施例と同様に.30mmX16m+aのパラジウムを
蒸着したポリエチレンテレフタレートフイルムの蒸着膜
に虫ピンで200一幅の傷をつけ、絶縁された2枚の平
行電極を作製した。次に両電極にまたがる形で、10f
ffI1×16mの幅にステンレス電極を対極としてポ
リアニリンを電解重合することにより受光体を形或した
。この場合、電解液は、アニリン5cc、42%ホウフ
ッ化水素酸15cc、イオン交換水30代からなり、1
6mAの定電流で重合電気量が1.20となるまで重合
した。Same as the example. A 200 mm width scratch was made with an insect pin on a 30 mm x 16 m+a deposited polyethylene terephthalate film on which palladium had been deposited, thereby producing two parallel insulated electrodes. Next, 10f across both electrodes.
A photoreceptor was formed by electrolytically polymerizing polyaniline to a width of ffI1×16 m using a stainless steel electrode as a counter electrode. In this case, the electrolyte consists of 5 cc of aniline, 15 cc of 42% fluoroboric acid, and 30 ml of ion-exchanged water.
Polymerization was carried out at a constant current of 6 mA until the amount of polymerization electricity reached 1.20.
次いで、このポリアニリンをヒドラジン蒸気に2時間露
出し、更に脱酸素した蒸留水で洗浄して真空乾燥した。The polyaniline was then exposed to hydrazine vapor for 2 hours, washed with deoxygenated distilled water, and vacuum dried.
このポリアニリンの組或は、ペンゾノイド=アミン状態
になっている部分が97モル%、キノン=ジイミン状態
になっている部分が3モル%であった。In this polyaniline composition, the portion in the penzonoid=amine state was 97 mol%, and the portion in the quinone=diimine state was 3 mol%.
この素子の両集電極間にIVの電圧を印加し、暗電流を
測定したところ、電流値は35nAであった6次に、3
0cnの距離から60Wの白熱電灯で照射したが電流値
は不変であった。When a voltage of IV was applied between both collecting electrodes of this element and the dark current was measured, the current value was 35 nA.
Irradiation was performed with a 60 W incandescent lamp from a distance of 0 cm, but the current value remained unchanged.
第1図は本発明の一笑施例を示す正面図、第2図は同例
の側面図、第3図は同例の第1図m−m線による断面図
である。
4,4・・・平行電極(集電極)
5・・・受光体
第3図
5FIG. 1 is a front view showing a simple embodiment of the present invention, FIG. 2 is a side view of the same example, and FIG. 3 is a sectional view taken along the line mm in FIG. 1 of the same example. 4, 4... Parallel electrode (collector electrode) 5... Photoreceptor Figure 3 5
Claims (1)
集電極間を互に電気的に接続すると共に、集電極間に電
圧を印加したときに照射された光の強度変化に応じて集
電極間に流れる電流値を変化させる受光体とを具備する
光電変換素子において、上記受光体がキノン=ジイミン
状態になっている部分が50〜3モル%、ベンゾノイド
=アミン状態になっている部分が90〜40モル%、ド
ープ=セミキノンラジカル状態になっている部分が0〜
30モル%、ベンゾノイド=アンモニウム塩状態になっ
ている部分が0〜5モル%であるポリアニリンを含有し
てなることを特徴とする光電変換素子。1. A plurality of collector electrodes made of a conductor separated from each other are electrically connected to each other, and a voltage is applied between the collector electrodes in response to changes in the intensity of the irradiated light. In a photoelectric conversion element comprising a photoreceptor that changes the value of current flowing between collecting electrodes, a portion of the photoreceptor has a quinone=diimine state in a proportion of 50 to 3 mol%, and a benzonoid=amine state in a portion thereof. is 90 to 40 mol%, and the portion in the dope = semiquinone radical state is 0 to 40 mol%.
1. A photoelectric conversion element comprising polyaniline containing 30 mol % and 0 to 5 mol % of a portion in a benzonoid=ammonium salt state.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1152918A JPH0318068A (en) | 1989-06-15 | 1989-06-15 | Photoelectric conversion element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1152918A JPH0318068A (en) | 1989-06-15 | 1989-06-15 | Photoelectric conversion element |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0318068A true JPH0318068A (en) | 1991-01-25 |
Family
ID=15550997
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1152918A Pending JPH0318068A (en) | 1989-06-15 | 1989-06-15 | Photoelectric conversion element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0318068A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1993025003A1 (en) * | 1992-06-01 | 1993-12-09 | Yale University | Sub-nanoscale electronic systems, devices and processes |
-
1989
- 1989-06-15 JP JP1152918A patent/JPH0318068A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1993025003A1 (en) * | 1992-06-01 | 1993-12-09 | Yale University | Sub-nanoscale electronic systems, devices and processes |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Syed et al. | Polyaniline—A novel polymeric material | |
Glenis et al. | Photoelectrochemical properties of thin films of polythiophene and derivatives: Doping level and structure effects | |
JPS598723A (en) | Pyrrole electroconductive copolymer and manufacture | |
Kanbara et al. | Preparation and properties of new. pi.-conjugated poly (quinoxaline-5, 8-diyl) and poly (2, 3-diethylquinoxaline-5, 8-diyl). Enhancement of electron-accepting properties of poly (arylenes) by introduction of imine nitrogen | |
CN107576704A (en) | Microcysin LR molecular engram optical electro-chemistry sensor and its preparation and application | |
JPH0318068A (en) | Photoelectric conversion element | |
Tao et al. | Two functional nanofibers of polyaniline with application in supercapacitor and photosensor | |
Danziger et al. | Electrochemical and photoelectrochemical processes on thin films of perylenetetracarboxylic dianhydride | |
Nabhan et al. | Interfacing poly (p-anisidine) with photosystem I for the fabrication of photoactive composite films | |
Levy‐Clement et al. | Photoelectrochemistry of Lamellar n‐and p‐Type InSe in Aqueous Solution | |
CN105938100A (en) | New luminol cathode electrochemiluminescence excitation method based on ordered mesoporous carbon and polyaniline | |
Mello et al. | Ohmic contacts between sulfonated polyaniline and metals | |
Okano et al. | Photoelectrochemical polymerization of pyrrole on ZnO and its application to conducting pattern generation | |
Kim et al. | Fabrication of Nitroaniline Chemical Sensor Based on Polyaniline Coated Multi-Walled Carbon Nanotubes | |
Conwell et al. | Does photogeneration produce bipolarons in poly (para-phenylene vinylene)? | |
KR101556198B1 (en) | Cellulose fibers with conductivity and the fabrication method thereof and solarcell cellulose fibers using the same | |
CN107579126A (en) | A kind of ultraviolet detector and its manufacturing method | |
RU2292097C1 (en) | Silicon-polymer photoelectric module and its manufacturing process | |
Chowdhury et al. | Electrochemical switching to p-and n-type semiconductance with poly (3-methyl thiophene) film | |
Papež et al. | The electrical and electrochemical characteristics of polyacetylene | |
US20240383907A1 (en) | Electrical Component Comprising Date Fruit Derived Melanin | |
AbdulAlmohsin et al. | Electrochemical polymerization of Ppy-MWCNT composite as a counter electrode for dye-sensitized solar cells | |
CN102702739A (en) | Poly Schiff base membrane material with nano thorns and preparation method and application thereof | |
JPH026734A (en) | Ph detecting element | |
JP2000021393A (en) | Manufacture of polymer electrode |