JPH0317965A - Manufacture of solid-electrolyte sheet and solid-electrolyte secondary battery - Google Patents
Manufacture of solid-electrolyte sheet and solid-electrolyte secondary batteryInfo
- Publication number
- JPH0317965A JPH0317965A JP1151827A JP15182789A JPH0317965A JP H0317965 A JPH0317965 A JP H0317965A JP 1151827 A JP1151827 A JP 1151827A JP 15182789 A JP15182789 A JP 15182789A JP H0317965 A JPH0317965 A JP H0317965A
- Authority
- JP
- Japan
- Prior art keywords
- solid electrolyte
- solid
- sheet
- powder
- rolling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000007784 solid electrolyte Substances 0.000 title claims abstract description 45
- 238000004519 manufacturing process Methods 0.000 title claims description 8
- 239000000843 powder Substances 0.000 claims abstract description 19
- 238000005096 rolling process Methods 0.000 claims abstract description 18
- 239000007772 electrode material Substances 0.000 claims abstract description 11
- 238000000034 method Methods 0.000 claims abstract description 8
- 238000001035 drying Methods 0.000 claims description 5
- 239000000203 mixture Substances 0.000 claims description 4
- 238000000465 moulding Methods 0.000 claims description 4
- 238000007580 dry-mixing Methods 0.000 claims description 3
- 238000004898 kneading Methods 0.000 claims description 3
- 239000000835 fiber Substances 0.000 abstract description 5
- 239000000463 material Substances 0.000 abstract description 5
- 229920001343 polytetrafluoroethylene Polymers 0.000 abstract description 5
- 239000004810 polytetrafluoroethylene Substances 0.000 abstract description 5
- 229920005989 resin Polymers 0.000 abstract description 2
- 239000011347 resin Substances 0.000 abstract description 2
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 abstract 1
- 229910052731 fluorine Inorganic materials 0.000 abstract 1
- 239000011737 fluorine Substances 0.000 abstract 1
- -1 polyethylene Polymers 0.000 description 6
- 239000010949 copper Substances 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 238000003825 pressing Methods 0.000 description 3
- 238000007599 discharging Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910017489 Cu I Inorganic materials 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 229910003092 TiS2 Inorganic materials 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 239000011244 liquid electrolyte Substances 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 239000007773 negative electrode material Substances 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 239000007774 positive electrode material Substances 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000003566 sealing material Substances 0.000 description 1
- 239000011163 secondary particle Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
- Secondary Cells (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は全て固体状態の固体電解質二次電池の製造法に
関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a solid electrolyte secondary battery, which is entirely in a solid state.
従来の技術
固体電解質を用いた電池(よ 全て固体で構戒されてい
ることか板 従来の液状電解質からなる電池と異なり漏
液の心配がなく、さらに小瓢 軽量、薄型化が可能なこ
とか板 マイクロエレクトロニクス分野の電源として大
いにその実用化が期待されていも
これまで固体電解質にはLiI% LiI−At203
、LisNなどのLi“伝導性固体電解質、あるいはR
bAg4I6などのAg”伝導性固体電解質、RbCu
4 I+.ysC 1s.2sS Cu I
CuaO MOOaなどのCu゛伝導性
固体電解質などが取り上げられていも また電極材料と
してζ表 正電極材料に Li,AgS Cuをインタ
ー力レーション、デインター力レーションすることので
きるTiS2、NbSa、M o s−S *などの層
間化合物が用いられ 一方 負極材料に(上 Li,A
g,Cuそれに正極材料と同じM o e S sなど
が用いられている。Batteries using conventional technology solid electrolytes (all solid electrolytes) Unlike conventional batteries made of liquid electrolytes, there is no need to worry about leakage, and they can also be made smaller, lighter, and thinner. Although there are great expectations for its practical application as a power source in the microelectronics field, up to now solid electrolytes have been limited to LiI% LiI-At203.
, Li” conductive solid electrolyte such as LisN, or R
Ag” conductive solid electrolyte such as bAg4I6, RbCu
4 I+. ysC 1s. 2sS Cu I
Although Cu conductive solid electrolytes such as CuaO and MOOa have been discussed, Li, AgS, TiS2, NbSa, and Mos-, which can inter-interlate and deinterlate Cu, are also used as electrode materials. Interlayer compounds such as S* are used for the negative electrode material (upper Li, A
G, Cu, and MoeSs, which is the same as the positive electrode material, are used.
これら固体電解質や電極の従来のシート化は上記電極材
諏 固体電解質材料にバインダーとしてポリエチレン、
ポリプロピレン、ポリテトラフルオロエチレン樹脂など
を添加することで行なわれていも 特にポリテトラフル
オロエチレンのようなフッ素樹脂粉末(友 圧力を加え
ることで容易に延伸し粒子同志を良好に結着することか
ら圧延戊型によるシート化の際には用いられていもそし
て固体電解質電池の構或はこれらシートを重ね合わせ単
に上下から圧力を加え一体化することで行なわれていた
発明が解決しようとする課題
このように構或された固体電解質二次電池の充放電容量
(よ 比較的少ないサイクル数で低下し電池内部抵抗の
増加が認められf,
この原因4& 充放電を繰り返す過程で生じるイオン
の移動が電極材料あるいは 固体電解質材料の膨張を引
き起こし その結巣 電極材料粒子界面の接徴 固体電
解質界面の接合、特に材料粉末粒子径が著しく異なる電
極材料層と固体電解質層との界面接合を著しく悪化させ
たことによるものである。Conventional sheets of these solid electrolytes and electrodes are made of the above-mentioned electrode material, polyethylene as a binder, and solid electrolyte material.
Even though it is done by adding polypropylene, polytetrafluoroethylene resin, etc., it is especially difficult to roll the powder because it is easily stretched by applying pressure and binds the particles well. Although the structure of the solid electrolyte battery was used when forming sheets using a hollow mold, the invention was made by stacking these sheets and simply applying pressure from above and below to integrate them. The charge/discharge capacity of solid electrolyte secondary batteries constructed in Or, it causes expansion of the solid electrolyte material, resulting in its formation.Contact symptoms at the electrode material particle interface.In particular, the interfacial bond between the electrode material layer and the solid electrolyte layer, which have significantly different material powder particle sizes, is significantly deteriorated. It is something.
このように従来の技術でζよ 上記に示すように電池諸
特性が低下するという問題があった本発明(友 上記従
来技術の問題点に基き、電極材料層と固体電解質層の界
面接合を強固にすることができる固体電解質シートの製
造法及び電極シートの製造法とこれらシートを用いた固
体電解質二次電池の製造法を提供することを目的とする
ものであも
課題を解決するための手段
本発明の固体電解質二次電池は上記課題を解決するため
に 固体電解質粉末にフッ素樹脂粉末を添加乾式混合し
さらに湿式混練した後、同一方向に圧延戒型し乾燥し
て得た固体電解質シートを、電極活物質と固体電解質の
混合物からなる電極材料粉末にフッ素樹脂粉末を添加乾
式混合し さらに湿式混練した抵 同一方向に圧延或型
し乾燥して得た電極シート間に 圧延方向が同一方向に
なるように配し 前記圧延方向と同じ方向に圧延し一体
化して得ることを特徴とするものであも作 用
固体電解質粉太 電極材料粉末にフッ素樹脂粉末を添加
乾式混合し さらに湿式混練し 同一方向に数回圧延戊
型することで、フッ素樹脂が材料粉内で圧延方向に繊維
状に延伸配向よ かつ繊維同志が絡み合った固体電解質
、電極シートが得られも
これらシートを圧延方向を同一方向にして重抵前記圧延
方向と同じ方向に圧延することで、電極シート表面の繊
維と固体電解質シート表面の繊維が配向方向に絡み合っ
たたいへん強固な界面接合を持つ電池が得られる。In this way, the conventional technology has the problem of deteriorating various battery characteristics as shown above. The purpose of this invention is to provide a method for manufacturing a solid electrolyte sheet, a method for manufacturing an electrode sheet, and a method for manufacturing a solid electrolyte secondary battery using these sheets. In order to solve the above problems, the solid electrolyte secondary battery of the present invention consists of a solid electrolyte sheet obtained by adding fluororesin powder to solid electrolyte powder, dry-mixing it, wet-kneading it, rolling it in the same direction, and drying it. , a fluororesin powder is added to an electrode material powder consisting of a mixture of an electrode active material and a solid electrolyte, dry-mixed, and then wet-kneaded.The electrode sheets obtained by rolling or molding in the same direction and drying are rolled in the same direction. It is characterized in that it is obtained by rolling in the same direction as the above-mentioned rolling direction to obtain the same solid electrolyte powder.Fluororesin powder is added to the electrode material powder, dry-mixed, and then wet-kneaded. By rolling and molding several times in the rolling direction, the fluororesin is stretched and oriented in the rolling direction within the material powder, and solid electrolyte and electrode sheets in which the fibers are intertwined can be obtained, but these sheets are rolled in the same direction. By rolling with heavy resistance in the same direction as the aforementioned rolling direction, a battery having a very strong interfacial bond in which the fibers on the surface of the electrode sheet and the fibers on the surface of the solid electrolyte sheet are intertwined in the orientation direction can be obtained.
その結果 初期充放電容量は増加し また比較的少ない
サイクル数で充放電容量が低下することがなくなりt4
また本発明を用いた固体電解質二次電池(上 容易に製
造することができ、薄瓢 犬面積を有するものも得られ
も
実施例
第1図ζ上 本発明の一実施例において得られた固体電
解質二次電池を示していも
R b C u4r +.ysC 1 s.esからな
る固体電解質材料にポリテトラフルオロエチレン粉末を
5wt%の割合で添加し両者をミキサーで乾式混合しさ
らにイソパラフィン溶液を加え充分混練し これをロー
ラ圧延法によりローラ間隔を0.02mmずつ低下させ
ながら同一方向に圧延(0.50mmの厚さに戒型し乾
燥させることで、固体電解質シ一ト3を得九 この限
圧延回数が5回以下では繊維が充分に絡まず脆いシート
ができるので最低それ以上圧延することが望まし(ち
五 負電極シ一ト1、 2(よ 銅シェプレル(Cua
Moa Ss)に 固体電解質としてRbCuiI1.
?6C 1 s.z6を40wt%.ポリテトラフルオ
ロエチレン粉末を5wt%の割合で添加し 同上の方法
′″r,0.50mmの厚さを得t4屯 ポリテトラ
フルオロエチレンとしては 微粒子が多数集合してなる
500ミクロン程度の二次粒子を形或したものが好まし
し1
次に正電極シ一ト1、固体電解質シ一ト3、負電極シ一
ト2の順に 圧延方向が同一方向になるように重抵 前
記圧延方向と同じ方向に150℃に加熱したローラブレ
ス機でローラ間隔を0.02mmずつ低下させながら全
厚みが0.65mmになるまで数回圧延することで一体
化させ1. これを15X15mm角に切断し その
後両面に集電体4として金の微粉末を分散させた導電性
接着シ一ト、さらにその上に銅はくをあて、 150℃
に加熱した平板プレス機で500kg/cm”の条件で
加圧し接着させ、周辺部を封止材5としてエボキシ樹脂
で封止し電池を作威し?, この電池をAとすも
次に比較のために 圧延方向を留意せずに電極シート、
固体電解質シートの作或ならびに一体化を行なった電池
Bを構或した 他は電池Aと同じ条件で構或しtら
以上 2つの電池A, Bを用いて充放電サイクル特
性の比較を行なっ九 充放電条件(よ 充放電レートを
それぞれ0.5mA, 充電終止電圧0.55v、放
電終止電圧0.3vとしt4 第2図に その結果を
示す。As a result, the initial charge/discharge capacity increases, and the charge/discharge capacity does not decrease even after a relatively small number of cycles. Example 1 Figure 1 ζ Top shows a solid electrolyte secondary battery obtained in an example of the present invention. Add polytetrafluoroethylene powder at a ratio of 5 wt% to the mixture, dry mix the two with a mixer, add isoparaffin solution and knead thoroughly, and roll this in the same direction using a roller rolling method while decreasing the roller spacing by 0.02 mm ( Solid electrolyte sheet 3 was obtained by molding to a thickness of 0.50 mm and drying.
If the number of rolling is less than 5 times, the fibers will not be entangled sufficiently and a brittle sheet will be produced, so it is desirable to roll at least more than 5 times.
RbCuiI1.MoaSs) as a solid electrolyte.
? 6C 1 s. z6 at 40wt%. By adding polytetrafluoroethylene powder at a ratio of 5 wt%, using the same method as above, a thickness of 0.50 mm was obtained.As polytetrafluoroethylene, secondary particles of about 500 microns are made up of a large number of fine particles. It is preferable to roll the positive electrode sheet 1, the solid electrolyte sheet 3, and the negative electrode sheet 2 in this order so that the rolling direction is the same as the rolling direction. Using a roller press machine heated to 150°C, the rollers are rolled several times until the total thickness is 0.65mm while reducing the roller spacing by 0.02mm.1.This is cut into 15x15mm squares, and then both sides A conductive adhesive sheet with fine gold powder dispersed therein was used as the current collector 4, and then a copper foil was placed on top of it, and heated to 150°C.
The batteries were made by applying pressure and adhesion at 500 kg/cm'' using a flat plate press machine heated to 500 kg/cm, and then sealing the periphery with epoxy resin as the sealing material 5 to make a battery.This battery is called A and is compared next. For electrode sheets, without paying attention to the rolling direction
Battery B was constructed in which a solid electrolyte sheet was fabricated and integrated.Other than that, it was constructed under the same conditions as Battery A.The charge and discharge cycle characteristics were compared using the two batteries A and B. Charging and discharging conditions (charging and discharging rate 0.5 mA, end-of-charge voltage 0.55 V, end-of-discharge voltage 0.3 V, t4) The results are shown in Figure 2.
電池Aの初期放電容量は 1.38mAh であったの
に対して、電池EH上 1.30mAhであり、電池A
の方が優れていた
またサイクル特性においてk 電池Aの場合、1000
サイクル目の放電容量が初期放電容量に対して80%し
か低下しないのに対して、電池Bの場合、 1000サ
イクル目の放電容量が初期放電容量に対して60%も低
下しており、電池Aの方が優れていた
発明の効果
本発明により得られる固体電解質二次電池(よ電極シー
トと固体電解質シートの接合が強固なものとなり、充放
電容量、サイクル特性などの向上が図られtもThe initial discharge capacity of battery A was 1.38 mAh, while that of battery EH was 1.30 mAh;
In the case of battery A, 1000 k was better in terms of cycle characteristics.
The discharge capacity at the 1000th cycle decreased by 60% compared to the initial discharge capacity in the case of battery B, whereas the discharge capacity at the 1000th cycle decreased by only 80% of the initial discharge capacity. The solid electrolyte secondary battery obtained by the present invention (the bond between the electrode sheet and the solid electrolyte sheet becomes stronger, and the charge/discharge capacity, cycle characteristics, etc. are improved, and
第1図は本発明の一実施例において製造した固体電解質
二次電池の構或断面は 第2図は同固体電解質二次電池
の充放電サイクル特性を示す図であも
l・・・・・・工電極シート、 2・・・・・・負電極
シート、 3・・・・・・固体電解質シート。Fig. 1 shows the structure or cross section of a solid electrolyte secondary battery manufactured in an embodiment of the present invention, and Fig. 2 shows the charge/discharge cycle characteristics of the same solid electrolyte secondary battery.・Mechanical electrode sheet, 2...Negative electrode sheet, 3...Solid electrolyte sheet.
Claims (3)
し、さらに湿式混練した後、同一方向に圧延成型し乾燥
して得ることを特徴とする固体電解質シートの製造法。(1) A method for producing a solid electrolyte sheet, which comprises adding and dry-mixing a fluororesin powder to a solid electrolyte powder, further wet-kneading, and then rolling-molding in the same direction and drying.
料粉末にフッ素樹脂粉末を添加乾式混合し、さらに湿式
混練した後、同一方向に圧延成型し乾燥して得ることを
特徴とする電極シートの製造法。(2) An electrode sheet characterized in that it is obtained by adding and dry-mixing a fluororesin powder to an electrode material powder consisting of a mixture of an electrode active material and a solid electrolyte, further wet-kneading, and then rolling-forming in the same direction and drying. Manufacturing method.
載の電極シートの間に、圧延方向を同一方向にして配し
、前記圧延方向と同じ方向に圧延し一体化して得ること
を特徴とする固体電解質二次電池の製造法。(3) The solid electrolyte sheet according to claim 1 is arranged between the electrode sheets according to claim 2 so that the rolling direction is the same, and the solid electrolyte sheet according to claim 1 is rolled in the same direction as the rolling direction. A method for manufacturing a solid electrolyte secondary battery.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1151827A JPH0317965A (en) | 1989-06-14 | 1989-06-14 | Manufacture of solid-electrolyte sheet and solid-electrolyte secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1151827A JPH0317965A (en) | 1989-06-14 | 1989-06-14 | Manufacture of solid-electrolyte sheet and solid-electrolyte secondary battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0317965A true JPH0317965A (en) | 1991-01-25 |
Family
ID=15527181
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1151827A Pending JPH0317965A (en) | 1989-06-14 | 1989-06-14 | Manufacture of solid-electrolyte sheet and solid-electrolyte secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0317965A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7195844B2 (en) | 2002-03-28 | 2007-03-27 | Tdk Corporation | Lithium secondary battery |
JP2016081635A (en) * | 2014-10-14 | 2016-05-16 | トヨタ自動車株式会社 | All solid battery |
CN112909326A (en) * | 2019-12-04 | 2021-06-04 | 中国科学院宁波材料技术与工程研究所 | Sulfide composite solid electrolyte prepared by dry method and preparation method thereof |
-
1989
- 1989-06-14 JP JP1151827A patent/JPH0317965A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7195844B2 (en) | 2002-03-28 | 2007-03-27 | Tdk Corporation | Lithium secondary battery |
US7413829B2 (en) | 2002-03-28 | 2008-08-19 | Tdk Corporation | Lithium secondary battery |
JP2016081635A (en) * | 2014-10-14 | 2016-05-16 | トヨタ自動車株式会社 | All solid battery |
CN112909326A (en) * | 2019-12-04 | 2021-06-04 | 中国科学院宁波材料技术与工程研究所 | Sulfide composite solid electrolyte prepared by dry method and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7157184B2 (en) | Method for producing electrode sheets for electrochemical elements | |
JP7261995B2 (en) | All-solid-state battery and manufacturing method thereof | |
DE102021130262A1 (en) | Process for the production of solvent-free multilayer electrodes | |
CN105921343A (en) | Manufacturing method of single high-capacity lithium-ion battery and pole piece coating equipment | |
CN109904448A (en) | A kind of super-energy olefin polymer lead-acid battery green plate lead paste | |
KR102561483B1 (en) | Electrode for all-solid-sate battery and method of preparing the same | |
US5045415A (en) | Electrode plate structure | |
KR101586536B1 (en) | Manufacturing method of carbon fiber sheet current collector for all solid state rechargeable thin film lithium secondary battery, and all solid state rechargeable thin film lithium secondary battery comprising carbon fiber sheet current collector | |
JP2018170131A (en) | Vanadium redox secondary battery, redox secondary battery diaphragm, and method for producing redox secondary battery diaphragm | |
JPH0317965A (en) | Manufacture of solid-electrolyte sheet and solid-electrolyte secondary battery | |
JPH0268855A (en) | Manufacture of electrode for cell | |
CN118738262A (en) | Electrode sheet and preparation method thereof | |
CN114725312A (en) | Dry-processed pole piece and preparation method thereof | |
JP2768176B2 (en) | Lead storage battery and method of manufacturing the same | |
JPH0750617B2 (en) | Solid secondary battery | |
CN119419372B (en) | A full-solid-state battery cell with a three-dimensional interlaced lithium ion conduction network and its preparation method and application | |
CN211654940U (en) | Multifunctional composite negative plate for chargeable and dischargeable solid battery and secondary battery | |
JPH06203830A (en) | Battery | |
CN201252130Y (en) | Anode of polymer lithium ion battery | |
JPH07123053B2 (en) | Organic solid electrolyte secondary battery | |
CN109637832B (en) | Flat carbon electrode with high energy density | |
JP2000058107A (en) | Manufacture of electrode for polymer battery | |
JPH0315166A (en) | Solid electrolyte secondary battery | |
JPS6145565A (en) | Storage battery | |
JPH0389463A (en) | Electrode plate for lead-acid battery |