JPH0317791B2 - - Google Patents
Info
- Publication number
- JPH0317791B2 JPH0317791B2 JP59259784A JP25978484A JPH0317791B2 JP H0317791 B2 JPH0317791 B2 JP H0317791B2 JP 59259784 A JP59259784 A JP 59259784A JP 25978484 A JP25978484 A JP 25978484A JP H0317791 B2 JPH0317791 B2 JP H0317791B2
- Authority
- JP
- Japan
- Prior art keywords
- powder
- ultra
- metal
- mixed
- powders
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Polishing Bodies And Polishing Tools (AREA)
- Ceramic Products (AREA)
- Powder Metallurgy (AREA)
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明はダイヤモンド又は立方晶窒化硼素のよ
うな超硬質材料をそのシヤンクとなる工具鋼等の
金属材に強固に接合するに好適な超硬質材料と金
属材との接合方法に関するものである。Detailed Description of the Invention (Industrial Application Field) The present invention is an ultra-hard material suitable for firmly joining an ultra-hard material such as diamond or cubic boron nitride to a metal material such as tool steel that serves as its shank. This invention relates to a method for joining materials and metal materials.
(従来の技術)
ダイヤモンド又は立方晶窒化硼素のような超硬
質材料を金属材に接合するにはAu−Ta,Au−
Nb,Ag−Cu−Ti,Ag−Ti等の合金からなるろ
う接剤を使用する方法が一般的である(例えば、
フランス特許第1332423号明細書、米国特許第
3192620号明細書、特公昭58−44635号公報)。と
ころが、上記のようなろう接剤を用いて超硬質材
料と金属材とを接合するには接合部分を800℃以
上の高温に加熱しなければならぬため脆性材料で
ある超硬質材料中に熱応力によつてクラツクを発
生させ易く、また超硬質材料の寿命を短縮化させ
易い欠点があつた。(Prior art) Au-Ta, Au-
A common method is to use a brazing agent made of an alloy such as Nb, Ag-Cu-Ti, or Ag-Ti (for example,
French Patent No. 1332423, US Patent No.
3192620, Japanese Patent Publication No. 58-44635). However, in order to join an ultra-hard material and a metal material using the above-mentioned brazing agent, the joining part must be heated to a high temperature of 800°C or higher, which means that heat is absorbed into the ultra-hard material, which is a brittle material. It has the drawbacks of easily causing cracks due to stress and shortening the life of the ultra-hard material.
(発明が解決しようとする問題点)
本発明は上記のような従来の問題点を解決し、
従来のろう接剤を使用した場合よりも低温で超硬
質材料を金属材に強固に接合することができる方
法を目的として完成されたものである。(Problems to be solved by the invention) The present invention solves the conventional problems as described above,
This method was developed with the aim of being able to firmly join ultra-hard materials to metal materials at a lower temperature than when using conventional brazing agents.
(問題点を解決するための手段)
本発明はダイヤモンド又は立方晶窒化硼素等の
超硬質材料と金属材との間に、Ti,Cr,Zr,
Mn,Mo,Wのグループから選択された1種又
は2種以上の粉末3〜30%(重量%、以下同じ)
と、Sn粉末5〜20%と、残部を占めるCu粉末及
び必要に応じて添加される付加的な金属粉末とを
圧粉成形してなる混合圧粉体を挟み、真空中で
750℃以下の温度で加熱して液相化させたのち加
圧することを特徴とするものである。(Means for Solving the Problems) The present invention provides a structure in which Ti, Cr, Zr,
3-30% (weight%, same below) of one or more powders selected from the group of Mn, Mo, and W
A mixed compact formed by compacting 5 to 20% of Sn powder, Cu powder occupying the remainder, and additional metal powder added as necessary is sandwiched between the two, and the mixture is then heated in a vacuum.
It is characterized by heating at a temperature of 750°C or less to make it into a liquid phase, and then pressurizing it.
本発明において用いられる混合圧粉体は各成分
金属を5〜100μmの粒度の粉末としたうえ圧粉成
形により任意の形状に成形してなるもので、Cu
を主成分とし5〜20%のSnを副成分とすること
により接合時の液相化開始温度をSnの融点であ
る232℃付近まで引下げ、低温におけるろう接を
可能としたものである。Snはこのように本発明
において重要な役割を果たすものであるが、5%
未満では上記の効果を十分に発揮させることがで
きず、逆に20%を越えると他の成分金属との関係
上十分な接合力を得ることができない。Ti,Cr,
Zr,Mn,Mo,Wはいずれもダイヤモンド及び
立方晶窒硼素に対して高度の接着性を示す金属で
あり、これらのグループから選択された1種又は
2種以上の粉末を上記のCu−Sn系の粉末中に3
〜30%混入させることにより、低温で強い接合力
を生じさせることが可能となる。これらの粉末は
金属粉末あるいは金属化合物の粉末の形で混入さ
れるもので、3%未満では十分な接合力を生じさ
せることができず、30%を越えると混合圧粉体の
液相化温度を上昇させて本発明の目的を達成する
ことができなくなる。このほか、付加的な金属粉
末としてAg,Zn,V,Nb,Ta,Bのうち1種
又は2種以上の粉末が必要に応じて混合される。
Agは超硬質材料と液相化した混合圧粉体との結
合を活性化させる触媒として作用し接合力向上に
有益なものであり、Znは液相化温度の引下げに
寄与する。また、V,Nb,Ta,Bはいずれも
Agと同様に触媒として作用して接合力向上に有
益なもので、これらの付加的な金属粉末は他の成
分とのバランス上から0.01〜1.0%の範囲で添加
される。このような成分からなる混合圧粉体は任
意の形状に圧粉成形されたうえで超硬質材料と金
属材との間に挟まれ、10-2〜10-3Torrの真空中
で700〜750℃に加熱される。この結果混合圧粉体
は液相化するので、10〜100Kg/cm2程度の圧力で
加圧すれば液相は真空中において空気その他のガ
ス成分により妨害されることなく超硬質材料及び
金属材とよく濡れ、両者は強固に接合される。 The mixed compact used in the present invention is made by powdering each component metal with a particle size of 5 to 100 μm and molding it into an arbitrary shape by powder compaction.
By using Sn as a main component and 5 to 20% of Sn as a subcomponent, the temperature at which liquid phase starts to form during joining is lowered to around 232°C, which is the melting point of Sn, making it possible to perform soldering at low temperatures. Sn thus plays an important role in the present invention, and 5%
If it is less than 20%, the above effects cannot be fully exhibited, and if it exceeds 20%, sufficient bonding strength cannot be obtained due to the relationship with other component metals. Ti, Cr,
Zr, Mn, Mo, and W are all metals that exhibit a high degree of adhesion to diamond and cubic boron nitride, and one or more powders selected from these groups are added to the Cu-Sn powder described above. 3 in the powder of the system
By mixing ~30%, it becomes possible to generate strong bonding force at low temperatures. These powders are mixed in the form of metal powder or metal compound powder, and if it is less than 3%, it will not be possible to generate sufficient bonding force, and if it exceeds 30%, the liquidus temperature of the mixed compact will increase. This would make it impossible to achieve the object of the present invention. In addition, powders of one or more of Ag, Zn, V, Nb, Ta, and B are mixed as additional metal powders, if necessary.
Ag acts as a catalyst to activate the bond between the ultra-hard material and the liquid-phase mixed green compact, and is useful for improving bonding strength, while Zn contributes to lowering the liquid-phase temperature. Also, V, Nb, Ta, and B are all
Like Ag, it acts as a catalyst and is useful for improving bonding strength, and these additional metal powders are added in a range of 0.01 to 1.0% from the viewpoint of balance with other components. The mixed compact consisting of these components is compacted into an arbitrary shape and then sandwiched between an ultra-hard material and a metal material, and heated at a temperature of 700 to 750 Torr in a vacuum of 10 -2 to 10 -3 Torr. heated to ℃. As a result, the mixed compact turns into a liquid phase, so if it is pressurized at a pressure of about 10 to 100 kg/ cm2 , the liquid phase can be applied to ultra-hard materials and metals without being disturbed by air or other gas components in a vacuum. It gets wet well and the two are firmly bonded.
このように本発明ではSn粉末とCu粉末とを含
む混合圧粉体を使用したので、液相化開始温度を
Sn粉末の融点である232℃付近まで引き下げるこ
とができ、しかも液相化したSnは混合圧粉体の
内部で相互に圧縮状態で接触している他の金属粉
末を溶かしつつ全体を急速に溶融して行く。この
ため、本発明によれば一旦溶融され合金化された
ろう接材を用いた従来法に比較して極めて低温で
かつ迅速に全体を液相化させることができる。従
つて本発明によれば750℃以下の低い温度で短時
間で超硬質材料と金属材との接合を行うことがで
き、ダイヤモンドや立方晶窒化硼素のような熱に
弱い超硬質材料を劣化させることがない。 In this way, the present invention uses a mixed compact containing Sn powder and Cu powder, so it is possible to lower the liquid phase start temperature.
It is possible to lower the temperature to around 232℃, which is the melting point of Sn powder, and the Sn in the liquid phase rapidly melts the entire mixed powder while melting other metal powders that are in contact with each other in a compressed state inside the mixed compact. I'll go. Therefore, according to the present invention, the entire material can be turned into a liquid phase at a much lower temperature and more quickly than in the conventional method using a brazing material that is once melted and alloyed. Therefore, according to the present invention, it is possible to bond ultra-hard materials and metal materials in a short time at a low temperature of 750°C or less, and it is possible to bond ultra-hard materials such as diamond and cubic boron nitride that are sensitive to heat. Never.
(実施例) 次に本発明の好ましい実施例を示す。(Example) Next, preferred embodiments of the present invention will be shown.
実施例 1
Sn粉末10%、Ti粉末5%、Cu粉末85%を混合
したうえ直径3mm高さ0.8mmの円板状に圧粉成形
して混合圧粉体を作成し、これを直径3mm長さ5
mmのダイヤモンド焼結体からなる超硬質材料と直
径3mm長さ50mmの工具鋼との間に挟んでホツトプ
レス炉内にセツトした。次に炉内を真空ポンプで
10-2〜10-3Torrの真空となし、20℃/minの昇熱
速度で750℃まで加熱し10分間保持して混合圧粉
体の液相化を進行させた後に50Kg/cm2の圧力で加
圧し、冷却した。この結果、ダイヤモンド焼結体
からなる超硬質材料と金属材とは強固に接合し、
超硬質材料にクラツクが生ずることなく、またダ
イヤモンド焼結体に劣化を生ずることもなかつ
た。Example 1 A mixed compact was created by mixing 10% Sn powder, 5% Ti powder, and 85% Cu powder and compacting it into a disc shape with a diameter of 3 mm and a height of 0.8 mm. Sa5
It was sandwiched between an ultra-hard material made of a diamond sintered body with a diameter of 3 mm and a tool steel with a length of 50 mm and set in a hot press furnace. Next, use a vacuum pump inside the furnace.
Under a vacuum of 10 -2 to 10 -3 Torr, heat to 750°C at a heating rate of 20°C/min, hold for 10 minutes to advance the liquid phase of the mixed powder compact, and then It was pressurized and cooled. As a result, the ultra-hard material made of diamond sintered body and the metal material are firmly bonded,
No cracks occurred in the ultra-hard material, and no deterioration occurred in the diamond sintered body.
実施例 2
Su粉末20%、Ti粉末10%、Cu粉末70%を混合
したうえ5×5×0.8mmの板状に圧粉成形し、得
られた混合圧粉体を5×5×20mmの工具鋼と1カ
ラツトの工業用ダイヤモンド単結晶との間に挟
み、実施例1と同様に700℃で両者を接合させた。
接合は強固でクラツク等の欠陥は皆無であつた。Example 2 20% Su powder, 10% Ti powder, and 70% Cu powder were mixed and compacted into a plate shape of 5 x 5 x 0.8 mm, and the obtained mixed compact was molded into a plate of 5 x 5 x 20 mm. It was sandwiched between a tool steel and a 1 carat industrial diamond single crystal, and the two were bonded together at 700°C in the same manner as in Example 1.
The bond was strong and had no defects such as cracks.
実施例 3
Sn粉末15%、Ti粉末5%、W粉末5%、Cu粉
末75%の混合物に付加的な金属粉末として0.5%
のAgを外分比で加え圧粉成形した混合圧粉体を
用いて立方晶窒化硼素からなる直径5mm長さ5mm
の超硬質材料と超硬合金製のシヤンクとの接合を
行つた。接合方法は実施例1と同様であり、720
℃で強固な接合が得られた。Example 3 0.5% as additional metal powder in a mixture of 15% Sn powder, 5% Ti powder, 5% W powder, 75% Cu powder
A 5 mm diameter and 5 mm length made of cubic boron nitride was prepared using a mixed powder compacted by adding Ag at an external ratio and compacting it.
The ultra-hard material was joined to a cemented carbide shank. The joining method was the same as in Example 1, and 720
A strong bond was obtained at ℃.
(発明の効果)
本発明は以上の説明からも明らかなように、超
硬質材料と金属材とを従来のろう接剤を用いた場
合よりもかなり低温で強固に接合することがで
き、接合部に熱応力によるクラツクや性能劣化が
生ずることを防止することができる。また、本発
明は混合圧粉体を用いるので接合部の形状に応じ
て適切な接合を行うことができるうえ、金属粉を
混合圧粉体とすることにより成分を相手材に応じ
て自由に変化させても常に円滑に液相化を進行さ
せることができる利点をも有するものであるか
ら、従来の問題点を解消したものとして産業の発
展に寄与するところは大である。(Effects of the Invention) As is clear from the above description, the present invention can firmly join an ultra-hard material and a metal material at a much lower temperature than when using a conventional brazing agent. This can prevent cracks and performance deterioration due to thermal stress. In addition, since the present invention uses a mixed powder compact, it is possible to perform appropriate joining depending on the shape of the joint part, and by using the metal powder as a mixed powder compact, the components can be freely changed depending on the mating material. Since it also has the advantage of being able to smoothly proceed with the liquid phase even when the liquid phase is increased, it will greatly contribute to the development of industry as a solution to the conventional problems.
Claims (1)
材料と金属材との間に、Ti,Cr,Zr,Mn,Mo,
Wのグループから選択された1種又は2種以上の
粉末3〜30%(重量%、以下同じ)と、Sn粉末
5〜20%と、残部を占めるCu粉末及び必要に応
じて添加される付加的な金属粉末とを圧粉成形し
てなる混合圧粉体を挟み、真空中で750℃以下の
温度で加熱して液相化させたのち加圧することを
特徴とする超硬質材料と金属材との接合方法。 2 付加的な金属粉末としてAg,Zn,V,Nb,
Ta,Bのうち1種又2種以上の粉末が添加され
る特許請求の範囲第1項記載の超硬質材料と金属
材との接合方法。[Claims] 1. Ti, Cr, Zr, Mn, Mo,
3 to 30% (by weight, same below) of one or more powders selected from the W group, 5 to 20% of Sn powder, Cu powder occupying the balance, and additions added as necessary. An ultra-hard material and a metal material, which are characterized by sandwiching a mixed compact formed by compacting metal powder and metal powder, heating it in a vacuum at a temperature of 750°C or less to make it into a liquid phase, and then pressurizing it. How to join with. 2 Additional metal powders such as Ag, Zn, V, Nb,
The method of joining an ultra-hard material and a metal material according to claim 1, wherein one or more powders of Ta and B are added.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25978484A JPS61136605A (en) | 1984-12-07 | 1984-12-07 | Joining method of sintered hard material and metallic material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25978484A JPS61136605A (en) | 1984-12-07 | 1984-12-07 | Joining method of sintered hard material and metallic material |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61136605A JPS61136605A (en) | 1986-06-24 |
JPH0317791B2 true JPH0317791B2 (en) | 1991-03-08 |
Family
ID=17338929
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25978484A Granted JPS61136605A (en) | 1984-12-07 | 1984-12-07 | Joining method of sintered hard material and metallic material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61136605A (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63103872A (en) * | 1986-10-17 | 1988-05-09 | 広島県 | Method of joining nitride base ceramics and metal member for joint |
JP2662692B2 (en) * | 1988-02-18 | 1997-10-15 | 住友電気工業株式会社 | Hard polycrystalline diamond tool |
FR2633854B1 (en) * | 1988-07-07 | 1991-10-31 | Combustible Nucleaire | COMPOSITE CUTTING ELEMENT CONTAINING CUBIC BORON NITRIDE AND METHOD FOR MANUFACTURING SUCH AN ELEMENT |
US6245443B1 (en) * | 1996-08-28 | 2001-06-12 | Norton Company | Removable bond for abrasive tool |
JP2001315060A (en) * | 2000-05-01 | 2001-11-13 | Goei Seisakusho:Kk | Dressing grinding wheel and its manufacturing method |
CN107414085B (en) * | 2017-07-07 | 2019-07-16 | 泉州众志金刚石工具有限公司 | A kind of diamond segment carcass material and fine-granularity diamond saw blade |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4219976A (en) * | 1978-08-01 | 1980-09-02 | Westinghouse Electric Corp. | Machine and method for decontaminating nuclear steam generator channel head |
JPS5844635A (en) * | 1981-09-09 | 1983-03-15 | 三菱電機株式会社 | Circuit breaker |
JPS59128279A (en) * | 1983-01-11 | 1984-07-24 | 岡本 郁男 | Soldering method |
-
1984
- 1984-12-07 JP JP25978484A patent/JPS61136605A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS61136605A (en) | 1986-06-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6113311Y2 (en) | ||
JP2000511867A (en) | Method for joining parts made of SiC-based material using thick joints by heat-resistant brazing, and heat-resistant thick joints obtained by the method | |
JPS582276A (en) | Metal-ceramics bonded body and its manufacturing method | |
EP0301492B1 (en) | Method for bonding cubic boron nitride sintered compact | |
JP2602984B2 (en) | Method for producing molded body for polishing and tool therefor | |
US4598025A (en) | Ductile composite interlayer for joining by brazing | |
US5102621A (en) | Ternary brazing alloy for carbon or graphite | |
JPS60177992A (en) | Method for joining porous member and its product | |
JPH0317791B2 (en) | ||
US4078713A (en) | Brazing sintered ferrous powder metal articles | |
JPS60200868A (en) | Method of bonding silicon carbide or silicon nitride sintered body | |
JPS6216896A (en) | Brazing filler metal for ceramics | |
JPS6182995A (en) | brazing material | |
JPS59141395A (en) | Brazing filler material | |
EP0299737B1 (en) | Tool component | |
JPS63169348A (en) | Amorphous alloy foil for jointing ceramics | |
JPS644840Y2 (en) | ||
JPH0243579B2 (en) | ||
RU2102207C1 (en) | Solder alloy for soldering polycrystals of superhard materials | |
JPS63191505A (en) | High hardness sintered tool | |
JP2557400B2 (en) | Bonding method for cubic boron nitride sintered body | |
JPS6351993B2 (en) | ||
JPS6065774A (en) | Ceramic-metal bonded body and manufacture | |
JPS641235B2 (en) | ||
JPH0380160A (en) | Thermal expansion reducing agent for active brazing filler metal |