[go: up one dir, main page]

JPH03177825A - Optical arithmetic unit - Google Patents

Optical arithmetic unit

Info

Publication number
JPH03177825A
JPH03177825A JP31799189A JP31799189A JPH03177825A JP H03177825 A JPH03177825 A JP H03177825A JP 31799189 A JP31799189 A JP 31799189A JP 31799189 A JP31799189 A JP 31799189A JP H03177825 A JPH03177825 A JP H03177825A
Authority
JP
Japan
Prior art keywords
light
optical
receiving element
light receiving
optical modulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31799189A
Other languages
Japanese (ja)
Inventor
Yutaka Yamanaka
豊 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP31799189A priority Critical patent/JPH03177825A/en
Publication of JPH03177825A publication Critical patent/JPH03177825A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable fast information processing by providing a slab-shaped waveguide structure wherein the projection light of a light emitting element is enlarged in only one direction and made incident on an optical modulator. CONSTITUTION:A light receiving element array 4 is formed by arranging one laterally long column of rectangular light receiving elements and one light receiving element photodetects light from one row of the optical modulator which has modulating elements arranged in matrix. Each light emitting element emits light according to an input vector signal and the projection light is enlarged in the column direction in a slab waveguide 2 and made incident on the optical modulator 3. At such a time, the light emitted by one light emitting element is made incident on all optical modulating elements in one column and the light modulated by the optical modulator is received all in the row direction by one rectangular light receiving element of the light receiving element array 4. Consequently, positioning is facilitated, the number of connections is easily increased, and the fast information processing becomes possible.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、光を用いて高速に演算を行う光演算装置に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an optical arithmetic device that performs arithmetic operations at high speed using light.

〔従来の技術〕[Conventional technology]

大規模な情報を処理するために、高速に演算を実行する
計算機の研究が進んでいるが、電気回路を用いた逐次処
理による方法では、既に性能限界に近づいている。そこ
で、スーパーコンピュータやアレイプロセッサなど、複
数の演算を同時に実行する並列処理のアーキテクチャな
どの研究が進んでいる。一方、光は、空間的な拡がりを
持ち、その物理的な性質は互いに干渉し合わないため、
光を用いた演算は並列性に優れている。光を変調する手
段として、振幅2位相9周波数、偏向などが考えられ、
空間的な光変調器の開発が行われている。
Research is progressing on computers that can perform calculations at high speed in order to process large-scale information, but methods that use sequential processing using electrical circuits are already approaching their performance limits. Therefore, research is progressing on parallel processing architectures such as supercomputers and array processors that execute multiple operations simultaneously. On the other hand, light has a spatial spread and its physical properties do not interfere with each other, so
Computations using light have excellent parallelism. Possible means for modulating light include amplitude, two phases, nine frequencies, and polarization.
Spatial light modulators are being developed.

ベクトルと行列の積を求める光演算装置として、これま
でに、1次元発光素子と一次元の受光素子をアナモルフ
ィックな光学系で接続した方法や、入力データを空間光
変調器で変調する方法が知られている。アナモルフィッ
クな光学系を用いる方法については、例えば雑誌オプテ
ィクスレターズ(optics 1etters)、2
巻、1978年、1〜3頁に記載された論文「離散フー
リエ変換を行うための並列、高速インコヒーレント光演
算法(Fully parallel  high 5
peed  1ncoherent opticalm
ethod  for  performing di
screte  Fourier  transfor
m) Jに詳しく述べられている。また、入力データを
空間光変調器で変調させる方法については、例えば雑誌
アプライドオプティックス(applied opti
cs)、26巻、1987年、5055〜5056頁に
記載された論文「光双方向連想メモリの設計とデバイス
(Designs and devices foro
ptical bidirectional asso
ciative menories)に、詳しく述べら
れている。しかし、アナモルフィックな光学系を用いる
方法は、各光学エレメントの位置決めが複雑で、大きな
データの処理には向いていない。
As an optical arithmetic device for calculating the product of a vector and a matrix, there have been methods in which a one-dimensional light-emitting element and a one-dimensional light-receiving element are connected using an anamorphic optical system, and a method in which input data is modulated with a spatial light modulator. It has been known. For information on how to use anamorphic optical systems, see, for example, the magazine Optics Letters, 2.
vol., 1978, pp. 1-3, ``Fully parallel high 5
peed 1ncoherent optical
method for performing di
Screte Fourier transform
m) are detailed in J. Further, regarding the method of modulating input data with a spatial light modulator, for example, the magazine Applied Optics (applied optics)
cs), Vol. 26, 1987, pp. 5055-5056.
ptical bidirectional asso
This is explained in detail in the following section. However, the method using an anamorphic optical system requires complicated positioning of each optical element, and is not suitable for processing large amounts of data.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

位置決めを容易にするために、第3図に示すような光フ
ァイバー31を用いて発光素子1と光変調器3の間をつ
なぐ方式も検討されている。しかし、このような方式で
は、接続数が増えるとファイバーの結線量が膨大になり
接続数が限られてしまう。
In order to facilitate positioning, a method of connecting the light emitting element 1 and the optical modulator 3 using an optical fiber 31 as shown in FIG. 3 is also being considered. However, in such a system, as the number of connections increases, the amount of fiber connections becomes enormous, and the number of connections is limited.

本発明の目的は、位置決めが容易で接続数を容易に増や
すことができる光演算装置を提供することにある。
An object of the present invention is to provide an optical arithmetic device that can be easily positioned and can easily increase the number of connections.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の光演算装置は、アレイ状の発光素子と、光の強
度を変調する変調素子をマトリックス状に配置した光変
調器と、前記変調された光を受光する受光素子アレイを
有する光演算装置において、前記発光素子の出射光を一
方向にのみ拡大して光変調器に入射するスラブ状の導波
構造を有することを特徴とする。
The optical processing device of the present invention includes an array of light emitting elements, a light modulator in which modulation elements for modulating the intensity of light are arranged in a matrix, and a light receiving element array for receiving the modulated light. The light emitting device is characterized by having a slab-like waveguide structure that magnifies the light emitted from the light emitting element in only one direction and inputs the light into the optical modulator.

〔作用〕[Effect]

本発明の作用を第1図を用いて説明する。行列とベクト
ルの積の演算においては、ベクトルの一つの要素を行列
の複数の要素と掛は合わせるとになる。光演算器におい
ては、1つの発光点からの出射光を複数の光変調素子に
入射する必要がある。このためには、細長い長方形の光
ビームを作ることが、最も実用的である。
The operation of the present invention will be explained using FIG. When multiplying a matrix and a vector, one element of the vector is multiplied by multiple elements of the matrix. In an optical calculator, it is necessary to input light emitted from one light emitting point to a plurality of light modulation elements. For this purpose, it is most practical to create an elongated rectangular light beam.

本発明では、光を透過する硝子やプラスチック等の材料
により、第1図に示すような台形のスラブ状の導波路を
形成する。導波路の側面では、大部分の光を反射するこ
とができるため、台形の一方の底面からの入射光をもう
一方の底面に導くことができる。従って、細長い長方形
の光ビームを容易に形成することができる。また逆に、
長方形のビームを■か所に集光することも可能である。
In the present invention, a trapezoidal slab-shaped waveguide as shown in FIG. 1 is formed from a material such as glass or plastic that transmits light. Since the side surfaces of the waveguide can reflect most of the light, the incident light from one bottom surface of the trapezoid can be guided to the other bottom surface. Therefore, an elongated rectangular light beam can be easily formed. And vice versa,
It is also possible to focus a rectangular beam at one location.

〔実施例〕〔Example〕

以下に、本発明の詳細な説明する。 The present invention will be explained in detail below.

第1図は、本発明の実施例の斜視図である。本fll!
戒では、発光素子を一次元状に配列した発光素子アレイ
1と、例えばSiの光検出器などを配置した受光素子ア
レイ4と、例えばTN液晶を電極が形成された透明基板
間に挟んで画素がストリクス状に配置された液晶セルか
ら構成されている空間光変調器3と、スラブ導波路2と
、発光素子のドライブ回路5と、光変調器のドライブ回
路6とを備えている。液晶セルは従来用いられている液
晶表示パネルと同じ構造で、各画素が光変調器を構成す
る光変調素子になっている。受光素子アレイは、長方形
の受光素子を横長にして縦に1列に並べて配置し、変調
素子をマトリクス状に配置した光変調器の1行分を1つ
の受光素子で受光する構成にした。なお、ドライブ回路
5,6は通常用いられているものを用いた。
FIG. 1 is a perspective view of an embodiment of the invention. Book full!
In KAI, a pixel is constructed by sandwiching a light emitting element array 1 in which light emitting elements are arranged in a one-dimensional manner, a light receiving element array 4 in which Si photodetectors, for example, are arranged, and a transparent substrate on which electrodes are formed, for example, a TN liquid crystal. The device includes a spatial light modulator 3 composed of liquid crystal cells arranged in a strix pattern, a slab waveguide 2, a light emitting element drive circuit 5, and an optical modulator drive circuit 6. The liquid crystal cell has the same structure as a conventionally used liquid crystal display panel, with each pixel serving as a light modulation element constituting a light modulator. The light-receiving element array has a configuration in which rectangular light-receiving elements are arranged horizontally in a single vertical row, and one light-receiving element receives light from one row of optical modulators in which modulation elements are arranged in a matrix. Note that the drive circuits 5 and 6 used are commonly used ones.

発光素子は、入力ベクトル信号にしたがって発光し、出
射光は、スラブ導波路2によって列方向に拡大されて、
光変調器3に入射する。このとき、1つの発光素子から
出た光は1列の光変調素子量てに入射する。光変調器で
変調された光は、受光素子アレイ4の1つの長方形の受
光素子で行方向をまとめて受光する。
The light emitting element emits light according to the input vector signal, and the emitted light is expanded in the column direction by the slab waveguide 2.
The light enters the optical modulator 3. At this time, light emitted from one light emitting element is incident on one row of light modulating elements. The light modulated by the optical modulator is collectively received in the row direction by one rectangular light receiving element of the light receiving element array 4.

本実施例では、長方形の受光素子を用いているが、光変
調器の出射側にもスラブ導波路を設置して変調された光
を一次元の受光素子アレイで受光することも可能である
Although rectangular light receiving elements are used in this embodiment, it is also possible to install a slab waveguide on the output side of the optical modulator and receive the modulated light with a one-dimensional light receiving element array.

さらに、第2図にしめすように、入射面21の入射光を
反射面23で反射させ、出射面22に導くようなスラブ
導波路2を用いいることもできる。
Furthermore, as shown in FIG. 2, it is also possible to use a slab waveguide 2 that reflects the incident light on the incident surface 21 on the reflective surface 23 and guides it to the output surface 22.

〔発明の効果〕〔Effect of the invention〕

本発明により、容易に光接続数を増した光演算装置を構
成することができ、高速の情報処理が可能となる。
According to the present invention, it is possible to easily configure an optical processing device with an increased number of optical connections, and high-speed information processing becomes possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は、本発明の実施例を示す図、第3図は
、従来技術を示す図である。 図中で、 1・・・発光素子アレイ、2・・・スラブ導波路、3・
・・光変調器、4・・・受光素子アレイ、5・・・発光
素子ドライブ回路、6・・・光変調器ドライブ回路、2
1・・・入射面、22・・・出射面、23・・・反射面
、31・・・光ファイバー である。
FIG. 1 and FIG. 2 are diagrams showing an embodiment of the present invention, and FIG. 3 is a diagram showing a conventional technique. In the figure, 1... light emitting element array, 2... slab waveguide, 3...
...Light modulator, 4... Light receiving element array, 5... Light emitting element drive circuit, 6... Light modulator drive circuit, 2
1... Incidence surface, 22... Output surface, 23... Reflection surface, 31... Optical fiber.

Claims (1)

【特許請求の範囲】[Claims] アレイ状の発光素子と、光の強度を変調する変調素子を
マトリックス状に配置した光変調器と、前記変調された
光を受光する受光素子アレイを有する光演算装置におい
て、前記発光素子の出射光を一方向にのみ拡大して光変
調器に入射するスラブ状の導波構造を有することを特徴
とする光演算装置。
In an optical operation device including an array of light emitting elements, a light modulator in which modulation elements for modulating the intensity of light are arranged in a matrix, and a light receiving element array for receiving the modulated light, the output light of the light emitting element is 1. An optical arithmetic device comprising a slab-shaped waveguide structure that expands only one direction of light to enter an optical modulator.
JP31799189A 1989-12-06 1989-12-06 Optical arithmetic unit Pending JPH03177825A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31799189A JPH03177825A (en) 1989-12-06 1989-12-06 Optical arithmetic unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31799189A JPH03177825A (en) 1989-12-06 1989-12-06 Optical arithmetic unit

Publications (1)

Publication Number Publication Date
JPH03177825A true JPH03177825A (en) 1991-08-01

Family

ID=18094268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31799189A Pending JPH03177825A (en) 1989-12-06 1989-12-06 Optical arithmetic unit

Country Status (1)

Country Link
JP (1) JPH03177825A (en)

Similar Documents

Publication Publication Date Title
US7057786B2 (en) Electro-optic array interface
WO2002048769A1 (en) Compact dynamic crossbar switch by means of planar optics
US10303039B2 (en) SAW optical modulators with sense transducers
US10416468B2 (en) Light field generator devices with series output couplers
CN103925523A (en) Backlight module and display device
US4595994A (en) Optical engagement array multiplication
JP7376503B2 (en) Display panel and display device
Arsenault et al. An introduction to optics in computers
US4544229A (en) Apparatus for evaluating a polynomial function using an array of optical modules
Cathey et al. Digital computing with optics
JPH03177825A (en) Optical arithmetic unit
JPS59168414A (en) Reflection type multichannel optical switch
Guilfoyle Digital optical computer II
JPH03259127A (en) Optical arithmetic unit
JPH0259915A (en) Optical computing method
JPH04213716A (en) Optical connecting device
JPH03214127A (en) Optical arithmetic unit
SU1005174A1 (en) Matrix indicator
JPH04134415A (en) Light connection device
McArdle et al. A smart-pixel parallel optoelectronic computing system with free-space dynamic interconnections
Kar‐Roy et al. New integrated acousto‐optic matrix algebra processor architecture
JP2570896B2 (en) Optical connection device
JP2834844B2 (en) Optical switch array
WO1986005607A1 (en) Programmable multistage lensless optical data processing system
JPS63502533A (en) Voltage tunable optical beam switching device