[go: up one dir, main page]

JPH03172587A - Compressor equipment with wide capacity control range and air conditioning system using it - Google Patents

Compressor equipment with wide capacity control range and air conditioning system using it

Info

Publication number
JPH03172587A
JPH03172587A JP1312055A JP31205589A JPH03172587A JP H03172587 A JPH03172587 A JP H03172587A JP 1312055 A JP1312055 A JP 1312055A JP 31205589 A JP31205589 A JP 31205589A JP H03172587 A JPH03172587 A JP H03172587A
Authority
JP
Japan
Prior art keywords
capacity
compressor
capacity control
compressor device
wide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1312055A
Other languages
Japanese (ja)
Inventor
Masao Shiibayashi
正夫 椎林
Yoshiaki Ibaraki
茨木 善朗
Kazutaka Suefuji
和孝 末藤
Yoshikatsu Tomita
好勝 富田
Kensaku Kokuni
研作 小国
Masayuki Urashin
昌幸 浦新
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1312055A priority Critical patent/JPH03172587A/en
Publication of JPH03172587A publication Critical patent/JPH03172587A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors
    • F25B2400/0751Details of compressors or related parts with parallel compressors the compressors having different capacities
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/021Inverters therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、広い容量制御幅を持つ圧縮機装置、および、
それを用いた冷凍・空調装置の冷凍能力の容量制御に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention provides a compressor device having a wide capacity control range, and
The present invention relates to capacity control of the refrigeration capacity of a refrigeration/air conditioning system using the same.

[従来の技術] 空調装置における圧縮機の容量制御法としては、特開昭
62−/18979号公報記載のように、圧縮途中の冷
媒ガスを吸入圧力側にバイパス通路を介して戻す方法が
ある。また、近年、圧縮機の回転数を周波数可変インバ
ータにて変化させ、圧縮機の吐出ガス流量を可変にする
方法が使われるようになっている。
[Prior Art] As a method for controlling the capacity of a compressor in an air conditioner, there is a method of returning refrigerant gas in the middle of compression to the suction pressure side via a bypass passage, as described in JP-A-62-18979. . Furthermore, in recent years, a method has been used in which the rotational speed of the compressor is varied using a variable frequency inverter to vary the flow rate of gas discharged from the compressor.

[発明が解決しようとする課題] 上記従来技術では、圧縮機容量制御幅は1対3、あるい
は1対6前後であり、比較的、容量制御幅が小さい。し
かしながら1台の室外機に複数台の室内機が接続され、
室内機ごとに独自の運転をするマルチ空調機の場合には
、上記した容量制御幅よりも広い容量制御1mを持つ圧
縮機が要求されて一 いる。またインバータを用いた回転数制御による容量制
御法の場合、最高回転数(駆動周波数の最大値での圧縮
機の回転数)をより高く設定しようとすると、駆動用イ
ンバータの容量(単位rkVA」)が大きくなり、一般
ビル用に空調機を設置したい場合には電源容量の制約(
契約電力等の制約)を受は易くなる弊害がある。
[Problems to be Solved by the Invention] In the conventional technology described above, the compressor capacity control width is approximately 1:3 or 1:6, which is relatively small. However, when multiple indoor units are connected to one outdoor unit,
In the case of a multi-air conditioner in which each indoor unit operates independently, a compressor with a capacity control width of 1 m, which is wider than the capacity control width described above, is required. In addition, in the case of the capacity control method by controlling the rotation speed using an inverter, if you try to set the maximum rotation speed (the rotation speed of the compressor at the maximum value of the drive frequency) higher, the capacity of the drive inverter (unit: rkVA) becomes large, and if you want to install an air conditioner for a general building, there are constraints on power supply capacity (
This has the disadvantage of making it easier to be subject to restrictions such as contract power restrictions.

本発明では上記問題点を解決すべく容量制御幅の拡大及
びインバータ容量の低減化を図った圧縮機の容量制御及
び空調システムとして高効率化を実現できる制御を可能
にすることを目的としている。
In order to solve the above-mentioned problems, it is an object of the present invention to provide a compressor capacity control and air conditioning system that expands the capacity control width and reduces the inverter capacity, and enables control that can realize high efficiency as an air conditioning system.

[課題を解決するための手段] 本発明によれば、特許請求の範囲の請求項1ないし8の
夫々に記載の広い容量制御幅を持つ圧縮機装置、および
、それを用いた請求項9又はl。
[Means for Solving the Problems] According to the present invention, there is provided a compressor device having a wide capacity control width according to each of claims 1 to 8, and claim 9 or claim 9 using the same. l.

記載のマルチ空調システムが提供される。A multi-air conditioning system as described is provided.

[作   用] 請求項1ないし6の夫々に記載の圧縮機装置においては
、低容量圧縮機のインバータ駆動による回転速度制御で
低容量域における容量制御がなされ、また、高容量圧縮
機の機械的容量制御機構の動作で高容量域における容量
制御がなされる。この高容量圧縮機の定格容量が本圧縮
機装置の最高容量となる。他方、請求項7又は8記載の
圧縮機装置では、1台の圧縮機が、低容量域ではインバ
ータ駆動による回転速度制御で、また高容量域では機械
的容量制御機構の働きによって容量制御がなされる。
[Function] In the compressor device according to each of claims 1 to 6, capacity control in a low capacity range is performed by rotational speed control by inverter drive of the low capacity compressor, and mechanical control of the high capacity compressor is performed. Capacity control in a high capacity range is performed by the operation of the capacity control mechanism. The rated capacity of this high capacity compressor becomes the maximum capacity of this compressor device. On the other hand, in the compressor device according to claim 7 or 8, the capacity of one compressor is controlled by rotation speed control by an inverter drive in a low capacity range, and by the function of a mechanical capacity control mechanism in a high capacity range. Ru.

いずれにおいても、インバータによる駆動は低容量域を
受は持つので、インバータの容量は小さくて済む。
In either case, since driving by an inverter has a low capacity range, the capacity of the inverter can be small.

請求項9記載のマルチ空調システムは、上記の圧縮機装
置を用いて、広い範囲に亘って冷凍サイクル要求能力に
対応できる。特に請求項10記載のシステムにおいては
除霜時間を大幅に短縮できると共に同時暖房運転が可能
となる。
A multi-air conditioning system according to a ninth aspect of the present invention uses the above-mentioned compressor device and can meet the required capacity of the refrigeration cycle over a wide range. In particular, in the system according to claim 10, the defrosting time can be significantly shortened and simultaneous heating operation can be performed.

[実 施 例] 本発明の1実施例を第1図〜第3図により説明する。[Example] One embodiment of the present invention will be described with reference to FIGS. 1 to 3.

第1図はビル用空調システムとして1台の室外機8に複
数台の室内機(例えば室内機10,11゜12)を置い
たマルチ空調機の概要を示す61と7は商用電源(例え
ば3相200vの501h又は60七周波数の電源)で
ある。圧縮機3は高容量圧縮機である。圧縮機3の電動
機部は電源1と電気的に接続しており、該圧縮機3は商
用電源1によって駆動(直入れ起動等)され、圧縮機3
の回転数は一定な回転数となる。圧縮機3の容量は例え
ば201(’程度のもので、バイパスアンロード機能付
圧縮機構造を備えており、スクリュー式圧縮機が適当で
ある。一方、圧縮機4は、商用電源7に周波数可変のイ
ンバータ6を介して電気的に接続されている。2,5は
電源用ケーブルを示す。
Figure 1 shows an overview of a multi-air conditioner as an air conditioning system for buildings, in which one outdoor unit 8 and multiple indoor units (for example, indoor units 10, 11, 12) are installed. 61 and 7 are connected to commercial power sources (for example, 3 It is a 501h or 607 frequency power supply with a phase of 200V. Compressor 3 is a high capacity compressor. The electric motor section of the compressor 3 is electrically connected to the power supply 1, and the compressor 3 is driven by the commercial power supply 1 (direct start-up, etc.), and the compressor 3
The number of revolutions is a constant number of revolutions. The capacity of the compressor 3 is, for example, about 201 cm, and it is equipped with a compressor structure with a bypass unloading function, and a screw type compressor is suitable. They are electrically connected via an inverter 6. Reference numerals 2 and 5 indicate power cables.

従って、インバータ6の制御により駆動用周波数(IL
d)を制御することによって、圧縮機4の回転数は変化
させることができる。9は膨張弁である。
Therefore, by controlling the inverter 6, the drive frequency (IL
By controlling d), the rotation speed of the compressor 4 can be changed. 9 is an expansion valve.

AからMまでの英記号は、冷凍サイクルの各機器を接続
している冷媒配管を示す。
Alphabetical symbols from A to M indicate refrigerant piping connecting each device of the refrigeration cycle.

圧縮機4は、インバータ6にて駆動される小容量タイプ
の可変速圧縮機であり、例えば最高周波数で51−P容
量のスクロール式圧縮機が適当である。
The compressor 4 is a small capacity type variable speed compressor driven by an inverter 6, and for example, a scroll compressor with a maximum frequency of 51-P capacity is suitable.

なお第1図では、冷房運転時の配管系統を示しており、
ビー1−ポンプ装置に見られるような四方弁機端の図示
は省略している。
In addition, Figure 1 shows the piping system during cooling operation.
The illustration of the four-way valve machine end as seen in the Bee 1 pump device is omitted.

このような冷凍サイクルを構成した場合の上記二つの圧
縮機3,4の容量制御の動作例を第2図及び第3図に基
づいて説明する。両図とも横軸に駆動周波数(Hd)を
、縦軸に冷凍容量(図では最小能力を基にした比率で表
示している。)を表わしている。
An example of the operation of capacity control of the two compressors 3 and 4 when such a refrigeration cycle is configured will be explained based on FIGS. 2 and 3. In both figures, the horizontal axis represents the drive frequency (Hd), and the vertical axis represents the refrigerating capacity (in the figures, the ratio is expressed based on the minimum capacity).

先ず、第2図に示す例について以下に説明する。First, the example shown in FIG. 2 will be explained below.

小容量圧縮機4は駆動周波数Hdが10七から1501
1zまで可変にできるインバータ駆動式の圧縮機である
。この場合、概ね回転数変化に応じて冷凍容量が変化で
き、容量制御幅としては1対10の能力比となる。この
場合圧縮機4の動作は。
The drive frequency Hd of the small capacity compressor 4 is from 107 to 1501.
This is an inverter-driven compressor that can be varied up to 1z. In this case, the refrigerating capacity can be changed approximately according to the change in rotational speed, and the capacity control width is a capacity ratio of 1:10. In this case, the operation of the compressor 4 is as follows.

図中のA点からB点の範囲で変化する。It changes in the range from point A to point B in the figure.

一方、高容量圧縮機3は、一定速圧縮機であり、吸入バ
イパス制御による容量制御機構(第5図に− 示すスクリュー式圧縮機のバイパスアンローダ機機構7
9と同様な機構。なお本圧縮機3がスクロール式圧縮機
の場合には、第4図に示す圧縮機3の吸入ガスバイパス
機構47と同様な機構)を備えている。例えば圧縮機3
を定格能力20 fPの圧縮機(空調機の場合、1[P
当たり約3 、000kca l /hrの冷凍能力を
有する。)とした場合、25%アンロード(部分負荷)
が可能であるとすると、第2図に示すように、圧縮機3
は51−Pクラスから201Pクラスの範囲まで容量制
御できることになる。すなわち、圧縮機3は1対4の容
量制御幅を備えた可変容量圧縮機となり、図中C点から
D点までが容量制御した場合の動作点の範囲となる。
On the other hand, the high capacity compressor 3 is a constant speed compressor, and has a capacity control mechanism based on suction bypass control (bypass unloader mechanism 7 of a screw compressor shown in FIG. 5).
Mechanism similar to 9. If the compressor 3 is a scroll compressor, it is provided with a mechanism similar to the suction gas bypass mechanism 47 of the compressor 3 shown in FIG. For example, compressor 3
A compressor with a rated capacity of 20 fP (in the case of an air conditioner, 1 [P
It has a refrigeration capacity of about 3,000 kcal/hr. ), 25% unload (partial load)
If this is possible, as shown in Fig. 2, the compressor 3
This means that the capacity can be controlled from the 51-P class to the 201P class. That is, the compressor 3 becomes a variable capacity compressor with a capacity control width of 1:4, and the range of operating points when capacity is controlled is from point C to point D in the figure.

上記圧縮機3と4を組み合わせ用いたマルチ空調機シス
テムとすることにより、容量制御幅として1対40とい
うeJ御幅の広くとれる容量制御が可能となる。
By creating a multi-air conditioner system using the compressors 3 and 4 in combination, it becomes possible to perform capacity control with a wide eJ control width of 1:40.

上記のように、インバータによる駆動を小容量側の圧縮
機4に適用することにより、インバータ容量(圧縮機4
の電動機の容量が51Pの場合、約6 kVA前後のイ
ンバータ容量)が従来構成に比べて小さくなし得る。も
し、高容量側圧縮機をインバータ駆動しようとすると、
電動機の定格出力が20 IFであるため、インバータ
容量は約22kVAの容量となる。したがって、同じ1
対40の容量制御幅を得ようとする場合、インバータを
小容量化することのできる本発明の方が経済的で有効な
ものとなる。
As described above, by applying drive by the inverter to the compressor 4 on the small capacity side, the inverter capacity (compressor 4
When the capacity of the electric motor is 51P, the inverter capacity (approximately 6 kVA) can be made smaller than that of the conventional configuration. If you try to drive the high capacity compressor with an inverter,
Since the rated output of the motor is 20 IF, the inverter capacity is approximately 22 kVA. Therefore, the same 1
When trying to obtain a capacity control width of 40, the present invention, which allows the capacity of the inverter to be reduced, is more economical and effective.

なお、以上説明した第2図図示の例は、小容量圧縮機4
のインバータ最高周波数の時の能力と、高容量圧縮機の
最低位の能力(この例の場合25%アンロード運転時の
能力を示す。)とを一致させて、全体のマルチ空調シス
テムとして1対40の連続的な容量制御ができるよう図
った動作例を示している。
The example illustrated in FIG. 2 described above is based on the small capacity compressor 4.
Match the inverter's maximum frequency capacity with the high-capacity compressor's lowest capacity (in this example, the capacity at 25% unload operation), and make one pair for the entire multi-air conditioning system. An example of operation is shown in which 40 continuous capacity controls are possible.

第3図は、圧縮機4の最高駆動周波数lid(max)
を一定速圧縮機3の商用電源周波数60Hzに設定した
場合の能力制御の動作例を示す。すなわち、B点で51
(′8承となり、A点(駆動周波数11d:10)1z
)では0.8:HP容量となる動作例を開示している。
FIG. 3 shows the maximum driving frequency lid (max) of the compressor 4.
An example of capacity control operation when the commercial power frequency of the constant speed compressor 3 is set to 60 Hz is shown. That is, 51 at point B
('8 is accepted, point A (drive frequency 11d: 10) 1z
) discloses an operation example in which the capacity is 0.8:HP.

この場合、圧縮4a4は1対Gの容量側#幅となる。し
たがって、第3図に示した圧縮機の容量制御法では1対
24の容量制御幅を備えた空調システムとなる。
In this case, the compression 4a4 becomes # width on the capacity side of 1 to G. Therefore, the compressor capacity control method shown in FIG. 3 results in an air conditioning system having a capacity control width of 1:24.

表1は、高容量側圧縮機3と小容量側圧縮機4に適用で
きる圧縮機の形式の組合せの例を示す。
Table 1 shows examples of combinations of compressor types that can be applied to the high capacity compressor 3 and the small capacity compressor 4.

前記の第1図で説明した、高容量側圧縮機3にスクリュ
ー式一定速圧縮機を、小容量側圧縮機4にインバータ開
動可変速スクロール圧縮機を適用した実施例は、表1中
の第1番目の組合せ例に相当する。
The example explained in FIG. This corresponds to the first combination example.

表   1 次に、表1中の第3番目の組合せ例に相当する実施例を
第4図で説明する。本実施例では、高容量側圧縮機3は
商用周波数で駆動される−・定速のスクロール圧縮機と
し、小容量側圧縮機4はインバータを介して可変周波数
で駆動される可変速のスクロール圧縮機としている。第
4図において、第1図中の各部と同じ又は対応する部分
は同じ記号で示す。
Table 1 Next, an example corresponding to the third combination example in Table 1 will be described with reference to FIG. In this embodiment, the high capacity side compressor 3 is a constant speed scroll compressor driven at a commercial frequency, and the small capacity side compressor 4 is a variable speed scroll compressor driven at a variable frequency via an inverter. I am taking this as an opportunity. In FIG. 4, the same or corresponding parts as those in FIG. 1 are indicated by the same symbols.

第4図に示すように、再圧縮機3,4は、夫々、圧縮要
素部をなすスクロール部(旋回スクロール71と固定ス
クロール70から成る)を容器内の上部に、電動機部3
6を容器内の下部に配した縦形の密閉形スクロール圧縮
機である。この容器内は高温・高圧の雰囲気にある高圧
チャンバ構造をなしている。この圧縮機の基本的構造は
公知であるから詳述は要しないであろう。圧縮機3には
機械的容量制御手段47(この場合、吸入ガスバイパス
機構)を備えている。該手段は、圧縮室37内の圧縮途
中の冷媒ガスをバイパス配管38及び流量制御03 g
を介して吸入配管り側へ戻すガス流路を形成することに
より構成されており、吸入バイパス量を調節することに
より、圧縮機3から1 吐出されるガス蛋を調節するものである。第1図〜第3
図の実施例で説明したのと同様に、低容量域での容量制
御運転は圧縮機4が担当し、高容量域での容量制御運転
は圧縮機3が担当するという具合に、要求容量に応じて
いずれか1台の圧縮機が運転される。
As shown in FIG. 4, the recompressors 3 and 4 each have a scroll part (consisting of an orbiting scroll 71 and a fixed scroll 70) forming a compression element part in the upper part of the container, and an electric motor part 3.
This is a vertical hermetic scroll compressor with 6 placed at the bottom of the container. The inside of this container has a high-pressure chamber structure in a high-temperature, high-pressure atmosphere. The basic structure of this compressor is well known and does not require detailed explanation. The compressor 3 is equipped with a mechanical capacity control means 47 (in this case, an intake gas bypass mechanism). This means connects the refrigerant gas in the middle of compression in the compression chamber 37 to the bypass pipe 38 and the flow rate control 03g.
It is configured by forming a gas flow path that returns the gas to the suction piping side through the compressor 3, and by adjusting the amount of suction bypass, the amount of gas discharged from the compressor 3 can be adjusted. Figures 1 to 3
As explained in the example shown in the figure, the compressor 4 is in charge of capacity control operation in the low capacity range, and the compressor 3 is in charge of capacity control operation in the high capacity range. Accordingly, one of the compressors is operated.

このシステムにおいては、基本的には圧縮機3゜4は同
時に運転することがなく、常時、いずれか一方が運転さ
れることになる。このため、高圧側圧力(吐出圧力)と
低圧側圧力(吸入圧力)とのシール性を確保するため、
配管M、L、A、A’には電磁開閉弁50,51,52
.53を備えている。また再圧縮機のチャンバ内油32
,712の量を適正に保つため、均油管61と均圧管6
0を面圧縮機間に接続しである。
In this system, the compressors 3 and 4 are basically not operated at the same time, but one of them is always operated. Therefore, in order to ensure sealing between the high pressure side pressure (discharge pressure) and the low pressure side pressure (suction pressure),
Solenoid on/off valves 50, 51, 52 for piping M, L, A, A'
.. It is equipped with 53. In addition, the oil 32 in the chamber of the recompressor
, 712, the oil equalizing pipe 61 and the pressure equalizing pipe 6
0 is connected between the surface compressors.

以上は2台の圧縮機を用いる容量制御の実施例について
説明したが、次に、1台の圧縮機を用いた容量制御に関
する実施例を第5図〜第7図により説明する。ここでは
110000rp前後の高速回転に好適なスクリュー式
圧縮機85を例にとる。第52 図は該スクリュー式圧縮機とその電気系統の概略図であ
り、第6図と第7図はその容量制御の説明図である。ギ
ヤ増速機部75はギヤ切換動作でギヤ増速比が変えられ
るようになっている。第6、第7図に示すように、低い
冷凍容量域での容量制御は、駆動周波数Hdが最低1〇
七から最高では商用電源周波数60Hzになるようなイ
ンバータ6で電動機70を駆動することによる回転数制
御法を用いる。この場合、電動機の定格出力が6 IF
容量となるインバータ容量で済む。能力が6)P相当以
上の高容量域での容量制御は、電動機70を商用周波数
601(zで駆動し、第5図に示すようにギヤ増速機部
75によりロータ部の回転数を、例えば商用電源周波数
60玉のときの350Orpmから3倍速の11050
Orp前後まで増速させると同時に、バイパスアンロー
ダ手段79により能力制御を行なうのである。これによ
り高容量域では、たとえば6■Ps量から24 )P容
量まで変化させることができる。なお、第5図に示すよ
うに、電動機部70への商用電源とインバータ電源Gと
の切換えは、ス+4 インチ切換部71にてなされる。当然のことながら、こ
のスイッチ切換え動作ひいてはギア増速機部75のギア
切換(詳細図示せず)動作は、空調負荷に応じて連動し
て行なわれる。このようにして、スクリュー圧縮機85
を1台を用いて、インバータ制御とギア増速によるスク
リューロータの高速化及びバイパスアンローダ手段とい
う機械式容量制御機構とを組合せることにより、本例に
あるような容量制御幅1対24の広い容量制御が可能と
なる。また1台の圧縮機で空調を行なうので、装置全体
(システム全体)の簡略化、小形化が図られるという効
果がある。
The embodiment of capacity control using two compressors has been described above, but next, an embodiment of capacity control using one compressor will be explained with reference to FIGS. 5 to 7. Here, a screw compressor 85 suitable for high-speed rotation of around 110,000 rpm is taken as an example. FIG. 52 is a schematic diagram of the screw compressor and its electrical system, and FIGS. 6 and 7 are explanatory diagrams of its capacity control. The gear speed increasing unit 75 is configured such that the gear speed increasing ratio can be changed by a gear switching operation. As shown in Figs. 6 and 7, capacity control in the low refrigeration capacity range is achieved by driving the electric motor 70 with the inverter 6 such that the drive frequency Hd ranges from a minimum of 107 to a maximum of 60 Hz of the commercial power supply frequency. Use the rotation speed control method. In this case, the rated output of the motor is 6 IF
The inverter capacity is sufficient. Capacity control in a high capacity range where the capacity is equivalent to 6) P or more is to drive the electric motor 70 at a commercial frequency 601 (z), and as shown in FIG. For example, from 350 Orpm when the commercial power frequency is 60, to 11050 which is 3 times faster.
At the same time, the bypass unloader means 79 performs capacity control while increasing the speed to around Orp. As a result, in the high capacity range, the capacity can be varied from, for example, 6 µPs to 24) Ps. As shown in FIG. 5, switching between the commercial power source and the inverter power source G to the electric motor section 70 is performed by a +4 inch switching section 71. As a matter of course, this switch changeover operation and the gear changeover operation (details not shown) of the gear speed increaser section 75 are performed in conjunction with the air conditioning load. In this way, the screw compressor 85
By using a single unit and combining inverter control, gear speed increase to speed up the screw rotor, and mechanical capacity control mechanism called bypass unloader means, a wide capacity control width of 1 to 24 as in this example can be achieved. Capacity control becomes possible. Furthermore, since air conditioning is performed with one compressor, the entire device (the entire system) can be simplified and miniaturized.

第8図はビル空調用システムの例として、マルチ空調シ
ステムに本発明を用いた一実施例を示す冷凍サイクル図
である。前述した実施例中の部分と同じ又は対応する部
分は同じ符号で示す。前述と同様、商用電源で駆動され
る機械的容量制御機構付き高容星圧縮機3と、商用電源
からインバータ6を介して駆動される可変速低容量圧縮
機4は、通常u、■は、nd述と同様に、いずれか一方
のみが運転される。201は四方弁であり、暖房運転時
と冷房運転時での冷媒流れの切換え用電動弁である。
FIG. 8 is a refrigeration cycle diagram showing an embodiment in which the present invention is applied to a multi-air conditioning system as an example of a building air conditioning system. Parts that are the same as or correspond to those in the previously described embodiments are designated by the same reference numerals. As described above, the high-capacity compressor 3 with a mechanical capacity control mechanism driven by a commercial power source and the variable speed low-capacity compressor 4 driven by a commercial power source via an inverter 6 are usually u, Similarly, only one of them is operated. 201 is a four-way valve, which is an electrically operated valve for switching the refrigerant flow during heating operation and cooling operation.

第8図では暖房運転に切換えである状態が示されている
。空調制御部205は、各室内機の温度センサ209か
らの室温情報や他の圧力情報その他所要の情報を取り込
み、空調機を制御する役目を持ち、具体的にはA/D変
換器等のインタフェースとマイコン部とから成る。第8
図中、破線226.227は電気信号ラインを示す。さ
て本実施例においては、暖房運転中、室外機8の除霜が
必要となった時には、空調制御部205の指令を受けて
、図示の如く電源切換部20Gは商用電源1をそれぞれ
圧縮機3とインバータ電源6に同時に接続し、面圧縮機
3,4を同時に運転させる。
FIG. 8 shows a state in which the heating operation is being switched. The air conditioning control unit 205 takes in room temperature information, other pressure information, and other necessary information from the temperature sensor 209 of each indoor unit, and has the role of controlling the air conditioner. and a microcomputer section. 8th
In the figure, broken lines 226 and 227 indicate electrical signal lines. In this embodiment, when it becomes necessary to defrost the outdoor unit 8 during heating operation, upon receiving a command from the air conditioning control section 205, the power supply switching section 20G switches the commercial power supply 1 to the compressor 3, respectively, as shown in the figure. and the inverter power supply 6 at the same time, and the surface compressors 3 and 4 are operated at the same time.

同時に、圧縮機の吐出配管Aと管:I!FCとの間に接
続されているバイパス管路Yの電磁弁230が開にされ
、該バイパス管路Yを通じて面圧縮機からホラ1−ガス
冷媒を矢印の方向に送る。このように、除霜運転時だけ
2台の圧縮機3,4を同時運転し、ホン1−カスの流量
を増加ざヒー室外機へ・部バイバ5 スさせて除霜運転時間を大幅に短縮させ、且つ除霜運転
と同時に暖房運転も行う。これにより、空調の快適性を
向上し得る。
At the same time, compressor discharge pipe A and pipe: I! The solenoid valve 230 of the bypass pipe Y connected between the FC and the bypass pipe Y is opened, and the hollow gas refrigerant is sent from the surface compressor in the direction of the arrow through the bypass pipe Y. In this way, the two compressors 3 and 4 are operated at the same time only during defrosting operation, increasing the flow rate of the main stream and bypassing the air to the outdoor unit, thereby significantly shortening the defrosting operation time. At the same time, heating operation is also performed at the same time as defrosting operation. This can improve the comfort of air conditioning.

除霜運転時には吐出圧力が比較的低い状態となるため、
圧縮機を2台同時運転しても運転電流が通常運転時(暖
房運転時及び冷房運転時を意味する。)の電流値を上回
るようなことがないので、上記した同時2台並列運転が
可能である。
During defrosting operation, the discharge pressure is relatively low, so
Even if two compressors are operated simultaneously, the operating current will not exceed the current value during normal operation (meaning during heating operation and cooling operation), so it is possible to operate the two compressors simultaneously in parallel as described above. It is.

第9図は、第8図で述べた実施例において、空調制御部
205の指令に基づいて、夫々、伝送ライン226及び
228を介して電源切換部71及び206を操作するよ
うにした電源切換え回路の概要を示す説明図である。空
調制御部205の指令により、通常運転時には、室内機
10〜12の冷凍能力(負荷8旦)に応じて圧縮機3又
は4のいずれか一方を運転するように切換部71で電源
を切換え、また除霜運転時のみ、2台の圧縮機3および
4を同時運転できるように電源切換部206を働かせる
のである。
FIG. 9 shows a power switching circuit in the embodiment described in FIG. 8, which operates the power switching units 71 and 206 via transmission lines 226 and 228, respectively, based on commands from the air conditioning control unit 205. FIG. According to a command from the air conditioning control section 205, during normal operation, the switching section 71 switches the power supply to operate either the compressor 3 or 4 according to the refrigerating capacity (load 8 degrees) of the indoor units 10 to 12. Further, only during the defrosting operation, the power supply switching section 206 is operated so that the two compressors 3 and 4 can be operated simultaneously.

・I[i [発明の効果コ 本発明によれば欣のような効果がある。・I[i [Effects of invention According to the present invention, there is an effect similar to that of a sun.

(1)冷凍能力などに応じ圧縮機容態制御幅が1対20
から40と従来システl\に比べて大きく設定できる。
(1) Compressor condition control width is 1:20 depending on refrigeration capacity etc.
to 40, which can be set larger than the conventional system.

これにより、きめの細かい空調が可能となり快適性が大
きく改善される。
This enables fine-tuned air conditioning and greatly improves comfort.

(2)インバータ容量の小容旦化が可能となるので、経
費節減(原価低減)ひいては空調システムとしての簡易
化、小形化が図られ、また契約電力の節減も可能となる
(2) Since it is possible to reduce the inverter capacity, it is possible to save costs (reduce costs), simplify and downsize the air conditioning system, and also reduce contract power.

(3)1台の圧縮機を用いた構成の場合でも広い範囲の
容量制御が可能となり、装置全体(システム)の簡略化
、小形化が図られる。
(3) Even in the case of a configuration using one compressor, capacity control over a wide range is possible, and the entire device (system) can be simplified and downsized.

【図面の簡単な説明】[Brief explanation of the drawing]

図面はいずれも本発明の実施例を示し、第1図は2台の
圧縮機を備えた冷凍サイクルの構成図、第2図と第3図
は同上における容量制御の動作例を示す説明図、第4図
は2台のスクロール式圧縮機を適用した場合の実施例を
面圧縮機の縦断面図と共に示した図、第5図は1台のス
クリュー式圧縮機で広い容量制御幅の得られる実施例を
示した図、第6図と第7図は該実施例の容量制御法を説
明するための説明図、第8図は室外機の除霜時に2台の
圧縮機を同時運転する様にしたマルチ空調システムの冷
凍サイクルを示す図、第9図は同上に用いる電源切換回
路の概要図である。 3・・・高容量圧縮機   4・・・低容量圧縮機6・
・・インバータ    8・・・室外機10.11,1
2・・・室内機 47・・・機械式容量制御手段 (他1名) 史艷仲蒙ポ 史鷺伸刺旧 お ■ 史鷺仲刺ボ
The drawings all show embodiments of the present invention, with Fig. 1 being a configuration diagram of a refrigeration cycle equipped with two compressors, Figs. Figure 4 shows an example in which two scroll compressors are used together with a vertical cross-sectional view of a surface compressor, and Figure 5 shows a wide capacity control range with one screw compressor. Figures 6 and 7 are explanatory diagrams for explaining the capacity control method of the embodiment, and Figure 8 shows how two compressors are operated simultaneously during defrosting of the outdoor unit. FIG. 9 is a schematic diagram of a power supply switching circuit used in the above system. 3... High capacity compressor 4... Low capacity compressor 6.
...Inverter 8...Outdoor unit 10.11,1
2...Indoor unit 47...Mechanical capacity control means (1 other person)

Claims (1)

【特許請求の範囲】 1 可変周波数インバータにより駆動される可変回転速
度の低容量圧縮機と、機械式容量制御機構を有する一定
回転速度の高容量圧縮機とを並列に組合せ、低容量域で
の容量制御運転は前記低容量圧縮機により行い、高容量
域での容量制御運転は前記高容量圧縮機により行う様に
したことを特徴とする、広い容量制御幅を持つ圧縮機装
置。 2 前記高容量圧縮機がスクリュー式圧縮機であり、前
記低容量圧縮機がスクロール式圧縮機である請求項1記
載の、広い容量制御幅を持つ圧縮機装置。 3 前記高容量圧縮機および前記低容量圧縮機がいずれ
もスクロール式圧縮機である請求項1記載の、広い容量
制御幅を持つ圧縮機装置。 4 前記低容量圧縮機のインバータ最高周波数での容量
と前記高容量圧縮機の最低位の容量とが一致している請
求項1、2又は3記載の、広い容量制御幅を持つ圧縮機
装置。 5 前記高容量圧縮機は一定周波数電源にて駆動され、
前記低容量圧縮機を駆動する可変周波数インバータの最
高周波数が上記一定周波数と一致している請求項1、2
、3又は4記載の、広い容量制御幅を持つ圧縮機装置。 6 前記の一定周波数は商用周波数である請求項5記載
の、広い容量制御幅を持つ圧縮機装置。 7 低容量域では可変周波数インバータ駆動による回転
速度制御によって容量制御を行い、高容量域では商用周
波数電源によって駆動されると共に機械的容量制御機構
による容量制御を行なう様にした1台の圧縮機よりなる
ことを特徴とする、広い容量制御幅を持つ圧縮機装置。 8 前記機械的容量制御機構は、電動機部と圧縮機部と
の間に設けられた増速ギヤ比可変の増速ギヤ機構及び/
又は圧縮機部に対して設けられた吸入ガスバイパスアン
ロード機構である請求項7記載の、広い容量制御幅を持
つ圧縮機装置。 9 冷媒圧縮機装置を具備した1台の室外機と複数台の
室内機とで冷凍サイクルを構成しているマルチ空調シス
テムにおいて、該冷媒圧縮機装置が請求項1ないし8の
いずれかに記載の広い容量制御幅を持つ圧縮機装置であ
り、冷凍サイクルの要求能力に応じて該圧縮機装置の容
量制御を行うことを特徴とするマルチ空調システム。 10 前記圧縮機装置として請求項1ないし6記載の圧
縮機装置を備えると共に、該圧縮機装置の吐出冷媒ガス
を室外機−室内機間の冷媒流路にバイパスさせるバイパ
ス流路および通常運転中は該バイパス流路を閉じる弁を
設け、室外機除霜時には該弁を開くと共に高容量および
低容量両圧縮機を同時運転する様にした請求項9記載の
マルチ空調システム。
[Claims] 1. A low capacity compressor with a variable rotation speed driven by a variable frequency inverter and a high capacity compressor with a constant rotation speed having a mechanical capacity control mechanism are combined in parallel, and A compressor device having a wide capacity control range, characterized in that capacity control operation is performed by the low capacity compressor, and capacity control operation in a high capacity range is performed by the high capacity compressor. 2. A compressor device with a wide capacity control width according to claim 1, wherein the high capacity compressor is a screw compressor, and the low capacity compressor is a scroll compressor. 3. A compressor device with a wide capacity control range according to claim 1, wherein both the high capacity compressor and the low capacity compressor are scroll compressors. 4. A compressor device having a wide capacity control width according to claim 1, 2 or 3, wherein the capacity at the highest inverter frequency of the low capacity compressor and the lowest capacity of the high capacity compressor match. 5. The high capacity compressor is driven by a constant frequency power supply,
Claims 1 and 2, wherein a maximum frequency of a variable frequency inverter that drives the low capacity compressor matches the constant frequency.
, 3 or 4, the compressor device having a wide capacity control width. 6. A compressor device with a wide capacity control width according to claim 5, wherein the constant frequency is a commercial frequency. 7 In the low capacity range, the capacity is controlled by rotational speed control driven by a variable frequency inverter, and in the high capacity range, the compressor is driven by a commercial frequency power source and capacity is controlled by a mechanical capacity control mechanism. A compressor device with a wide capacity control range. 8. The mechanical capacity control mechanism includes a variable speed increasing gear mechanism and/or a variable speed increasing gear ratio provided between the electric motor section and the compressor section.
A compressor device having a wide capacity control range according to claim 7, wherein the compressor device is a suction gas bypass unloading mechanism provided for the compressor section. 9. In a multi-air conditioning system in which a refrigeration cycle is constituted by one outdoor unit equipped with a refrigerant compressor device and a plurality of indoor units, the refrigerant compressor device is the refrigerant compressor device according to any one of claims 1 to 8. A multi-air conditioning system characterized by being a compressor device having a wide capacity control range, and controlling the capacity of the compressor device according to the required capacity of a refrigeration cycle. 10 The compressor device is provided with the compressor device according to any one of claims 1 to 6, and a bypass flow path for bypassing the refrigerant gas discharged from the compressor device to the refrigerant flow path between the outdoor unit and the indoor unit, and a bypass flow path during normal operation. 10. The multi-air conditioning system according to claim 9, further comprising a valve that closes the bypass flow path, and when the outdoor unit is defrosted, the valve is opened and both the high-capacity and low-capacity compressors are operated simultaneously.
JP1312055A 1989-11-30 1989-11-30 Compressor equipment with wide capacity control range and air conditioning system using it Pending JPH03172587A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1312055A JPH03172587A (en) 1989-11-30 1989-11-30 Compressor equipment with wide capacity control range and air conditioning system using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1312055A JPH03172587A (en) 1989-11-30 1989-11-30 Compressor equipment with wide capacity control range and air conditioning system using it

Publications (1)

Publication Number Publication Date
JPH03172587A true JPH03172587A (en) 1991-07-25

Family

ID=18024683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1312055A Pending JPH03172587A (en) 1989-11-30 1989-11-30 Compressor equipment with wide capacity control range and air conditioning system using it

Country Status (1)

Country Link
JP (1) JPH03172587A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000097186A (en) * 1998-09-17 2000-04-04 Hitachi Ltd Oil-free screw compressor
JP2001271753A (en) * 2000-03-29 2001-10-05 Daikin Ind Ltd Open type compressor and open type compressor unit
EP1291525A1 (en) * 2001-09-07 2003-03-12 Linde AG Method for controlling a set of compressors
JP2007113588A (en) * 2007-01-22 2007-05-10 Hitachi Industrial Equipment Systems Co Ltd Oil-free screw compressor
JP2007183030A (en) * 2006-01-05 2007-07-19 Kansai Electric Power Co Inc:The Connected chiller / heater and its operation method
WO2008082396A1 (en) * 2006-12-29 2008-07-10 Carrier Corporation Standby variable frequency compressor drive
US7434414B2 (en) 2003-01-08 2008-10-14 Daikin Industries, Ltd. Refrigeration apparatus
WO2008147532A1 (en) * 2007-05-24 2008-12-04 Computer Process Controls, Inc. Refrigeration system and method using multiple variable capacity devices
WO2009028193A1 (en) * 2007-08-28 2009-03-05 Daikin Industries, Ltd. Refrigeration device
JP2010203458A (en) * 2010-06-25 2010-09-16 Hitachi Industrial Equipment Systems Co Ltd Oil-free screw compressor
US7814758B2 (en) 2006-04-03 2010-10-19 Computer Process Controls, Inc. Refrigeration system controller and method
JP2015098975A (en) * 2013-11-19 2015-05-28 株式会社東芝 Air conditioner
WO2025017765A1 (en) * 2023-07-14 2025-01-23 三菱電機株式会社 Compressor unit

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6948915B2 (en) 1998-09-17 2005-09-27 Hitachi, Ltd. Oil free screw compressor
JP2000097186A (en) * 1998-09-17 2000-04-04 Hitachi Ltd Oil-free screw compressor
JP2001271753A (en) * 2000-03-29 2001-10-05 Daikin Ind Ltd Open type compressor and open type compressor unit
EP1291525A1 (en) * 2001-09-07 2003-03-12 Linde AG Method for controlling a set of compressors
US7434414B2 (en) 2003-01-08 2008-10-14 Daikin Industries, Ltd. Refrigeration apparatus
JP2007183030A (en) * 2006-01-05 2007-07-19 Kansai Electric Power Co Inc:The Connected chiller / heater and its operation method
JP4707562B2 (en) * 2006-01-05 2011-06-22 関西電力株式会社 Connected chiller / heater and its operation method
US7814758B2 (en) 2006-04-03 2010-10-19 Computer Process Controls, Inc. Refrigeration system controller and method
WO2008082396A1 (en) * 2006-12-29 2008-07-10 Carrier Corporation Standby variable frequency compressor drive
JP2007113588A (en) * 2007-01-22 2007-05-10 Hitachi Industrial Equipment Systems Co Ltd Oil-free screw compressor
WO2008147532A1 (en) * 2007-05-24 2008-12-04 Computer Process Controls, Inc. Refrigeration system and method using multiple variable capacity devices
US8047012B2 (en) 2007-05-24 2011-11-01 Computer Process Controls, Inc. Refrigeration system and method using multiple variable capacity devices
WO2009028193A1 (en) * 2007-08-28 2009-03-05 Daikin Industries, Ltd. Refrigeration device
US8408018B2 (en) 2007-08-28 2013-04-02 Daikin Industries, Ltd. Refrigeration apparatus
JP2010203458A (en) * 2010-06-25 2010-09-16 Hitachi Industrial Equipment Systems Co Ltd Oil-free screw compressor
JP2015098975A (en) * 2013-11-19 2015-05-28 株式会社東芝 Air conditioner
WO2025017765A1 (en) * 2023-07-14 2025-01-23 三菱電機株式会社 Compressor unit

Similar Documents

Publication Publication Date Title
EP1877709B1 (en) Refrigerant system with variable speed scroll compressor and economizer circuit
AU784596B2 (en) Variable speed drive chiller system
EP1184631B1 (en) Method for controlling variable speed drive with multiple chillers
JPH046349A (en) Refrigerating cycle apparatus
US20070151268A1 (en) Air conditioner and refrigerant control method thereof
JPH03172587A (en) Compressor equipment with wide capacity control range and air conditioning system using it
JP2004020177A (en) Air-conditioning device and its control method
EP3940315A1 (en) Refrigeration device unit, heat source unit, and refrigeration device
EP1983275A1 (en) Refrigerant system with multi-speed scroll compressor and economizer circuit
US8375735B2 (en) Refrigeration systems with voltage modulated compressor motors and methods of their control
JP3996404B2 (en) Air conditioner
KR20070039764A (en) Unitary air-conditioner
CN100404973C (en) freezer
JPH06193574A (en) Reversible rotation type compressor and reversible freezing cycle
JPH0522825B2 (en)
JPH04158144A (en) Air conditioner
JPH086951B2 (en) air conditioner
JPS5833273Y2 (en) Compressor capacity control device
JPS58221349A (en) Refrigeration cycle device
KR100389640B1 (en) System for controlling air conditioner and method thereof
KR100625806B1 (en) Hybrid air conditioning
JP2685202B2 (en) Multi-room air conditioner
JPH0539961A (en) Compressor capacity control device
JPH04158145A (en) Air conditioner
JPH06229638A (en) Device for two-stage compression refrigeration