JPH0317233A - Manufacture of cold rolled steel sheet for deep drawing by strip casting - Google Patents
Manufacture of cold rolled steel sheet for deep drawing by strip castingInfo
- Publication number
- JPH0317233A JPH0317233A JP1151278A JP15127889A JPH0317233A JP H0317233 A JPH0317233 A JP H0317233A JP 1151278 A JP1151278 A JP 1151278A JP 15127889 A JP15127889 A JP 15127889A JP H0317233 A JPH0317233 A JP H0317233A
- Authority
- JP
- Japan
- Prior art keywords
- steel sheet
- steel
- rolled steel
- cold
- deep drawing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Continuous Casting (AREA)
- Shaping Metal By Deep-Drawing, Or The Like (AREA)
- Heat Treatment Of Steel (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Abstract
Description
【発明の詳細な説明】
L又±史剋貝分立
本発明は、ストリップキャスティングによる深絞り成形
用冷延洞板の製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a cold-rolled hollow plate for deep drawing by strip casting.
藍米食技亙
自動車のドア、オイルバン等の成形に用いられる鋼板に
は、深絞り戒形性に極めてすぐれることが要求される。Steel plates used for forming automobile doors, oil vans, etc. are required to have extremely good deep drawing properties.
従来、かかる鋼板は、完全凝固した連続鋳造鋳片を切断
し、冷却した後に、1200℃程度の温度に加熱保持し
た均熱炉に装入して均熱し、熱間圧延して熱延コイルと
し、更に、酸洗後、冷間圧延を施し、焼鈍することによ
って、製造されている。Conventionally, such steel sheets have been produced by cutting completely solidified continuously cast slabs, cooling them, charging them into a soaking furnace heated and maintained at a temperature of about 1200°C, soaking them, and hot-rolling them into hot-rolled coils. , and is further produced by cold rolling and annealing after pickling.
しかし、最近、鋳片の表面性状の改良が進展するにつれ
て、工程の省略による省エネルギーが検討され、鋳造ま
まスラブを再加熱することなく、連続的に熱間圧延する
技術や、更には、鋳造ままで熱延鋼板と同等の板厚の鋳
片を製造する技術が開発されるに至っている。特に、後
者の技術は、ストリップキャスティングと呼ばれており
、冷延鋼板の製造プロセスにおいて、格段の省工程を可
能とするものであるので、今後、一層の技術発展が期待
されている。しかしながら、この技術には、冷間圧延、
焼鈍後、鋼板の深絞り戒形性が従来の方法による鋼板に
比べて、著しく劣る問題がある.ところで、極低Cfi
lにTiを添加してなる鋼を従来の方式に従って冷延鋼
板とする場合に、綱中のCをTtやNb等にて固定した
熱延コイルを得、これを冷間圧延し、再結晶焼鈍するこ
とによって、極めてすぐれた深絞り性を付与することが
できることは、既によく知られている.また、鋼中のC
をTiやNb等にて固定させて後、フエライト域圧延を
施し、更に、再結晶焼鈍を施すことによって、熱延鋼板
の深絞り成形性を向上させることができることも、既に
知られている.
通常、熱延コイルの状態にて綱中のCを固定するには、
コイルをある程度高温、例えば、700℃程度で巻取る
方法が採用されており、フエライト圧延前の状態にて鋼
中のCを固定するには、ラフバー鋼片を800〜900
℃の温度に長時間保持する方法が採用されている。従っ
て、ストリップキャスティングによる薄肉鋳片を冷間圧
延し、焼鈍して、冷延IiIviを製造すれば、それが
深絞り戒形性に非常に劣るのは、薄肉鋳片の状態で鋼中
に固溶しているCが比較的多量に存在することが一つの
原因であるとみられる。However, as improvements in the surface properties of slabs have recently progressed, energy savings through the omission of processes have been considered, and technology has been developed to continuously hot-roll slabs as cast without reheating them, and even more. A technology has been developed to produce slabs with the same thickness as hot-rolled steel sheets. In particular, the latter technique is called strip casting, and because it enables a significant reduction in process steps in the manufacturing process of cold-rolled steel sheets, further technological development is expected in the future. However, this technology includes cold rolling,
After annealing, there is a problem in that the deep drawing properties of the steel sheet are significantly inferior to those made using conventional methods. By the way, extremely low Cfi
When steel made by adding Ti to L is made into cold rolled steel sheets according to the conventional method, a hot rolled coil is obtained in which C in the steel is fixed with Tt, Nb, etc., and this is cold rolled and recrystallized. It is already well known that extremely excellent deep drawability can be imparted by annealing. Also, C in steel
It is already known that the deep drawing formability of hot rolled steel sheets can be improved by fixing them with Ti, Nb, etc., rolling them in the ferrite region, and then recrystallizing them. Normally, to fix C in the rope in a hot-rolled coil state,
A method of winding the coil at a certain high temperature, for example, around 700°C, is adopted, and in order to fix the C in the steel before ferrite rolling, the rough bar steel piece has a temperature of 800 to 900°C.
The method used is to maintain the temperature at ℃ for a long time. Therefore, if cold-rolled IiIvi is produced by cold-rolling and annealing a thin-walled slab by strip casting, it will have very poor deep drawing formability because it will harden into steel in the form of a thin-walled slab. One of the reasons seems to be that there is a relatively large amount of dissolved C.
上記は、以下に示す従来の技術からも理解される。例え
ば、特開昭61−96031号公報には、薄鋳帯を用い
るプレス加工冷延鋼板の製造において、急冷鋳帯では、
C,N及びSの固定が不可能であるため、それらの合計
量を規制して、r値の向上を図っており、また、特開昭
61−133324号公報には、薄鋳片によって威形性
にすぐれる薄鋼板を製造する方法において、鋳造後の巻
取温度を高め、又は鋳造後の鋳片を加熱して、析出物の
凝集度を高めることによって、鋼板を延性を高めること
を記載している.
他方、特開昭59−43823号公報や特開昭59−4
3825号公報には、急冷した薄鋳片の鋼中のCをNb
STi等にて固定することなく、冷間圧延し、焼鈍して
も、高いr値を得ることができることが記載されている
。The above can also be understood from the conventional techniques shown below. For example, in Japanese Patent Application Laid-open No. 61-96031, in the production of press-formed cold-rolled steel sheets using thin cast strips, in the quenched cast strips,
Since it is impossible to fix C, N, and S, the total amount of them is regulated to improve the r value. In a method for manufacturing a thin steel sheet with excellent formability, the ductility of the steel sheet can be increased by increasing the coiling temperature after casting or heating the slab after casting to increase the degree of agglomeration of precipitates. It is written. On the other hand, JP-A-59-43823 and JP-A-59-4
Publication No. 3825 discloses that carbon in rapidly cooled thin slab steel is replaced by Nb.
It is described that a high r value can be obtained even if cold rolling and annealing are performed without fixing with STi or the like.
日が7しようとする1
しかし、上述したように、鋳片の固溶Cの固定を目的と
する加熱や、鋳片の冷却過程における所定温度での一定
時間の保持は、近年の製造工程の簡略化や省エネルギー
化に逆行するものであり、延いては、製造費用の上昇を
もたらすから、薄鋳片をその製造ままにて、固溶Cを十
分固定する方が望ましい。However, as mentioned above, heating for the purpose of fixing solid solution C in the slab and holding the slab at a predetermined temperature for a certain period of time during the cooling process have changed in recent manufacturing processes. This goes against simplification and energy saving, and also increases manufacturing costs, so it is preferable to sufficiently fix the solid solution C in the thin cast slab as it is manufactured.
本発明者らは、上述したような技術的背景の下に、薄鋳
片の化学戒分及び鋳造後の冷却を適正に制御することに
よって、鋳片が常温まで冷却される過程で鋼の固?8C
をTtにて十分に固定し得ることを見出して、本発明に
至ったものである。Based on the above-mentioned technical background, the present inventors have succeeded in improving the hardness of steel during the process of cooling the slab to room temperature by appropriately controlling the chemical composition of the thin slab and the cooling after casting. ? 8C
The present invention was developed based on the discovery that it is possible to sufficiently fix the temperature at Tt.
即ち、本発明は、薄鋳片を製造ままにて固溶Cを固定し
、これを冷間圧延して、深絞り成形用冷延鋼板を製造す
る方法を提供することを目的とする。That is, an object of the present invention is to provide a method for manufacturing a cold-rolled steel sheet for deep drawing by fixing solid solution C in a thin cast slab as produced and cold rolling the same.
ゴ朶哩j勤Lt4大!■標L反
本発明によるストリップキャスティングによる深絞り成
形用冷延鋼板の製造方法は、重量%にて(arc
0.0 0 1〜0.0 1%、Mn 0.10−0
.30%、及び
N 0.005%以下
を含有すると共に、
(b)Ti 0.02〜0.10%、及びNb O
。02〜0.05%
よりなる群から選ばれる少なくとも1種の元素を重量比
T i ” / C ”≧4.0(式中、Ti”=Ti
’+(48/93)Nb (重量%> 、c”=c+
(t2/1 4) N (重量%))を満足するように
含有し、
残部鉄及び不可避的不純物よりなる薄肉の鋳鋼帯を連続
鋳造し、Ar+〜Ar,間の平均冷却速度15℃/秒以
下であって、且つ、Ar.点が830℃以下となるよう
に冷却した後、冷間圧延及び再結晶焼鈍を施すことを特
徴とする。Goho Gakuin Lt4 Dai! ■The method for producing cold rolled steel sheets for deep drawing by strip casting according to the present invention is expressed in weight% (arc
0.0 0 1 to 0.0 1%, Mn 0.10-0
.. (b) Ti 0.02 to 0.10%, and Nb O
. 02 to 0.05% at a weight ratio of at least one element selected from the group consisting of
'+(48/93)Nb (weight%>, c''=c+
(t2/14) N (wt%)), the balance was iron and unavoidable impurities, and the thin cast steel strip was continuously cast, and the average cooling rate between Ar+ and Ar was 15°C/sec. and Ar. It is characterized by cold rolling and recrystallization annealing after cooling to a temperature of 830° C. or lower.
先ず、本発明を実験事実に基づいて説明する。First, the present invention will be explained based on experimental facts.
C 0.0030%、
Si0.01%、
Mn0.22%、
P 0.017%、
s o.oos%、
Al 0.027%、
Ti 0.088%、
N 0.0025%
なる化学或分を有し、化学量論的に鋼中のCを十分に固
定し得る量のTiを添加してなる極低C−Ti系鋼を真
空溶製し、隙間8flの鋼製鋳型の間に鋳造し、これを
約1000℃まで急冷して凝固させた後、種々の冷却速
度にて常温まで冷却した。C 0.0030%, Si 0.01%, Mn 0.22%, P 0.017%, so. oos%, Al 0.027%, Ti 0.088%, N 0.0025%, and Ti is added in an amount that can sufficiently fix C in the steel stoichiometrically. Ultra-low C-Ti steel was vacuum melted and cast between steel molds with a gap of 8 fl, which was rapidly cooled to approximately 1000°C to solidify, and then cooled to room temperature at various cooling rates. .
その後、表裏面の研削によって、4fl厚の引張試験片
とし、この鋳片に10%の冷間加工を付与し、更に、1
70℃でIO分間加熱する歪時効処理を施した。そして
、このようにして得られた試験片の降伏点と、前記冷延
ままの試験片の降伏点との差(ΔY P (kgf/m
m”) )の程度を鋳片まま鋳片に固溶しているClの
尺度として評価した。従って、ΔYPが大きいほど、薄
肉鋳片に固溶しているC量が多いことを示す。一般に、
ΔYPがI kgf/mm”であるときは、固溶Cfi
tは、2〜5 ppm存在するといわれる。ΔYPの測
定結果を第1図に示す。Thereafter, the front and back surfaces were ground to obtain a tensile test piece with a thickness of 4fl, and this slab was subjected to 10% cold working, and then
Strain aging treatment was performed by heating at 70° C. for IO minutes. Then, the difference (ΔY P (kgf/m
m”)) was evaluated as a measure of Cl dissolved in the slab as it is. Therefore, the larger ΔYP is, the greater the amount of C dissolved in the thin slab.Generally, ,
When ΔYP is I kgf/mm, solid solution Cfi
It is said that t is present in an amount of 2 to 5 ppm. The measurement results of ΔYP are shown in FIG.
第l図にみられるように、ΔYPは、約1000℃から
の連続冷却速度に大きく依存しており、連続冷却速度が
約20℃/秒以下のとき、ΔYPは極めて小さい。鋳造
後、約1000℃に急冷した時点では、TiとCとの溶
解度積から、TiCは未析出状態であることが推測され
るから、約20℃/秒以下の冷却速度による冷却によっ
て得られる極めて小さいΔYPは、約1000℃からの
連続冷却過程において、驚くべきことに、TiCの析出
が活発に起こることを示すものである。As seen in FIG. 1, ΔYP is highly dependent on the continuous cooling rate from about 1000° C., and when the continuous cooling rate is about 20° C./sec or less, ΔYP is extremely small. After casting, it is assumed that TiC is in an unprecipitated state from the solubility product of Ti and C when it is rapidly cooled to about 1000°C. The small ΔYP indicates that TiC precipitation surprisingly occurs actively during the continuous cooling process from about 1000°C.
即ち、従来、TiとCとの析出反応は、オーステナイト
中よりもフエライト中で促進されることは知られていた
ものの、オーステナイト又はフエライトの高温域で圧下
を加えること等によって、材料中に転位や変形帯を導入
しないときは、連続冷却過程において、TiとCが析出
することはないと理解されていたからである。In other words, although it has been known that the precipitation reaction between Ti and C is more accelerated in ferrite than in austenite, dislocations and This is because it was understood that if no deformation zone is introduced, Ti and C will not precipitate during the continuous cooling process.
このようにして、本発明者らは、従来、鋳造後の薄鋳片
を常温近傍まで急冷するときは、TiCの析出が全く認
められなかったのに対して、鋳造後、約1000℃の温
度から比較的遅い連続冷却速度にて冷却することによっ
て、TiCの析出が起こり得ることを見出した。約20
℃/秒よりも大きい冷却速度の場合に、ΔYPが大きい
のは、Tieの析出に必要な高温域において、析出のた
めの十分な時間が確保されなかったためであるとみられ
る。In this way, the present inventors discovered that, while conventionally, when a cast thin slab was rapidly cooled to around room temperature, no precipitation of TiC was observed, It has been found that precipitation of TiC can occur by cooling at a relatively slow continuous cooling rate. Approximately 20
The reason why ΔYP is large when the cooling rate is higher than °C/sec is considered to be because sufficient time for precipitation was not secured in the high temperature range necessary for Tie precipitation.
次に、本発明者らは、上述したような約1ooO℃から
の連続冷却過程におけるTicの析出機構を調べた。即
ち、鋳造後、約1000’Cがら10℃/秒にて連続冷
却した場合、種々異なる温度において、TiCの析出状
況をΔYPによって調べた。結果を第2図に示す。Next, the present inventors investigated the precipitation mechanism of Tic during the continuous cooling process from about 100° C. as described above. That is, when continuous cooling was performed at 10° C./sec from about 1000° C. after casting, the state of precipitation of TiC was investigated by ΔYP at various temperatures. The results are shown in Figure 2.
第2図において、TiCの析出は、820℃付近から活
発となり、750℃付近では、析出が殆ど終了して、Δ
YPが1 kgf/mm”程度となる。このような温度
範囲にてTiCの析出が急激に進行する理由は、必ずし
も明らかではないが、Ar.,点とAr,点とが重要な
役割を果たしているとみられる。即ち、析出現象の大半
は、Ar3〜Ar,点の間での挙動であること、及びA
r.点が比較的高温であって、TiCの析出反応が進行
しやすい温度であることが影響しているものとみられる
。しかし、Ar,点が高温であるほど、Ticの析出が
進行するものでもなく、後述するように、Ar,点が8
00℃以下であることがTiCの析出を促進するために
重要である。In Fig. 2, the precipitation of TiC becomes active from around 820°C, and at around 750°C, the precipitation is almost completed and Δ
YP is about 1 kgf/mm''.The reason why TiC precipitation progresses rapidly in such a temperature range is not necessarily clear, but it is believed that the Ar. point and the Ar point play an important role. In other words, most of the precipitation phenomenon occurs between points Ar3 and Ar.
r. This seems to be due to the relatively high temperature at which the TiC precipitation reaction tends to proceed. However, the higher the temperature of the Ar point, the more Tic precipitation progresses.
It is important that the temperature be below 00°C in order to promote the precipitation of TiC.
本発明は、このような知見に基づいてなされたものであ
る。The present invention has been made based on such knowledge.
次に、本発明において用いる鋳片の化学成分について説
明する.
Cは、その添加量が少ないほど、得られる冷延鋼板の深
絞り戊形性が向上するが、0.001%よりも少ないと
きは、調の溶製が極めて困難であり、一方、0.01%
を越えて添加するときは、多量のTiやNbを゛添加し
て、Cを固定する必要を生じ、製造費用の上昇をもたら
す。従って、本発明においては、clは、0.001〜
0.01%の範囲とする。Next, the chemical composition of the slab used in the present invention will be explained. The smaller the amount of C added, the better the deep drawing formability of the resulting cold rolled steel sheet will be. However, if it is less than 0.001%, it will be extremely difficult to form the shape. 01%
When adding more than 1, it becomes necessary to add a large amount of Ti or Nb to fix C, resulting in an increase in manufacturing costs. Therefore, in the present invention, cl is 0.001 to
The range is 0.01%.
Mnは、鋼の熱間脆性の防止及びAr.点の適正化のた
めに、0.10%以上添加されるが、過多に添加すると
きは、Ar3点及びAr,点が極端に低くなって、Ti
Cの析出が抑制され、鋼の深絞りせい劣化するほか、鋼
強度の上昇が過度となり、延性の劣化を招来するので、
0.30%を上限とする.Nは、少ないほど、Ti又は
Nbが有効にCの固定に利用されることとなり、他方、
0.005%を越えるときは、深絞り戊形性が劣化する
。従って、N量の上限を0. 0 0 5%とする。Mn prevents hot embrittlement of steel and Ar. In order to optimize the Ti point, 0.10% or more is added, but if too much is added, the Ar3 point and Ar point become extremely low, and the Ti
In addition to suppressing the precipitation of C and deteriorating the steel due to deep drawing, the increase in steel strength becomes excessive, leading to deterioration of ductility.
The upper limit is 0.30%. The smaller N is, the more Ti or Nb will be effectively used for fixing C, and on the other hand,
When it exceeds 0.005%, deep drawing formability deteriorates. Therefore, the upper limit of the N amount is set to 0. 0 0 5%.
Ti及びNbは、鋼の固溶Cとの親和力が強く、炭窒化
物の析出のために不可欠の元素である。しかし、いずれ
の元素についても、添加量が0、02%よりも少ないと
きは、Cの固定に不十分であり、他方、Tiが0.10
%を越えるとき、また、Nbが0.05%を越えるとき
は、それぞれその効果が飽和し、製造費用の上昇を招く
。Ti and Nb have a strong affinity with solid solution C in steel and are essential elements for precipitation of carbonitrides. However, for any element, when the amount added is less than 0.02%, it is insufficient for fixing C;
% or when Nb exceeds 0.05%, the effects are saturated, leading to an increase in manufacturing costs.
特に、本発明によれば、Ti”−Ti+(48/93)
Nb (重量%)及びC”=C+ (1 2/14)N
(重量%)とするとき、
Tiゝ/C”≧4.0
を満足させることによって、実操業上、鋼中のCを一層
確実に固定することができる。In particular, according to the invention, Ti"-Ti+(48/93)
Nb (wt%) and C”=C+ (1 2/14)N
(% by weight) By satisfying Tiゝ/C''≧4.0, C in the steel can be more reliably fixed in actual operation.
一般に、鋳片は、必ずしも不純物とはいえない程度のP
やSを含有している。そこで、本発明においては、上記
水準の量のP及びSを含むことは許容されるものとし、
更に、S L Cr,Mo、Ni及びCuについては、
それぞれ061%以下、V0.02%以下、80.00
1%以下、Zr,REM,Ca及びCeについては、そ
れぞれ0.02%以下を含むことも許容される。In general, slabs contain a level of P that cannot necessarily be said to be an impurity.
and S. Therefore, in the present invention, it is permissible to include P and S in the above-mentioned amounts,
Furthermore, regarding S L Cr, Mo, Ni and Cu,
0.061% or less, V0.02% or less, 80.00 respectively
It is also permissible to contain 1% or less, and 0.02% or less of each of Zr, REM, Ca, and Ce.
本発明によれば、かかる化学戊分を有する薄肉の鋳調帯
を連続鋳造し、Ar3〜Ar,間の平均冷却速度15℃
/秒以下であって、且つ、Ar,点が830℃以下とな
るように冷却した後、冷間圧延及び再結晶焼鈍を施すこ
とによって、ストリップキャスティングにて深絞り戒形
性にすぐれる冷延鋼板を得ることができる。According to the present invention, a thin-walled casting strip having such a chemical fraction is continuously cast, and an average cooling rate of 15° C. between Ar3 and Ar.
/second or less, and after cooling to an Ar point of 830°C or less, cold rolling and recrystallization annealing are performed to achieve excellent deep drawing shapeability in strip casting. You can get steel plates.
本発明においては、薄肉鋳鋼帯の製造後の平均冷却速度
は、前述したように、Ar3〜Ar1間にて、TiCの
析出を活発に行なわせるために、l5℃/秒以下とし、
更に、Ar.点は、前述したように、830℃以下する
ことが必要である。Ar,点が830℃を越えるときは
、TiCの析出が著しく遅れるとみられるからである,
Ar,点は、冷却速度のほか、化学或分、オーステナ
イト組織の状態等によって影響される。特に、オーステ
ナイト粒径は、Ar.点に大きく影響し、オーステナイ
ト状態での強圧延による再結晶オーステナイトの微細化
は、Ar+点を830℃以上に高めることがあるので、
冷却中、鋳片への加工は、全圧下率にて概ね、50%以
下とするのがよい。変態直前のオーステナイト粒径は、
厳密に示すことは困難であるが、実験結果を考慮すれば
、約{OOμm以上であることが好ましい。In the present invention, the average cooling rate after manufacturing the thin-walled cast steel strip is set to 15°C/sec or less in order to actively precipitate TiC between Ar3 and Ar1, as described above.
Furthermore, Ar. As mentioned above, the temperature must be 830° C. or lower. This is because when the Ar point exceeds 830°C, the precipitation of TiC seems to be significantly delayed.
The Ar point is influenced by the cooling rate, chemistry, the state of the austenite structure, and the like. In particular, the austenite grain size is Ar. Refinement of recrystallized austenite by intense rolling in the austenitic state can increase the Ar+ point to 830°C or higher.
During cooling, the processing into the slab should be approximately 50% or less in terms of total reduction. The austenite grain size just before transformation is
Although it is difficult to specify exactly, if experimental results are taken into consideration, it is preferable that it is approximately {OOμm or more.
次いで、鋳片は、これをAr.点以下の温度まで冷却し
た後、常温まで放冷してもよく、或いはコイル状に巻取
ってもよい。TiCの析出をできるだけ多くする目的か
らは、700℃以上でコイル巻取するのが望ましいが、
反面、このような高温巻取は、後工程である酸洗でのス
ケール除去を困難にするので、通常、600〜700℃
の範囲が好ましい。Next, the cast slab was placed in an Ar. After being cooled to a temperature below a point, it may be left to cool to room temperature, or it may be wound into a coil. For the purpose of maximizing the precipitation of TiC, it is desirable to wind the coil at a temperature of 700°C or higher.
On the other hand, such high-temperature winding makes it difficult to remove scale in the post-process pickling, so the winding temperature is usually 600-700°C.
A range of is preferred.
この後、常法に従って冷間圧延し、再結晶焼鈍すればよ
い。冷間圧延率は、望ましくは、50〜85%である。Thereafter, it may be cold rolled and recrystallized annealed according to a conventional method. The cold rolling rate is preferably 50 to 85%.
再結晶焼鈍は、バッチ焼鈍、連続焼鈍のいずれでもよい
が、バッチ焼鈍では600〜750℃、連続焼鈍では7
00〜900℃の範囲の温度に加熱するのが望ましい。Recrystallization annealing may be either batch annealing or continuous annealing, but the temperature is 600 to 750°C for batch annealing and 750°C for continuous annealing.
It is desirable to heat to a temperature in the range of 00-900°C.
本発明による鋼板は、冷延鋼板のほか、CG、BGめっ
き用銅板の原板としても用いることができる。The steel sheet according to the present invention can be used not only as a cold-rolled steel sheet but also as an original sheet for a copper sheet for CG and BG plating.
ゑ』目畳九里
以上のように、本発明の方法によれば、極低C−Ti及
び/又ばNbからなる薄肉の鋳鋼帯を連続鋳造し、これ
を所定の平均冷却速度にて、且つ、Ar,点が830℃
以下となるように冷却した後、冷間圧延及び再結晶焼鈍
を施すことによって、ストリップキャスティングによっ
て、深絞り戒形性にすぐれる冷延鋼板を得ることができ
る。As described above, according to the method of the present invention, a thin cast steel strip made of ultra-low C-Ti and/or Nb is continuously cast, and this is cast at a predetermined average cooling rate, and , Ar, point is 830℃
After cooling as follows, cold rolling and recrystallization annealing can be performed to obtain a cold rolled steel sheet with excellent deep drawing shapeability by strip casting.
大施拠
以下に実施例を挙げて本発明を説明するが、本発明はこ
れら実施例により何ら限定されるものではない。The present invention will be explained below with reference to Examples, but the present invention is not limited to these Examples in any way.
第1表に示すように、種々の化学戒分を有する鋼を前述
した方法にて溶解し、8wmMの鋳片に鋳造した。約1
000℃からlO℃/秒の平均冷却速度にて常温まで冷
却した。その後、表裏面の研削によって、4u厚鋼板と
し、冷間圧延によって1)1厚鋼板とした。引き続いて
、850℃で90秒間、連続焼鈍に付し、機械的性質を
調べた。結果を第1表に示す。As shown in Table 1, steels having various chemical components were melted by the method described above and cast into slabs of 8 wmM. Approximately 1
The sample was cooled from 000° C. to room temperature at an average cooling rate of 10° C./sec. Thereafter, a 4u thick steel plate was obtained by grinding the front and back surfaces, and a 1) 1 thick steel plate was obtained by cold rolling. Subsequently, it was subjected to continuous annealing at 850° C. for 90 seconds, and its mechanical properties were examined. The results are shown in Table 1.
比較鋼2は、鋳造後、900〜700℃の間を平均冷却
速度70″C/秒にて常温まで冷却したものであり、比
較鋼3は、鋳造後、900〜700℃の間を平均冷却速
度70℃/秒にて常温まで冷却し、この後、700℃で
3時間、再加熱したものである。Comparative Steel 2 was cooled to room temperature at an average cooling rate of 70"C/sec between 900 and 700°C after casting, and Comparative Steel 3 was cooled to room temperature at an average cooling rate of 900 to 700°C after casting. It was cooled to room temperature at a rate of 70°C/sec, and then reheated at 700°C for 3 hours.
第1表において、本発明で規定する条件を満足する発明
鋼1、4及び5は、すぐれた伸び及びr値を示す。これ
に対して、比較鋼2は、上述したように、鋳片を常温ま
で急冷したために、冷間圧延時点で鋼中に固溶Cが多量
に残存する結果、r値が極めて低い。しかし、比較fi
l3に示されているように、鋳片を常温まで急冷しても
、700℃で再加熱処理を行なえば、高いr値が得られ
ている。In Table 1, invention steels 1, 4, and 5 that satisfy the conditions specified by the present invention exhibit excellent elongation and r value. On the other hand, in Comparative Steel 2, as described above, since the slab was rapidly cooled to room temperature, a large amount of solid solution C remained in the steel at the time of cold rolling, and as a result, the r value was extremely low. However, the comparison fi
As shown in 13, even if the slab is rapidly cooled to room temperature, a high r value can be obtained if the slab is reheated at 700°C.
第1図は、鋳片を鋳造後、約1000℃からの連続冷却
速度とΔYPとの関係を示すグラフ、第2図は、約10
00℃から連続冷却速度IO℃/秒にて冷却したときの
温度とΔYPとの関係を示すグラフである。Fig. 1 is a graph showing the relationship between the continuous cooling rate from about 1000°C and ΔYP after casting the slab, and Fig. 2 is a graph showing the relationship between the continuous cooling rate from about 1000°C and ΔYP.
It is a graph showing the relationship between temperature and ΔYP when cooling from 00° C. at a continuous cooling rate of IO° C./sec.
Claims (1)
Ti^*/C^*≧4.0(式中、Ti^*=T1+(
48/93)Nb(重量%)、C^*=C+(12/1
4)N(重量%))を満足するように含有し、 残部鉄及び不可避的不純物よりなる薄肉の鋳鋼帯を連続
鋳造し、Ar_3〜Ar_1間の平均冷却速度15℃/
秒以下であつて、且つ、Ar_1点が830℃以下とな
るように冷却した後、冷間圧延及び再結晶焼鈍を施すこ
とを特徴とするストリップキャスティングによる深絞り
成形用冷延鋼板の製造方法。(1) Contains (a) 0.001 to 0.01% of C, 0.10 to 0.30% of Mn, and 0.005% or less of N in weight%, and (b) 0.02 to 0.10% of Ti. , and Nb0.02-0.05% at a weight ratio of Ti^*/C^*≧4.0 (wherein, Ti^*=T1+(
48/93) Nb (wt%), C^*=C+(12/1
4) Continuously cast a thin cast steel strip containing a satisfactory amount of N (wt%) and the remainder iron and unavoidable impurities, with an average cooling rate of 15°C/1 between Ar_3 and Ar_1.
A method for producing a cold-rolled steel sheet for deep drawing by strip casting, which comprises cooling the steel sheet for a temperature of 830° C. or less and then cold rolling and recrystallization annealing.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1151278A JP2526122B2 (en) | 1989-06-14 | 1989-06-14 | Manufacturing method of cold-rolled steel sheet for deep drawing by strip casting |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1151278A JP2526122B2 (en) | 1989-06-14 | 1989-06-14 | Manufacturing method of cold-rolled steel sheet for deep drawing by strip casting |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0317233A true JPH0317233A (en) | 1991-01-25 |
JP2526122B2 JP2526122B2 (en) | 1996-08-21 |
Family
ID=15515186
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1151278A Expired - Lifetime JP2526122B2 (en) | 1989-06-14 | 1989-06-14 | Manufacturing method of cold-rolled steel sheet for deep drawing by strip casting |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2526122B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004195522A (en) * | 2002-12-19 | 2004-07-15 | Nippon Steel Corp | Low carbon steel thin cast slab, low carbon thin steel plate obtained by twin-drum continuous casting method, and method for producing the same |
JP2008274338A (en) * | 2007-04-27 | 2008-11-13 | Sumitomo Metal Ind Ltd | Continuous casting method of steel sheet and hot-dip galvanized steel sheet with excellent surface properties and slab for manufacturing steel sheet |
-
1989
- 1989-06-14 JP JP1151278A patent/JP2526122B2/en not_active Expired - Lifetime
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004195522A (en) * | 2002-12-19 | 2004-07-15 | Nippon Steel Corp | Low carbon steel thin cast slab, low carbon thin steel plate obtained by twin-drum continuous casting method, and method for producing the same |
JP2008274338A (en) * | 2007-04-27 | 2008-11-13 | Sumitomo Metal Ind Ltd | Continuous casting method of steel sheet and hot-dip galvanized steel sheet with excellent surface properties and slab for manufacturing steel sheet |
Also Published As
Publication number | Publication date |
---|---|
JP2526122B2 (en) | 1996-08-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0713262B2 (en) | Method for producing silicon iron plate having excellent soft magnetic characteristics | |
KR930005892B1 (en) | Cold rolled steel sheet excellent in thermosetting and press forming and its manufacturing method | |
JP3125978B2 (en) | Method for producing high carbon steel strip with excellent workability | |
US4116729A (en) | Method for treating continuously cast steel slabs | |
JP2607331B2 (en) | Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties | |
JP2526122B2 (en) | Manufacturing method of cold-rolled steel sheet for deep drawing by strip casting | |
JPH02258931A (en) | Method for manufacturing Cr-based stainless steel thin plate using thin-wall casting method | |
JPS6261646B2 (en) | ||
JPH075984B2 (en) | Method for producing Cr-based stainless steel thin plate using thin casting method | |
JP2521585B2 (en) | Method for producing unidirectional electrical steel sheet with excellent magnetic properties | |
JP3818025B2 (en) | Method for producing cold-rolled steel sheet with small anisotropy | |
JP3596045B2 (en) | Manufacturing method of bake hardening type cold rolled steel sheet with excellent formability | |
JP4332960B2 (en) | Manufacturing method of high workability soft cold-rolled steel sheet | |
JP2532643B2 (en) | Method for manufacturing high r-value hot rolled steel sheet by thin cast piece | |
JPS59123721A (en) | Production of cold rolled steel sheet having excellent processability | |
JP2644580B2 (en) | Manufacturing method of cold rolled mild steel sheet with excellent deep pattern | |
JPH01177322A (en) | Manufacturing method for cold-rolled steel sheet with extremely good deep drawability | |
JPS6070123A (en) | Method for hot rolling continuously cast aluminum killed steel | |
JPS6235462B2 (en) | ||
JPH02170921A (en) | Manufacturing method of highly formable high tensile strength steel plate | |
JPH01188626A (en) | Manufacture of cold rolled steel sheet having superior burning hardenability and press formability | |
JPH0745696B2 (en) | Method for producing hot rolled steel sheet with excellent workability | |
JPS62104008A (en) | Manufacture of unidirectional silicon steel plate | |
JPS6362822A (en) | Production of cold rolled steel sheet for deep drawing | |
JPH0768585B2 (en) | Method for manufacturing cold rolled steel sheet with excellent deep drawability |