[go: up one dir, main page]

JPH03171563A - Solid electrolyte fuel cell power generating system - Google Patents

Solid electrolyte fuel cell power generating system

Info

Publication number
JPH03171563A
JPH03171563A JP1308497A JP30849789A JPH03171563A JP H03171563 A JPH03171563 A JP H03171563A JP 1308497 A JP1308497 A JP 1308497A JP 30849789 A JP30849789 A JP 30849789A JP H03171563 A JPH03171563 A JP H03171563A
Authority
JP
Japan
Prior art keywords
air
fuel cell
supplied
power generation
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1308497A
Other languages
Japanese (ja)
Inventor
Hiroshi Mihara
三原 浩
Yoshio Sato
佐藤 佳雄
Hiroshi Tsuneizumi
常泉 浩志
Hiroo Sakai
酒井 裕雄
Yoshihiro Aoki
青木 義博
Hisatoshi Isogai
磯貝 久寿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP1308497A priority Critical patent/JPH03171563A/en
Publication of JPH03171563A publication Critical patent/JPH03171563A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04225Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04302Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To make use in an isolated island or during moving possible and to make the control of reaction air supply amount in response to the load change of a cell possible by preheating the air to be supplied to a cathode to high temperature when system operation is started. CONSTITUTION:When system operation is started, raw fuel and air for combustion are supplied to an exhaust heat recovery boiler 9, and they are burned there, and water from a pipeline 13 is converted into steam. The steam is supplied to a steam turbine 10 through a pipeline 14 to turn it. Reaction air is supplied to a preheater 12 with an air compressor 11, and the air is heated to high temperature by heat exchange with exhaust gas from the exhaust heat recovery boiler 9. The high temperature preheated air is supplied to a cathode of a fuel cell 1 to raise its temperature. When the cell 1 is heated to around 1000 deg.C, fuel is supplied to an anode, and power generation is started. When power load 17 is varied, revolutions per minute of the turbine 10 is controlled with a signal from a power load detecting system 18.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は固体電解質型燃料電池(SOFC)発電シス
テムの改良に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] This invention relates to improvements in solid oxide fuel cell (SOFC) power generation systems.

[従来の技術コ 固体電解質型燃料電池(SOFC)による発電システム
においては、発電効率の点から、固体電解質型燃料電池
本体を約1000℃に昇温しで発電させる必要がある.
そのため、次のような方法で固体電解質型燃料電池本体
を昇温している。
[Conventional technology] In a power generation system using a solid oxide fuel cell (SOFC), from the viewpoint of power generation efficiency, it is necessary to raise the temperature of the solid oxide fuel cell to approximately 1000°C to generate electricity.
Therefore, the temperature of the solid oxide fuel cell body is increased by the following method.

(1)固体電解質型燃料電池本体を電気炉に装入して所
定の温度に昇温する。
(1) The solid oxide fuel cell body is placed in an electric furnace and heated to a predetermined temperature.

{2}固体電解質型燃料電池に供給する空気を外部電源
により予然して、固体電解質型燃料電池に送り、所定の
温度に昇温ずる。
{2} Air to be supplied to the solid oxide fuel cell is sent to the solid oxide fuel cell in advance by an external power source, and the temperature is raised to a predetermined temperature.

[発明が解決しようとする課題] しかしながら、従来のような昇温方法には、次のような
問題点があった。
[Problems to be Solved by the Invention] However, the conventional temperature raising method has the following problems.

(1)電気枦で加熟する方法は、実験室規模の場合Cま
よいが、固体電解質型燃料電池を工業的に使用する場合
には、大型の加熱炉が必要となり不経l斉て・ある。
(1) The method of ripening in an electric cell is good on a laboratory scale, but when solid oxide fuel cells are used industrially, a large heating furnace is required, resulting in a slow process. .

〈2)外部電源を使用した電気ヒーターで昇温する方法
は、簡便ではあるが外部電源回路を必要とするので、離
島用や移動用として使用する固体電解質型燃料電池発電
システムには適用しにくい。
2) The method of raising temperature with an electric heater using an external power source is simple, but requires an external power circuit, so it is difficult to apply to solid oxide fuel cell power generation systems used for remote islands or for transportation. .

この発明は、従来技術の上述のような問題点を解消し、
安価にしかも離島用や移動用として使用できる固体電解
質型燃料電池の昇温機能を有するとともに、燃料電池に
かかる負荷の変動に応じて反応用空気の供給量を制御す
る固体電解質型燃料電池の発電システムを提供すること
を目的としている. [課題を解決するための手段] この発明に係る固体電解質型燃料電池の発電システムは
、固体電解質型燃料電池を使用した発電システムにおい
て、燃料電池の発電反応に利用されなかった余剰燃料と
原燃料とを燃焼用空気により燃焼させることにより蒸気
を発生させる排熱回収ボイラと、該排熱回収ボイラで排
出される燃焼排ガスにより燃料電池のカソード側に供給
する空気を予熱する空気予熱器と、前記排熱回収ボイラ
で発生する蒸気で回転される蒸気タービンで駆動される
空気圧縮機とを備え、発電システムの起動時には、前記
排熱回収ボイラに原燃料および燃焼用空気を供給して燃
焼させて、蒸気を発生させるとともに、発生した蒸気を
前記蒸気タービンに供給して前記空気圧11機を駆動さ
せて燃料電池のカソード側に空気を供給し、かつ前記空
気予熱器には前記排熱回収ボイラで発生する燃焼排ガス
を供給して、前記カソード側に供給する空気を予熱する
ことにより、燃fl電池を徐々に昇温させるとともに、
発電開始後は前記余剰燃料を前記排熱回収ボイラの燃料
の一部として使用する固体電解質型燃料電池発電システ
ムである。
This invention solves the above-mentioned problems of the prior art,
Power generation using a solid oxide fuel cell that is inexpensive and can be used for remote islands or for transportation, has a temperature raising function, and controls the amount of reaction air supplied according to fluctuations in the load on the fuel cell. The purpose is to provide a system. [Means for Solving the Problems] A power generation system using a solid oxide fuel cell according to the present invention is a power generation system using a solid oxide fuel cell, in which surplus fuel and raw fuel that are not used in the power generation reaction of the fuel cell are used. an air preheater that preheats the air supplied to the cathode side of the fuel cell with the combustion exhaust gas discharged by the waste heat recovery boiler; and an air compressor driven by a steam turbine rotated by steam generated by the exhaust heat recovery boiler, and when the power generation system is started, raw fuel and combustion air are supplied to the exhaust heat recovery boiler and burned. , generating steam and supplying the generated steam to the steam turbine to drive the 11 pneumatic machines to supply air to the cathode side of the fuel cell, and the air preheater is provided with the exhaust heat recovery boiler. By supplying the generated combustion exhaust gas and preheating the air supplied to the cathode side, the temperature of the fuel cell is gradually raised,
After the start of power generation, the solid oxide fuel cell power generation system uses the surplus fuel as part of the fuel for the exhaust heat recovery boiler.

また、上記の固体電解質型燃料電池発電システムにおい
て、燃利電池の負荷の変動に応じて蒸気タービンに供給
する蒸気量を変動させ、空気圧縮機の回転数を変化させ
て燃P:l電池に供給する空気量を変動させるとともに
、燃料電池に供給する燃料の供給量も変動させる固体電
解質型燃料電池発電システムである. [作用]. この発明に係る固体電解質型燃料電池の発電システムは
、固体電解質型燃料電池を使用した発電システムにおい
て、燃料電池の発電反応に利用されなかった余剰燃料と
原燃料とを燃焼用空気により燃焼させることにより蒸気
を発生させる排熱回収ボイラと、該排熱回収ボイラで排
出される燃焼排ガスにより燃料電池のカソード側に供給
する空気を予熱する空気予熱器と、前記排熟回収ボイラ
で発生する蒸気で回転される蒸気タービンで駆動される
空気圧縮機とを備え、発電システムの起動時には、前記
排熱回収ボイラに原燃料および燃焼用空気を供給して燃
焼させて、蒸気を発生させるとともに、発生した蒸気を
前記蒸気タービンに供給して前記空気圧縮機を駆動させ
て燃料電池のカソード側に空気を供給し、かつ前記空気
予熱器には前記排熱回収ボイラで発生する燃焼排ガスを
供給して、前記カソード側に供給する空気を予熱するよ
うにしている.燃料電池起動時には、前記力一ソード側
に供給される空気は、前記空気予熱器で高温に予熱され
ているので、空気が供給されるにつれて燃料電池は昇温
し、ついには最適運転条件のほぼ1000″Cになる.
この状態になったらアノード側に燃料を供給し、発電を
開始する.発電を開始すると、発電反応に利用されなか
った余剰燃料が排熱回収ボイラに供給され、排熱回収ボ
イラはこの余剰燃料を燃料の一部として稼働される。し
たがって、燃料電池起動時に、燃料電池が容易に昇温で
きるとともに、余剰燃料を排熱回収ボイラの燃料として
使用したり、排熱回収ボイラの排ガスを空気予熱に使用
しているので、総合的な発電効率が高まる. また、上記固体電解質型燃料電池の発電システムにおい
て、燃料電池の負荷変動に応じて燃料電池への燃料およ
び空気の供給量を変動させてやる発電システムは、総合
的な発電効率をより高めるものである。
In addition, in the above-mentioned solid oxide fuel cell power generation system, the amount of steam supplied to the steam turbine is varied according to fluctuations in the load on the fuel cell, and the rotational speed of the air compressor is changed to generate a fuel P:l battery. This is a solid oxide fuel cell power generation system that varies the amount of air supplied and also varies the amount of fuel supplied to the fuel cell. [Effect]. A power generation system using a solid oxide fuel cell according to the present invention is a power generation system using a solid oxide fuel cell, in which surplus fuel and raw fuel that are not used in the power generation reaction of the fuel cell are combusted with combustion air. an air preheater that preheats the air supplied to the cathode side of the fuel cell using the combustion exhaust gas discharged by the exhaust heat recovery boiler; and an air compressor driven by a rotating steam turbine, and when the power generation system is started, raw fuel and combustion air are supplied to the exhaust heat recovery boiler and combusted to generate steam and generate Supplying steam to the steam turbine to drive the air compressor to supply air to the cathode side of the fuel cell, and supplying the air preheater with combustion exhaust gas generated in the exhaust heat recovery boiler, The air supplied to the cathode side is preheated. At the time of starting the fuel cell, the air supplied to the power source side is preheated to a high temperature by the air preheater, so as the air is supplied, the temperature of the fuel cell increases until it reaches almost the optimum operating condition. It becomes 1000″C.
Once this state is reached, fuel is supplied to the anode and power generation begins. When power generation starts, surplus fuel that is not used in the power generation reaction is supplied to the exhaust heat recovery boiler, and the exhaust heat recovery boiler is operated using this surplus fuel as part of its fuel. Therefore, when the fuel cell is started, the temperature of the fuel cell can be easily raised, and surplus fuel is used as fuel for the exhaust heat recovery boiler, and exhaust gas from the exhaust heat recovery boiler is used for air preheating, so the overall Power generation efficiency increases. Furthermore, in the above-mentioned solid oxide fuel cell power generation system, a power generation system that varies the amount of fuel and air supplied to the fuel cell according to changes in the load on the fuel cell will further increase the overall power generation efficiency. be.

この燃料および空気の供給量を変動させてやる方法とし
て、燃料は流量調整弁により容易に供給量を変化させて
やることができるが、空気の場合は流量調整弁では正し
くコントロールできないので、空気圧縮機の回転数を変
化させて、供給量を変化させてやるようにしたのである
. [実施例] 本発明の1実施例の固体電解質型燃料電池の発電システ
ムを第1図により説明する.第1図は本発明の1実施例
の固体電解質型燃料電池本発電システムを実施する装置
構成を示す説明図である.この発電システムにおいては
、燃料電池1の下流側に燃料電池1のカソード2から排
出される排空気3、およびアノード4から排出される排
燃料5を燃焼させて稼働し、この発電システムの起動時
には別途アノード4に供給する原燃料配管6から分岐し
て供給される原燃料を、ブロア7により燃焼用空気配管
8を通して供給される燃焼用空気で燃焼して稼働する排
熱回収ボイラ9と、この排熟回収ボイラ9で発生した蒸
気で回転されるタービン10で駆動される空気圧縮機1
1と、この空気圧縮機11により供給される空気を、前
記排熱回収ボイラ9の排ガスで予熱する空気予熱器12
とが設けられている. この発電システムの操業方法を説明すると、発電システ
ムの起動時には排熱回収ボイラ9に原燃料と燃焼用空気
を供給して燃焼させるとともに、給水管13により水を
供給して蒸気を発生させてやる.この蒸気は蒸気配管1
4により蒸気タービン10に送られ、蒸気タービン10
を回転させる.この蒸気タービン10には空気圧縮機1
1が連結されており、この空気圧縮機11により反応用
空気を空気予熟器12に供給する.空気予熱器12には
排熱回収ボイラ9の排ガスが供給されており、供給され
た空気は排ガスと熱交換して、高温となる.そして、高
温に予熱された空気は、燃料電池1のカソード2側に供
給され、燃料電池1を昇温させる. 燃料電池1の温度が操業に最適な1000℃近くになる
と、アノード側に燃料を供給し、発電を開始する.発電
が開始されると、発電反応に使用されなかった余剰燃料
(排燃料〉および排空気が発生するので、これを排熟回
収ボイラ9に供給して、蒸気の発生に利用する. 排燃料が増えてくると、排熱回収ボイラ9で燃焼される
燃料が増えて、蒸気の発生量が必要以上に増加してくる
ので、燃料電池1に設けた温度検出器15により燃料電
池1の温度を検出し、所定の温度に達したらその温度信
号により、原燃料配管6に設けられた流量調整弁16を
絞って原燃料の供給量を減らすようにしている. また、この発電システムには電力の負荷17を検知する
電力負荷検知システム18を備えており、電力負荷が変
動した時〈通常定格運転をしているので、負荷が減少し
た時)電力負荷検知システム18からの信号により、燃
料流量調整弁19を絞ってアノード4への燃料供給量を
減少させてやるとともに、蒸気配管14に設けてある蒸
気流量調整弁20を絞って蒸気タービン10の回転数を
落としてやり、空気圧縮機11によりカソード2に供給
される空気供給量を減らして負荷に応じた適正な供給量
を保つようにしている。
As a method of varying the supply amount of fuel and air, the supply amount of fuel can be easily changed using a flow rate adjustment valve, but in the case of air, the flow rate adjustment valve cannot control it correctly, so air compression By changing the rotational speed of the machine, the supply amount was changed. [Example] A power generation system using a solid oxide fuel cell according to an example of the present invention will be explained with reference to FIG. FIG. 1 is an explanatory diagram showing the configuration of an apparatus for implementing a solid electrolyte fuel cell power generation system according to an embodiment of the present invention. This power generation system operates by burning exhaust air 3 discharged from the cathode 2 of the fuel cell 1 and exhaust fuel 5 discharged from the anode 4 on the downstream side of the fuel cell 1. An exhaust heat recovery boiler 9 operates by burning raw fuel branched from a raw fuel pipe 6 separately supplied to the anode 4 with combustion air supplied through a combustion air pipe 8 by a blower 7; An air compressor 1 driven by a turbine 10 rotated by steam generated in a recovery boiler 9
1, and an air preheater 12 that preheats the air supplied by the air compressor 11 with the exhaust gas of the exhaust heat recovery boiler 9.
is provided. To explain how this power generation system operates, when starting up the power generation system, raw fuel and combustion air are supplied to the exhaust heat recovery boiler 9 for combustion, and water is supplied through the water supply pipe 13 to generate steam. .. This steam is steam pipe 1
4 to the steam turbine 10;
Rotate. This steam turbine 10 includes an air compressor 1
1 is connected, and this air compressor 11 supplies reaction air to an air preconditioner 12. The air preheater 12 is supplied with exhaust gas from the exhaust heat recovery boiler 9, and the supplied air exchanges heat with the exhaust gas and becomes high temperature. The preheated air is then supplied to the cathode 2 side of the fuel cell 1, raising the temperature of the fuel cell 1. When the temperature of the fuel cell 1 reaches approximately 1000°C, which is the optimum temperature for operation, fuel is supplied to the anode side and power generation begins. When power generation starts, surplus fuel (exhaust fuel) and exhaust air that are not used in the power generation reaction are generated, which are supplied to the exhaust recovery boiler 9 and used to generate steam. When the temperature increases, the amount of fuel burned in the exhaust heat recovery boiler 9 increases, and the amount of steam generated increases more than necessary. When a predetermined temperature is detected, the temperature signal is used to throttle the flow rate regulating valve 16 provided in the raw fuel pipe 6 to reduce the amount of raw fuel supplied. It is equipped with an electric power load detection system 18 that detects the load 17, and when the electric power load fluctuates (when the load decreases since normal rated operation is performed), the fuel flow rate is adjusted based on the signal from the electric power load detection system 18. The valve 19 is throttled to reduce the amount of fuel supplied to the anode 4, and the steam flow rate regulating valve 20 provided in the steam pipe 14 is throttled to reduce the rotational speed of the steam turbine 10. The amount of air supplied to the cathode 2 is reduced to maintain an appropriate amount of air supplied depending on the load.

本発明の1実施例の固体電解質型燃料電池の発電システ
ムは、上述したようにして行なわれるので、発電システ
ムの起動時の燃料電池の昇温が安価にかつ確実に行なえ
るとともに、負荷変動に応じて、適正な燃料、空気の供
給ができるので、総発電効率が高い. なお、空気予熱器12の排ガス2lにより発q機を回し
て発電することもできる。
Since the power generation system using a solid oxide fuel cell according to one embodiment of the present invention is performed as described above, the temperature of the fuel cell can be raised inexpensively and reliably at the time of startup of the power generation system, and the power generation system can withstand load fluctuations. Accordingly, appropriate fuel and air can be supplied, resulting in high total power generation efficiency. Note that it is also possible to generate electricity by rotating a generator using the exhaust gas 2L from the air preheater 12.

[発明の効果] この発明により、発電システムの起動時の燃刺電池の昇
温が安価にかつ確実に行なえるとともに、負荷変動に応
じて、適正な燃料、空気の供粕ができるので、総発電効
率が高まる.
[Effects of the invention] According to this invention, the temperature of the fuel cell can be raised inexpensively and reliably at the time of startup of the power generation system, and appropriate fuel and air supply can be made according to load fluctuations. Power generation efficiency increases.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例の固体電解質型燃料電池
本発電システムを実施する装置楕戊を示す説明図である
FIG. 1 is an explanatory diagram showing an apparatus for implementing a solid oxide fuel cell power generation system according to a first embodiment of the present invention.

Claims (2)

【特許請求の範囲】[Claims] (1)固体電解質型燃料電池を使用した発電システムに
おいて、燃料電池の発電反応に利用されなかった余剰燃
料と原燃料とを燃焼用空気により燃焼させることにより
蒸気を発生させる排熱回収ボイラと、該排熱回収ボイラ
で排出される燃焼排ガスにより燃料電池のカソード側に
供給する空気を予熱する空気予熱器と、前記排熱回収ボ
イラで発生する蒸気で回転される蒸気タービンで駆動さ
れる空気圧縮機とを備え、発電システムの起動時には、
前記排熱回収ボイラに原燃料および燃焼用空気を供給し
て燃焼させて、蒸気を発生させるとともに、発生した蒸
気を前記蒸気タービンに供給して前記空気圧縮機を駆動
させて燃料電池のカソード側に空気を供給し、かつ前記
空気予熱器には前記排熱回収ボイラで発生する燃焼排ガ
スを供給して、前記カソード側に供給する空気を予熱す
ることにより、燃料電池を徐々に昇温させるとともに、
発電開始後は前記余剰燃料を前記排熱回収ボイラの燃料
の一部として使用することを特徴とする固体電解質型燃
料電池発電システム。
(1) In a power generation system using a solid oxide fuel cell, an exhaust heat recovery boiler that generates steam by burning excess fuel and raw fuel that are not used in the power generation reaction of the fuel cell with combustion air; an air preheater that preheats the air supplied to the cathode side of the fuel cell using combustion exhaust gas discharged by the exhaust heat recovery boiler; and an air compressor driven by a steam turbine rotated by steam generated by the exhaust heat recovery boiler. When starting up the power generation system,
Raw fuel and combustion air are supplied to the exhaust heat recovery boiler and combusted to generate steam, and the generated steam is supplied to the steam turbine to drive the air compressor to drive the cathode side of the fuel cell. and supplying air to the air preheater, and supplying combustion exhaust gas generated in the exhaust heat recovery boiler to the air preheater to preheat the air supplied to the cathode side, thereby gradually increasing the temperature of the fuel cell. ,
A solid oxide fuel cell power generation system characterized in that after the start of power generation, the surplus fuel is used as part of the fuel for the exhaust heat recovery boiler.
(2)燃料電池の負荷の変動に応じて蒸気タービンに供
給する蒸気量を変動させ、空気圧縮機の回転数を変化さ
せて燃料電池に供給する空気量を変動させるとともに、
燃料電池に供給する燃料の供給量も変動させることを特
徴とする請求項1の固体電解質型燃料電池発電システム
(2) Varying the amount of steam supplied to the steam turbine in accordance with fluctuations in the load on the fuel cell, and varying the number of revolutions of the air compressor to vary the amount of air supplied to the fuel cell,
2. The solid oxide fuel cell power generation system according to claim 1, wherein the amount of fuel supplied to the fuel cell is also varied.
JP1308497A 1989-11-28 1989-11-28 Solid electrolyte fuel cell power generating system Pending JPH03171563A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1308497A JPH03171563A (en) 1989-11-28 1989-11-28 Solid electrolyte fuel cell power generating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1308497A JPH03171563A (en) 1989-11-28 1989-11-28 Solid electrolyte fuel cell power generating system

Publications (1)

Publication Number Publication Date
JPH03171563A true JPH03171563A (en) 1991-07-25

Family

ID=17981726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1308497A Pending JPH03171563A (en) 1989-11-28 1989-11-28 Solid electrolyte fuel cell power generating system

Country Status (1)

Country Link
JP (1) JPH03171563A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994018712A1 (en) * 1993-02-15 1994-08-18 Bossel Ulf Dr Process and device for converting chemical energy from a fuel into thermal energy and, at the same time, directly into electrical energy
JPH06310163A (en) * 1993-04-28 1994-11-04 Shikoku Sogo Kenkyusho:Kk Fuel cell power generating system
JP2009524181A (en) * 2006-01-20 2009-06-25 フラウンホッファー−ゲゼルシャフト・ツァー・フォデラング・デル・アンゲワンテン・フォーシュング・エー.ファウ. High temperature fuel cell operating method and system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994018712A1 (en) * 1993-02-15 1994-08-18 Bossel Ulf Dr Process and device for converting chemical energy from a fuel into thermal energy and, at the same time, directly into electrical energy
EP0636280A1 (en) * 1993-02-15 1995-02-01 Bossel Ulf Dr Process and device for converting chemical energy from a fuel into thermal energy and, at the same time, directly into electrical energy.
JPH06310163A (en) * 1993-04-28 1994-11-04 Shikoku Sogo Kenkyusho:Kk Fuel cell power generating system
JP2009524181A (en) * 2006-01-20 2009-06-25 フラウンホッファー−ゲゼルシャフト・ツァー・フォデラング・デル・アンゲワンテン・フォーシュング・エー.ファウ. High temperature fuel cell operating method and system

Similar Documents

Publication Publication Date Title
US4923768A (en) Fuel cell power generation system
US20070113562A1 (en) Methods and apparatus for starting up combined cycle power systems
JP3526026B2 (en) Waste heat recovery method for gas turbine power generation system
JPH03171563A (en) Solid electrolyte fuel cell power generating system
JPS6280968A (en) fuel cell power plant
JP4097193B2 (en) Combined power generation facilities for fuel cells and gas turbines and their start / stop methods
JP3137147B2 (en) Control method for turbine compressor device for fuel cell facility
JP2004220941A (en) Fuel cell combined cycle power generation plant and starting method thereof
CN110661019B (en) Control system and method for oxygen supply fan of HT-PEM methanol-water fuel cell combustion chamber
JPS60249609A (en) Load control device in combined cycle power plant
JP3399566B2 (en) Fuel cell
JPS62268066A (en) Starting method for fuel cell
JP2001351641A (en) Combined generating element
JPH03163761A (en) Solid electrolyte type fuel cell power generating system
JPH05144456A (en) Starting method for turbine of fuel cell power generating facility
JP2009146647A (en) Solid oxide fuel cell power generation system
JP4158131B2 (en) Fuel cell power generator
CN218975483U (en) Protective atmosphere generating device applied to start-stop of solid oxide battery
JP2004111129A (en) Combined power generation facility for fuel cell and micro gas turbine and its starting method
JP4212089B2 (en) Combined power generation facilities for fuel cells and micro gas turbines and their startup methods
JPH0293207A (en) Hot air heating device
JPH0353457B2 (en)
JP3239540B2 (en) Temperature control method of reformer
JPH0810601B2 (en) Molten carbonate fuel cell power plant
JP3467759B2 (en) Control method of outlet temperature of reformer