JPH03170693A - Production of alloy coated conductor and multilayer plating apparatus used therefor - Google Patents
Production of alloy coated conductor and multilayer plating apparatus used thereforInfo
- Publication number
- JPH03170693A JPH03170693A JP30945789A JP30945789A JPH03170693A JP H03170693 A JPH03170693 A JP H03170693A JP 30945789 A JP30945789 A JP 30945789A JP 30945789 A JP30945789 A JP 30945789A JP H03170693 A JPH03170693 A JP H03170693A
- Authority
- JP
- Japan
- Prior art keywords
- alloy
- plating
- layers
- wire
- conductor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910045601 alloy Inorganic materials 0.000 title claims abstract description 79
- 239000000956 alloy Substances 0.000 title claims abstract description 79
- 238000007747 plating Methods 0.000 title claims abstract description 53
- 239000004020 conductor Substances 0.000 title claims abstract description 18
- 238000004519 manufacturing process Methods 0.000 title claims description 9
- 239000002184 metal Substances 0.000 claims abstract description 27
- 229910052751 metal Inorganic materials 0.000 claims abstract description 27
- 238000005275 alloying Methods 0.000 claims abstract description 21
- 238000000034 method Methods 0.000 claims description 20
- 239000011248 coating agent Substances 0.000 claims description 12
- 238000000576 coating method Methods 0.000 claims description 12
- 229910052802 copper Inorganic materials 0.000 claims description 6
- 238000004804 winding Methods 0.000 claims description 4
- 229910052725 zinc Inorganic materials 0.000 claims description 3
- 238000009760 electrical discharge machining Methods 0.000 claims description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical group [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims 2
- 239000010949 copper Substances 0.000 claims 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims 1
- 239000011701 zinc Substances 0.000 claims 1
- 238000005406 washing Methods 0.000 abstract description 12
- 238000005260 corrosion Methods 0.000 abstract description 9
- 230000007797 corrosion Effects 0.000 abstract description 9
- 238000010438 heat treatment Methods 0.000 abstract description 9
- 238000009792 diffusion process Methods 0.000 abstract 2
- 239000010410 layer Substances 0.000 description 43
- 229910052709 silver Inorganic materials 0.000 description 8
- 229910017518 Cu Zn Inorganic materials 0.000 description 5
- 229910017752 Cu-Zn Inorganic materials 0.000 description 5
- 229910017943 Cu—Zn Inorganic materials 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- TVZPLCNGKSPOJA-UHFFFAOYSA-N copper zinc Chemical compound [Cu].[Zn] TVZPLCNGKSPOJA-UHFFFAOYSA-N 0.000 description 5
- 229910052738 indium Inorganic materials 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 229910001369 Brass Inorganic materials 0.000 description 3
- 239000010951 brass Substances 0.000 description 3
- 238000012733 comparative method Methods 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 238000003754 machining Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 229910052718 tin Inorganic materials 0.000 description 3
- 229910001316 Ag alloy Inorganic materials 0.000 description 2
- 229910000881 Cu alloy Inorganic materials 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000005238 degreasing Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229910052763 palladium Inorganic materials 0.000 description 2
- 238000005554 pickling Methods 0.000 description 2
- 229910017980 Ag—Sn Inorganic materials 0.000 description 1
- 229910000846 In alloy Inorganic materials 0.000 description 1
- 229910007162 SnPd Inorganic materials 0.000 description 1
- 235000017606 Vaccinium vitis idaea Nutrition 0.000 description 1
- 244000077923 Vaccinium vitis idaea Species 0.000 description 1
- 229910001297 Zn alloy Inorganic materials 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 210000001577 neostriatum Anatomy 0.000 description 1
- 238000009828 non-uniform distribution Methods 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 229910000601 superalloy Inorganic materials 0.000 description 1
- 229910002058 ternary alloy Inorganic materials 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Landscapes
- Electroplating And Plating Baths Therefor (AREA)
- Electroplating Methods And Accessories (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は電子電気機器等のリード線、接点材或いは耐蝕
材、放電加工用電極線等に用いられる合金被覆導体の製
造方法及びその方法に使用する多層メッキ装置に関する
.
〔従来の技術とその課題〕
電子電気機器用リードには、Cu又はCu合金等の線条
体上にAg又はAg合金を被覆した複合導体が線条体の
特性に加えてAg特有の優れた半田付性と耐蝕性を有す
る為広く用いられている.ところで上記のCu等の線条
体上にAg等を被覆する方法としてはメッキによる方法
が一般に適用されているが、合金をメッキする場合、特
にAg −In ,Ag −Sn ,Cu−Zn等の合
金はメッキ膜組戒を安定して保持する為にメッキ浴の金
属イオン濃度やPH等を厳密に調整する必要があり生産
性に劣るものであった.更に被覆合金が三元系以上の合
金になると、実験規模では製造できても、工業規模で量
産することは全く不可能であった.
このようなことから第6図に示したように例えば合金元
素A,Bの各々を単体として金属線条体上に層状にメッ
キし、このメッキ層を後から加熱拡散して合金化する方
法が提案された.しかしながら、このようなメッキ後加
熱拡散して合金化する方法はメッキ膜全体を均質な組戒
となすのに加熱処理を長時間行う必要があり、やはり生
産性に欠けるという問題があった。[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method for manufacturing an alloy-coated conductor used for lead wires, contact materials or corrosion-resistant materials for electronic and electrical equipment, electrode wires for electric discharge machining, etc., and the method thereof. Regarding the multilayer plating equipment used. [Conventional technology and its problems] Leads for electronic and electrical devices are made of composite conductors in which Ag or Ag alloy is coated on a filament such as Cu or Cu alloy. It is widely used due to its solderability and corrosion resistance. By the way, as a method of coating Ag etc. on the above-mentioned filament bodies such as Cu, plating is generally applied, but when plating alloys, especially Ag-In, Ag-Sn, Cu-Zn etc. Alloys require strict adjustment of the metal ion concentration and pH of the plating bath in order to maintain a stable plating film composition, resulting in poor productivity. Furthermore, when the coating alloy becomes a ternary or higher alloy, although it can be manufactured on an experimental scale, it is completely impossible to mass-produce it on an industrial scale. For this reason, as shown in Figure 6, there is a method in which, for example, each of alloying elements A and B is plated as a single layer on a metal wire body, and this plated layer is then heated and diffused to form an alloy. was suggested. However, such a method of alloying by heating and diffusing after plating requires a long heat treatment to form a homogeneous composition over the entire plated film, which again poses the problem of lack of productivity.
又メッキ装置も第5図にその平面図を示したように脱脂
、水洗、酸洗、水洗の各々の槽の後に、例えば合金元素
Aのメッキ浴槽、水洗槽、合金元素Bのメッキ浴槽、水
洗槽を直列に配置し、さらにその後に乾燥器を配置する
為、装置全体が長くなりスペース的にも不利であった。In addition, as shown in the plan view of FIG. 5, the plating equipment also includes, for example, a plating bath for alloy element A, a washing bath, a plating bath for alloy element B, and a washing bath after each of the degreasing, washing, pickling, and washing tanks. Because the tanks were arranged in series and the dryer was placed after them, the entire device became long, which was disadvantageous in terms of space.
又従来、放電加工用電極線には黄銅線が使用されていた
が高速加工及びカット面の清浄化を目的にCuvAにZ
nをメッキしこれを加熱し拡散させた電極線が開発され
た。しかしながらこの電極線は、Znf度が表面から内
部に向けて滅少し安定した性能が得られないという問題
があった。Conventionally, brass wires have been used as electrode wires for electrical discharge machining, but for the purpose of high-speed machining and cleaning of cut surfaces, CuvA uses Z-wire wires.
An electrode wire plated with n and heated to diffuse it has been developed. However, this electrode wire had a problem in that the Znf degree decreased from the surface toward the inside, making it impossible to obtain stable performance.
本発明はかかる状況に鑑み鋭意研究を行った結果成され
たもので、その目的とするところは高性能の合金被覆導
体を効率よく製造する方法を提供することにある。The present invention was achieved as a result of intensive research in view of the above situation, and its purpose is to provide a method for efficiently manufacturing a high-performance alloy coated conductor.
即ち請求項工の発明は、導体となす金属線条体表面に合
金層を被覆するに当たって、被覆合金元素を、各々の元
素又は/及び上記元素の少なくとも2種を含有する準合
金に分割して、他の合金元素層又は準合金層と交互に少
なくとも2層に分けてメッキしたのち、当該金属線条体
を所定塩度に加熱して上記メッキ層を相互に拡散せしめ
て合金化することを特徴とするものである.
請求項lの発明を具体的に説明すると、第1図に示した
ようにCu線上にAg及びInを交互に3層づつ積層し
た後、このCu線を450℃×IH加熱してAg及びI
n層を相互に拡散させてCU線上にAg In合金を
形戒する方法である.しかして被覆合金を分割してメッ
キするに際し合金元素を個々に分割する必要はなく、合
金メッキが容易な元素同士を少なくとも2種含有せしめ
た準合金としてメッキしてもよい。又被覆合金の各々の
元素又は準合金のメッキ層数はそれぞれ2層以上何層に
分けてもよく、層数を多くし厚さを薄くする程、合金化
の加熱処理時間が短縮されるとともに、合金被覆層の濃
度がより均一になり耐蝕性等の特性が向上する。In other words, the claimed invention involves dividing the coating alloy element into quasi-alloys containing each element and/or at least two of the above elements when coating the surface of the metal wire to be a conductor with an alloy layer. , after plating in at least two layers alternately with other alloy element layers or quasi-alloy layers, the metal wire is heated to a predetermined salinity to mutually diffuse the plated layers to form an alloy. This is a characteristic feature. To specifically explain the invention of claim 1, as shown in FIG. 1, three layers of Ag and In are alternately laminated on a Cu wire, and then the Cu wire is heated at 450° C.
This is a method of forming an AgIn alloy on the CU line by mutually diffusing the n-layers. When the coating alloy is divided into parts and plated, it is not necessary to separate the alloying elements individually, and the alloy may be plated as a quasi-alloy containing at least two types of elements that are easy to perform alloy plating. The number of plating layers for each element or quasi-alloy in the coating alloy may be divided into two or more layers, and the greater the number of layers and the thinner the thickness, the shorter the heat treatment time for alloying. , the concentration of the alloy coating layer becomes more uniform, improving properties such as corrosion resistance.
請求項2の発明は、請求項工の発明をメッキ装置を大型
化せずに効率よく実施する方法であって、導体となす金
属線条体を、少なくとも2本の回転ロール間を少なくと
も2回往復させて走行させ、上記回転ロール間に配置し
た少なくとも2個のメッキ浴槽に順次通して上記金属線
条体表面に被覆合金元素を、各々の元素又は/及び上記
元素の少なくとも2種を含有する準合金に分割して、他
の合金元素層又は準合金層と交互に少なくとも2層に分
けてメッキすることを特徴とするものである。The invention of claim 2 is a method for efficiently carrying out the claimed invention without increasing the size of the plating apparatus, the metal wire serving as a conductor being passed between at least two rotating rolls at least twice. The metal wire is made to travel back and forth and sequentially passed through at least two plating baths disposed between the rotating rolls to coat the surface of the metal wire with an alloying element containing each element or/and at least two of the above elements. The method is characterized in that it is divided into semi-alloys and plated in at least two layers alternately with other alloying element layers or semi-alloy layers.
請求項4の発明は前記請求項2の発明に使用する多層メ
ッキ装置、即ち導体となす金属線条体表面に合金元素の
各々を個々に又は/及び上記元素の少なくとも2種を含
有する準合金に分割してメッキする多層メッキ装置であ
って、上記線条体を巻回し往復走行させる為の少なくと
も2本の回転ロールと上記回転ロール間に合金元素の各
々を個々に又は/及び上記元素の少なくとも2種を含有
する準合金に分割してメッキする為のメッキ浴槽を少な
くとも2個配置したことを特徴とするものである。The invention of claim 4 provides a multilayer plating apparatus used in the invention of claim 2, that is, a semi-alloy containing each of the alloy elements individually or/and at least two of the above elements on the surface of the metal wire serving as the conductor. A multilayer plating device that divides and plating each of the alloying elements individually and/or between at least two rotating rolls for winding and reciprocating the filament and the rotating roll. The present invention is characterized in that at least two plating baths are arranged for dividing and plating semi-alloys containing at least two types.
次に請求項2及び4の発明を図を参照して具体的に説明
する。Next, the inventions of claims 2 and 4 will be specifically explained with reference to the drawings.
第2図は請求項2の発明を実施する装置つまり請求項4
の多層メッキ装置の一例を示す平面説明図である.図に
おいて1は金属線条体、2、3は回転ロール、4、5は
メッキ浴槽である.走行する金属線条体1を脱脂、水洗
、酸洗、水洗の各々の槽に順次通して前処理を行った後
、この金属線条体1を長平方向に所定間隔をあけて配置
した2本の回転ロール2、3に巻回して4ターンさせて
合金元素A,BをABABAの順に層状にメッキする.
即ち金属線条体1上に先ずメッキ浴槽4にて合金元素A
をメッキし、次いで水洗槽6にて水洗したのち、この金
属線条体lを回転ロール3に巻回してターンさせてメッ
キ浴槽5にて合金元素Bをメッキし、次いで水洗槽7に
て水洗したのち回転ロール2に巻回してターンさせて再
びメッキ浴槽4を通して合金元素Aをメンキする。FIG. 2 shows an apparatus for carrying out the invention of claim 2, that is, claim 4.
1 is an explanatory plan view showing an example of a multilayer plating apparatus. In the figure, 1 is a metal filament, 2 and 3 are rotating rolls, and 4 and 5 are plating baths. After the running metal filament 1 is pretreated by passing it through degreasing, water washing, pickling, and water washing tanks in sequence, two metal filaments 1 are arranged at a predetermined interval in the longitudinal direction. The alloy elements A and B are plated in layers in the order of ABABA by winding them around rotating rolls 2 and 3 and making four turns.
That is, alloying element A is first applied onto the metal filament 1 in a plating bath 4.
is plated, and then washed with water in a washing tank 6. The metal filament 1 is then wound around a rotating roll 3 and turned, plated with alloy element B in a plating bath 5, and then washed with water in a washing tank 7. Thereafter, it is wound around the rotary roll 2, turned, and passed through the plating bath 4 again to coat the alloy element A.
以下同じ手順を繰り返して合金元素A,Bの層を交互に
積層メッキし、次いで水洗槽及び乾燥器を通して図示し
ない巻取り機に巻取るものである。Thereafter, the same procedure is repeated to alternately stack and plate layers of alloy elements A and B, and then the film is passed through a washing tank and a dryer and wound into a winder (not shown).
第3図に示した装置は、3元合金をメッキする装置の部
分説明図で、3本の回転ロール2、3、8が三角形の頂
点に配置されていて各々のロール間に合金元素A,B,
Cをメッキする為のメッキ浴槽4、5、9がそれぞれ配
置され、各々のメッキ浴槽の後方に水洗槽6、7、10
が配置されている。尚、4元以上の合金の場合はその分
回転ロール数を増やせば良い。The device shown in FIG. 3 is a partial explanatory diagram of a device for plating ternary alloys. Three rotating rolls 2, 3, and 8 are arranged at the apexes of a triangle, and between each roll, alloy elements A, B,
Plating baths 4, 5, and 9 for plating C are arranged, and washing tanks 6, 7, and 10 are arranged behind each plating bath.
is located. In addition, in the case of an alloy of four or more elements, the number of rotating rolls may be increased accordingly.
第4図に示した装置は金属線条体lを巻回する為の回転
ロール2、3を軸が水平になるよう配置したもので、こ
の場合はメッキ浴槽4、5や水洗槽6、7を上下方向に
配置することができて省スペースに効果的である.
上記において回転ロールに溝を設けておき、この溝に金
属線条体を入れてガイドすると金属線条体のもつれが防
止されるばかりでなく、金属線条体の上下又は左右方向
の走行位置を的確に設定することができる.
上記の金属線条体への給電は回転ロールから行っても又
別に給電ブラシを設けて行ってもよい.又メッキ層の厚
さは、電流密度等のメッキ条件を変える他、槽の長さに
よっても任意に設定することができる.給電を給電ブラ
シにより行って線ターンl本毎に給電することにより、
各層のメッキ厚さを任意に変えることができ、これを加
熱して拡散することにより任意の濃度勾配を有する合金
を被覆することができる.又メッキした金属線条体を乾
燥したのち引き続き加熱処理炉を配置してメッキ層を連
続して加熱拡散して合金化することも可能である.
請求項3の発明はCuの線条体上にCuとZnを多層に
メッキしこれを所定温度に加熱してCu一Z n合金層
を形威してなる放電加工用電極線の製造方法である.こ
の発明方法によれば、CuとZnを薄く多層にメッキす
ることにより濃度が一定のCu Zn合金層を形成す
ることができる。The device shown in FIG. 4 is one in which rotating rolls 2 and 3 for winding the metal filament 1 are arranged so that their axes are horizontal. can be placed vertically, which is effective in saving space. In the above, if the rotating roll is provided with a groove and the metal filament is inserted into the groove and guided, not only will tangling of the metal filament be prevented, but the running position of the metal filament in the vertical or horizontal direction will be controlled. It can be set accurately. Power may be supplied to the above-mentioned metal filament from a rotating roll or by providing a separate power supply brush. Furthermore, the thickness of the plating layer can be set arbitrarily by changing the plating conditions such as current density and by changing the length of the bath. By feeding power with a feeding brush and feeding every 1 wire turn,
The plating thickness of each layer can be changed arbitrarily, and by heating and diffusing it, it is possible to coat an alloy with an arbitrary concentration gradient. It is also possible to arrange a heat treatment furnace after drying the plated metal filament to continuously heat and diffuse the plated layer to form an alloy. The invention of claim 3 is a method for producing an electrode wire for electric discharge machining, in which a multi-layered Cu and Zn layer is plated on a Cu filament, and this is heated to a predetermined temperature to form a Cu-Zn alloy layer. be. According to the method of this invention, a Cu-Zn alloy layer having a constant concentration can be formed by plating Cu and Zn in multiple thin layers.
〔作用]
本発明においては、合金元素を各々単体で又は/及び上
記元素の少なくとも2種を含有する準合金に分割して、
他の合金元素層又は準合金層と交互に少なくとも2層に
分けてメッキするので各々の合金元素層又は準合金層は
各々が薄く形成され合金化に要する加熱処理時間が短縮
されるとともに得られる被覆合金層が組戒的に均一なも
のとなり、被覆合金が三元系以上の合金の場合でも工業
的規模で量産が可能となる.
又合金元素を各々単体で交互に多層メッキするに際し、
被メッキ体となる金属線条体を回転ロールに巻回し、往
復走行させて上記回転ロール間に配置したメッキ浴槽に
て繰り返しメッキするのでメッキ装置の占める長さが短
縮される.〔実施例〕
以下に本発明を実施例により詳細に説明する。[Function] In the present invention, each alloy element is used alone or/and divided into quasi-alloys containing at least two of the above elements,
Since at least two layers are plated alternately with other alloying element layers or quasi-alloy layers, each alloying element layer or quasi-alloy layer is formed thinly, and the heat treatment time required for alloying can be shortened. The coating alloy layer becomes uniform in composition, and mass production on an industrial scale becomes possible even when the coating alloy is a ternary or higher alloy. In addition, when plating each alloy element in multiple layers alternately,
The metal filament to be plated is wound around rotating rolls, moved back and forth, and repeatedly plated in a plating bath placed between the rotating rolls, so the length occupied by the plating equipment is shortened. [Example] The present invention will be explained in detail below with reference to Examples.
実施例I
第2図に示した装置を用いて0. 6 n+mφのCu
線上にAg及びInをそれぞれ3、2層づつ交互に積層
メ・7キし、450″CXIH加熱処理してAg13%
In合金を11μI1厚さに被覆したCu線を製造した
。Example I Using the apparatus shown in FIG. 6 n+mφ Cu
7 layers of Ag and In are alternately laminated on the wire, 3 and 2 layers each, and heat treated at 450"CXIH to make 13% Ag.
A Cu wire coated with an In alloy to a thickness of 11 μI was manufactured.
実施例2
第3図に示した装置を用い、0. 6 mmφのCu線
上にAg ,Sn ,Pdをそれぞれ3、2、2層交互
に積層メッキし、次いでこれを9 0 0 ”C X
2 H加熱処理してAg −14%Sn 24%Pd
合金をIOμm厚さに被覆したCu線を製造した。Example 2 Using the apparatus shown in FIG. 3, 2, and 2 layers of Ag, Sn, and Pd were alternately plated on a 6 mmφ Cu wire, and then this was plated with a 900"C
Ag-14%Sn 24%Pd after 2H heat treatment
A Cu wire coated with an alloy to a thickness of IO μm was manufactured.
比較例l
第5図に示した装置を用いてCu線上にAg及びInを
それぞれ1層づつメンキした他は実施例1と同し方法に
よりAg−1r+合金を被覆したCU合金を製造した。Comparative Example 1 A CU alloy coated with Ag-1r+ alloy was produced in the same manner as in Example 1, except that one layer each of Ag and In was coated on the Cu wire using the apparatus shown in FIG.
比較例2
第5図に示した装置を用いてCu線上にAg、Sn,P
dをそれぞれ1層づつメッキした他は実施例2と同じ方
法によりAg −Sn Pd合金を被覆したCu線を
製造した。Comparative Example 2 Ag, Sn, and P were deposited on the Cu wire using the apparatus shown in Figure 5.
A Cu wire coated with an Ag-SnPd alloy was manufactured by the same method as in Example 2, except that one layer of d was plated on each layer.
斯くのごとくして得られた各々のAg合金を被覆したC
u線についてメッキ層の合金元素の分布をAESにより
測定し、又耐蝕性を塩水噴霧試験(5%NaCl!水溶
液を40゜Cで24H噴霧)により調査した,結果はメ
ッキ層の構或を併記して第1表に示した。C coated each Ag alloy thus obtained.
The distribution of alloying elements in the plating layer was measured by AES for U-ray, and the corrosion resistance was investigated by a salt spray test (spraying 5% NaCl! aqueous solution at 40°C for 24 hours).The results are also shown along with the structure of the plating layer. The results are shown in Table 1.
第1表より明らかなように本発明方法品(実施例I、2
)は合金元素の分布が均質であり、従って耐蝕性にも優
れたものとなった。As is clear from Table 1, the method products of the present invention (Examples I and 2)
) has a homogeneous distribution of alloying elements and therefore has excellent corrosion resistance.
これに対し比較方法品(比較例1、2)は合金元素の分
布が不均質で、その結果耐蝕性に劣るものとなった。又
上記比較方法品のメッキ層を均質化する為更に900゜
CX2H加熱したが均質化できなかった。On the other hand, the comparative method products (Comparative Examples 1 and 2) had a non-uniform distribution of alloying elements, and as a result, had poor corrosion resistance. Further, in order to homogenize the plating layer of the product manufactured using the comparative method, the plated layer was further heated at 900°C for 2 hours, but it could not be homogenized.
実施例3
第2図に示した装置を用い0.6問φのCu線上にCu
を1μ一、Znを工μ屠交互に10層メッキしたのち、
600゜C X 2 0 sec加熱処理してCu−4
4%Zn合金を20μm厚さに被覆したCU線を製造し
た.
比較例3
0.6開φのCu線上にZnをlOtlI1メッキした
のち、これを600℃X 2 0 sec加熱処理して
Cu−Zn合金を合金を被覆したCu線を製造した.斯
くのごとくして得られた各々のCu−Zn合金被mCu
線について表面近傍のZn:a度分布をAESにより測
定し、又SUS材料を切断して加工速度を比較した。Example 3 Using the apparatus shown in FIG.
After plating 1μ of Zn and 10 layers of Zn alternately,
Heat treated at 600°C x 20 sec to form Cu-4
A CU wire coated with 4% Zn alloy to a thickness of 20 μm was manufactured. Comparative Example 3 A Cu wire with a diameter of 0.6 mm was plated with 1OtlI of Zn, and then heat treated at 600°C for 20 seconds to produce a Cu wire coated with a Cu-Zn alloy. Each Cu-Zn alloy coated mCu obtained in this way
The Zn:a degree distribution near the surface of the wire was measured by AES, and the SUS material was cut to compare the processing speed.
その結果、本発明方法品(実施例3)は、Cu− Z
n合金層中にZnが均一に分布しており、従って加工速
度も従来の黄銅線の1.7倍に向上した。As a result, the product manufactured by the method of the present invention (Example 3)
Zn is uniformly distributed in the n-alloy layer, so the processing speed is also improved to 1.7 times that of conventional brass wire.
これに対し比較方法品(比較例3)は、Znが不均一に
分布しており、加工速度は従来の黄銅線の1.3倍に留
まった.
以上被覆材料にAg又はCuをベースとした合金を用い
た場合について説明したが、本発明方法は他の任意の合
金にも適用できることは言うまでもない.
本発明方法においてはメッキしたあと軽く減面加工を施
すと加熱処理後の合金層の密度が向上して耐蝕性等の特
性が一段と高い値のものとなる.〔効果〕
以上述べたように、本発明によれば被覆合金の元素が均
質に分布し、従って耐蝕性等に優れた合金被覆導体を効
率よく製造することができ、工業上顕著な効果を奏する
。On the other hand, in the comparative method product (Comparative Example 3), Zn was unevenly distributed and the processing speed was only 1.3 times that of the conventional brass wire. Although the case where an alloy based on Ag or Cu is used as the coating material has been described above, it goes without saying that the method of the present invention can be applied to any other alloy. In the method of the present invention, by lightly reducing the surface area after plating, the density of the alloy layer after heat treatment increases, resulting in even higher properties such as corrosion resistance. [Effects] As described above, according to the present invention, the elements of the coating alloy are distributed homogeneously, and therefore an alloy coated conductor with excellent corrosion resistance etc. can be efficiently manufactured, and a remarkable effect is achieved industrially. .
第I図は本発明方法にて用いられる多層メ,キの構戊例
を示ブー横断面図、第2、3図は本発明方法を実施する
装置の例を示す平面図、第4図は本発明方法を実施する
装置の他の例を示す側面図、第5図は従来法にて用いる
装置の平面図、第6図は従来法にて用いられるメッキ層
の構或を示す横断面図である。
1−・倫属線条体、2、3、8一回転ロール、4、5、
9−・メンキ浴槽、6、7、10− 水洗槽。Fig. I is a cross-sectional view showing an example of the structure of the multilayer film used in the method of the present invention, Figs. 2 and 3 are plan views showing an example of an apparatus for carrying out the method of the present invention, and Fig. 4 is A side view showing another example of the apparatus for carrying out the method of the present invention, FIG. 5 is a plan view of the apparatus used in the conventional method, and FIG. 6 is a cross-sectional view showing the structure of the plating layer used in the conventional method. It is. 1-・Lingen striatum, 2, 3, 8 one rotation roll, 4, 5,
9-・Menki bathtub, 6, 7, 10- Washing tank.
Claims (4)
当たって、被覆合金元素を、各々の元素又は/及び上記
元素の少なくとも2種を含有する準合金に分割して、他
の合金元素層又は準合金層と交互に少なくとも2層に分
けてメッキしたのち、当該金属線条体を所定温度に加熱
して上記メッキ層を相互に拡散せしめて合金化すること
を特徴とする合金被覆導体の製造方法。(1) When coating the surface of a metal wire to be a conductor with an alloy layer, the coating alloy element is divided into quasi-alloys containing each element and/or at least two of the above elements, and the other alloy elements are An alloy coated conductor characterized in that the metal filament is plated in at least two layers alternately with layers or quasi-alloy layers, and then the metal filament is heated to a predetermined temperature to cause the plated layers to mutually diffuse and alloy. manufacturing method.
ロール間を少なくとも2往復させて走行させ、上記回転
ロール間に配置した少なくとも2個のメッキ浴槽に順次
通して上記金属線条体表面に被覆合金元素を、各々の元
素又は/及び上記元素の少なくとも2種を含有する準合
金に分割して、他の合金元素層又は準合金層と交互に少
なくとも2層に分けてメッキすることを特徴とする請求
項1記載の合金被覆導体の製造方法。(2) A metal filament serving as a conductor is made to travel between at least two rotating rolls at least twice, and the metal filament is sequentially passed through at least two plating baths arranged between the rotating rolls. Dividing the alloy element coated on the surface into semi-alloys containing each element or/and at least two of the above elements, and plating the alloy elements in at least two layers alternately with other alloy element layers or semi-alloy layers. The method for manufacturing an alloy coated conductor according to claim 1, characterized in that:
の製造方法であって、導体となす金属線条体が銅であり
、被覆合金の各々の元素が銅及び亜鉛であることを特徴
とする合金被覆放電加工用電極線の製造方法。(3) The method for producing an alloy coated conductor according to claim 1 or 2, wherein the metal wire forming the conductor is copper, and each element of the coated alloy is copper and zinc. A method for producing a featured alloy-coated electrode wire for electrical discharge machining.
々に又は/及び上記元素の少なくとも2種を含有する準
合金に分割してメッキする多層メッキ装置であって、上
記線条体を巻回し往復走行させる為の少なくとも2本の
回転ロールと上記回転ロール間に合金元素の各々を個々
に又は/及び上記元素の少なくとも2種を含有する準合
金に分割してメッキする為のメッキ浴槽を少なくとも2
個配置したことを特徴とする多層メッキ装置。(4) A multilayer plating device for plating each of the alloying elements individually or/and divided into quasi-alloys containing at least two of the above elements on the surface of a metal wire serving as a conductor, the wire Plating for plating each of the alloying elements individually or/and divided into semi-alloys containing at least two of the above elements between at least two rotating rolls for winding and reciprocating the above-mentioned rotating rolls. at least 2 bathtubs
A multilayer plating device characterized by the arrangement of individual pieces.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30945789A JPH03170693A (en) | 1989-11-28 | 1989-11-28 | Production of alloy coated conductor and multilayer plating apparatus used therefor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30945789A JPH03170693A (en) | 1989-11-28 | 1989-11-28 | Production of alloy coated conductor and multilayer plating apparatus used therefor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03170693A true JPH03170693A (en) | 1991-07-24 |
Family
ID=17993223
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP30945789A Pending JPH03170693A (en) | 1989-11-28 | 1989-11-28 | Production of alloy coated conductor and multilayer plating apparatus used therefor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03170693A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8070827B2 (en) | 2007-07-03 | 2011-12-06 | Histogenics Corporation | Method for use of a double-structured tissue implant for treatment of tissue defects |
US8685107B2 (en) | 2007-07-03 | 2014-04-01 | Histogenics Corporation | Double-structured tissue implant and a method for preparation and use thereof |
US9149562B2 (en) | 2007-07-03 | 2015-10-06 | Histogenics Corporation | Method for use of a double-structured tissue implant for treatment of tissue defects |
US9421304B2 (en) | 2007-07-03 | 2016-08-23 | Histogenics Corporation | Method for improvement of differentiation of mesenchymal stem cells using a double-structured tissue implant |
WO2022007534A1 (en) * | 2020-07-09 | 2022-01-13 | 江苏兴达钢帘线股份有限公司 | One-step post-plating treatment method for electroplating brass steel wire |
-
1989
- 1989-11-28 JP JP30945789A patent/JPH03170693A/en active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8070827B2 (en) | 2007-07-03 | 2011-12-06 | Histogenics Corporation | Method for use of a double-structured tissue implant for treatment of tissue defects |
US8685107B2 (en) | 2007-07-03 | 2014-04-01 | Histogenics Corporation | Double-structured tissue implant and a method for preparation and use thereof |
US9149562B2 (en) | 2007-07-03 | 2015-10-06 | Histogenics Corporation | Method for use of a double-structured tissue implant for treatment of tissue defects |
US9393347B2 (en) | 2007-07-03 | 2016-07-19 | Histogenics Corporation | Double-structured tissue implant and a method for preparation and use thereof |
US9421304B2 (en) | 2007-07-03 | 2016-08-23 | Histogenics Corporation | Method for improvement of differentiation of mesenchymal stem cells using a double-structured tissue implant |
US9687590B2 (en) | 2007-07-03 | 2017-06-27 | Histogenics Corporation | Double-structured tissue implant and a method for preparation and use thereof |
US9993326B2 (en) | 2007-07-03 | 2018-06-12 | Histogenics Corporation | Method for use of a double-structured tissue implant for treatment of tissue defects |
US10842610B2 (en) | 2007-07-03 | 2020-11-24 | Histogenics Corporation | Method for use of a double-structured tissue implant for treatment of tissue defects |
WO2022007534A1 (en) * | 2020-07-09 | 2022-01-13 | 江苏兴达钢帘线股份有限公司 | One-step post-plating treatment method for electroplating brass steel wire |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH10510883A (en) | Wire making process | |
KR20120122535A (en) | Wire electrode for electro discharge machining and thesame methode | |
EP0696940B1 (en) | Wire plating | |
CA2195218C (en) | Copper wire and process for making copper wire | |
US3676322A (en) | Apparatus and method for continuous production of electrolytically treated wires | |
JPH03170693A (en) | Production of alloy coated conductor and multilayer plating apparatus used therefor | |
JPS58193392A (en) | Method and device for cladding elongated metal member with metal layer | |
KR20140051734A (en) | Wire electrode for electro discharge machining and thesame methode | |
US3328271A (en) | Method of electroplating copper on niobium-zirconium alloy superconductors for stabilization | |
JP2644911B2 (en) | Wire-type electrode for electric discharge machining and method of manufacturing the same | |
CN1049016C (en) | Production process for galvanized plastic-sprayed double coiled welded tube and its equipment and products | |
JP3131680B2 (en) | Manufacturing method of copper plated wire | |
JPS61109623A (en) | Electrode wire for wire electric spark spark machining and its manufacturing method | |
JPS59129624A (en) | Wire cut electrode wire for electrical discharge machining and its manufacturing method | |
US3160481A (en) | Mate tin plate | |
RU2751355C1 (en) | Method for applying galvanic coating on precision metal threads and installation for its implementation | |
JP6532550B2 (en) | Method of manufacturing a wire made of a first metal, having a sheath layer made of a second metal | |
JPS61117021A (en) | Electrode wire for wire-cut electric discharge machining and manufacturing method thereof | |
JPH02189811A (en) | Conductor | |
JPS6171925A (en) | Method of producing composite electrode wire for electrospark machining | |
JP2002208323A (en) | Manufacturing method of very thin wire or coated very thin wire | |
JP6510691B1 (en) | Plating equipment | |
JPS6244563A (en) | Manufacture of hot dip zinc-aluminum alloy coated steel wire | |
JPH02259056A (en) | Production of hot dip tinned wire | |
JPS61281874A (en) | Production for polyester molded article having metallized surface |