JPH03169302A - Operation of vacuum pump in degassing membrane separation apparatus - Google Patents
Operation of vacuum pump in degassing membrane separation apparatusInfo
- Publication number
- JPH03169302A JPH03169302A JP30731089A JP30731089A JPH03169302A JP H03169302 A JPH03169302 A JP H03169302A JP 30731089 A JP30731089 A JP 30731089A JP 30731089 A JP30731089 A JP 30731089A JP H03169302 A JPH03169302 A JP H03169302A
- Authority
- JP
- Japan
- Prior art keywords
- vacuum pump
- valve
- vacuum
- liquid
- pumps
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000012528 membrane Substances 0.000 title claims abstract description 34
- 238000000926 separation method Methods 0.000 title claims abstract description 13
- 238000007872 degassing Methods 0.000 title claims description 15
- 239000007788 liquid Substances 0.000 claims abstract description 24
- 239000012466 permeate Substances 0.000 claims description 15
- 238000000034 method Methods 0.000 claims description 11
- 230000005540 biological transmission Effects 0.000 abstract 1
- 238000007599 discharging Methods 0.000 abstract 1
- 239000007789 gas Substances 0.000 description 22
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 15
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 3
- 239000011550 stock solution Substances 0.000 description 3
- 238000009825 accumulation Methods 0.000 description 2
- 241001062872 Cleyera japonica Species 0.000 description 1
- 241000252233 Cyprinus carpio Species 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000006837 decompression Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000012510 hollow fiber Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000011017 operating method Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
Landscapes
- Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
- Degasification And Air Bubble Elimination (AREA)
Abstract
Description
【発明の詳細な説明】
〈産業上の刊川分野〉
本発明は脱気膜分鮒装敗における真空ポンプの運転方法
に関するものである。DETAILED DESCRIPTION OF THE INVENTION <Industrial Publication Field> The present invention relates to a method of operating a vacuum pump in degassing membrane separation of carp.
く従来の技術〉
溶存ガスを含有する液体からそのガスを分離する場合、
膜モジュールの透過側を真空ポンプにより減圧し、同モ
ジュールの原液側に上記液体を流通させ、圧力条件を上
記減圧により溶存ガスが保有する蒸気圧以下に保持し、
その流通液中の熔存ガスを気化して分離するいわゆる、
脱気膜モジュール法が公知である.
この脱気膜モジュール法においては、真空ポンプを必要
とし、この真空ポンプとしては、水封式真空ポンプ、油
回転式真空ポンプ、ダイヤフラム型真空ポンプ等が存在
する.水封式真空ポンプは、吸入口並びに排出口を有す
るシリンダー内に羽根車を設け、シリンダー内に水を容
れ、羽根車の回転により水を遠心力により外周に寄せ吸
入口からの空気を劇根車間に抱込み、この抱込んだ空気
を水で封止し、排出口において排出する構威である.油
回転式真空ポンプは、ローターにスプリングで付勢した
翼板を取着し、該ローターをシリンダー内に納め、気密
保持のために全体を抽封する構成である.また、ダイヤ
フラム型真空ポンプは、吸入弁並びに171出弁を有す
るヘッダーにダイヤフラムを取着し、このダイヤフラム
チャンバー容積をクランクの操作によって増減さセる榊
成である.く解決しようとするvIAS>
しかしながら、水封式真空ポンプの使用可能な圧力範囲
は760〜100MHgであり、前記含有ガスの種類い
かんによっては、効率的な脱気が国難である.油回転真
空ポンプにおいては、かかる不利はないが高価であり、
油封を必要とするために保々も容易ではない.また、こ
れら何れの真空ポンプにおいても、大型であって、設置
スペース上、不利であり、更に、高価である.これらの
真空ポンプに較べ、ダイヤフラム型真空ポンプは、小型
であり、しかも、安価であって使用範囲も760=IO
−”ml{gとかなり広範囲である.しかし、上記脱気
膜モジュール法においては、減圧下、液も蒸発し、この
蒸気がダイヤフラムチャンバ;内でvl1i1されて水
滴となり、この水滴の累積によってチャンバー内が水で
満たされて真空効率が低下し、所定の減圧度を保証し得
す、液一ガス分離が困難になる.
本発明の目的は、ダイヤフラム型真空ポンプを使用して
も効率の良い液一ガス分離を可能とする脱気膜分離装置
における真空ポンプの運転方法を提イハして、真空ポン
プについての低コスト化等を図ることにある.
く課題を解決するための手段〉
本発明に係る脱気膜分離装置における真空ポンプの運転
方法は、容積可変室に吸入弁と排出弁を設けた真空ポン
プの吸入口を膜モジュールの透過側に連結して、その透
過側の減圧下でガス含有液体中のガスを透過分離する脱
気膜分離装置において、上記真空ポンプを2台並設し、
これらの各ポンプにおいて、上記液体が透過側減圧下で
膜を透過し蒸発し真空ポンプ内で凝縮して生成せる溜液
を真空ポンプ内から排出する操作と、蒸気透過側を真空
引きする操作とを交互に行うことを特徴とする脱気膜分
離装置における真空ポンプの運転方法であ3.
く実施例の説191〉
以下、図面により本発明の実施例について説明?る.
図において、lは膜モジュールであり、膜には気体透過
膜を用いている,11は廉液室を、l2は原液入口を、
l3は原液出口を、14は透過気体室をそれぞれ示して
いる, P, , P,は並設した2台の真空ポンプで
あり、容積が増減されるチャンバーに吸入弁と排出弁と
を設けた構威であって、例えば、ダイヤフラム型真空ポ
ンプを使用できる.■.、■■は各真空ボンプPI,P
■とモジュールlの透過気体室l4との間に設けた自動
バルブである.Vlf%v0は各真空ボンプi’, ,
p,とバルブV.、■■との間に設けた自動バルブで
ある.4は真空針でる.5は自動停止バルプ(装置停止
時や異常時に橡水を遮断する》.6は定流量バルプ、7
は圧力計、8は流量計である.
上記において、真空ボンプP. 、P.の交瓦運転によ
り、膜モジュール1の透過気体室lを減圧する.aモジ
ェール1の原液室11には、溶存ガスを含む原液を流通
させ、このガスに対し、前記の減圧度を蒸気圧以下にし
保持し膜にガスを透過さ?運転中の真空ポンプにより排
出する.この場合、原液の蒸発もあり、その蒸気が真空
ポンプのチャンバーに入り、チャンバー壁面で冷却凝縮
されて液滴となり、チャンバー内に溜まっていく.しか
し、本発明によればかかる液溜にもかかわらず、ポンプ
をスムースに運転できる.
上記において、バルブV++(Vt+)が閉のとき、バ
ノレブv1バVzw)は開であり、バルフ゛V++(V
z+)が開のとき、バルプV目(Vzz)は閉である.
今、バルブVllが開、バルプvIIが閉であってポン
プ1),の吸入・排出作動によりモジュール透過気体室
l4の真空引きが行われているとする.この真空引作動
力{一定時間行われると、バルブV.が閉、バルブV■
が開となり、ポンプP■が吸入・排出作動を開始し、ポ
ンプ!》zによりモジュール透過気体室の真空引きが行
われる.ボンプP8が作動しても、一定時間はボンプP
lの吸入・排出作動を継続させたままとする.このとき
、バルブV目は開となっているから、多量の大気の吸入
・排出があり、その激しい空気流れのために当該ポンプ
P1内の前記した溜液を排出できる.この排出後、当該
ボンプP1を停止させる.
このような溜液の排出操作とモジュール透過気体室の真
空引きとが上記の両ポンプについて交互に繰リ返してい
く.従って、モジュールの透過気体室を連続の減圧状態
に保持できる。また、溜液の排出された停止中の真空ポ
ンプが次に作動されるときには、溜液がないから正常な
減圧作動を保証できる.
一台ポンプの真空引作動継続時間(停止時間)は、基準
の真空度をA閣11 gとすれば、初期真空度を0.9
AmmHgとし、1.1AmmHgとなる時間以内とす
ることが望ましい.而して、かかる時間間隔で両ポンプ
を交互に真空引作動させることにより、J!i過気体室
側の減圧度を基準値に対し±lO%以内に保持すること
ができ、良奸な透過量のもとて液体−ガス分離を行うこ
とができる.上記において、真空ポンプには、吸入弁並
びに排出弁を有するシリンダーにピストンを装着し、ピ
ストンの往復勤により室容積を増減させる型式のものも
使用できる。また、IIIモジュールには、スパイラル
膜モジュール、中空糸膜モジュール、管状膜モジュール
あるいはプレート型膜モジュール等、何れをも使用でき
る。Conventional technology> When separating gas from a liquid containing dissolved gas,
The permeation side of the membrane module is depressurized by a vacuum pump, the liquid is passed through the raw liquid side of the module, and the pressure condition is maintained below the vapor pressure held by the dissolved gas by the depressurization,
The so-called method that vaporizes and separates the dissolved gas in the circulating liquid
The degassing membrane module method is well known. This degassing membrane module method requires a vacuum pump, and examples of this vacuum pump include water ring vacuum pumps, oil rotary vacuum pumps, and diaphragm vacuum pumps. A water ring vacuum pump has an impeller installed inside a cylinder that has an inlet and an outlet.Water is placed inside the cylinder, and as the impeller rotates, water is brought to the outer periphery by centrifugal force, and the air from the inlet is drawn into the air. The system traps the trapped air between cars, seals it with water, and discharges it at the exhaust port. An oil rotary vacuum pump has a rotor with spring-biased blades attached, the rotor is housed in a cylinder, and the entire cylinder is sealed to maintain airtightness. A diaphragm type vacuum pump is a Sakaki type vacuum pump in which a diaphragm is attached to a header having an inlet valve and a 171 outlet valve, and the volume of the diaphragm chamber is increased or decreased by operating a crank. However, the usable pressure range of water ring vacuum pumps is 760 to 100 MHg, and depending on the type of gas contained, efficient deaeration is a national problem. Oil rotary vacuum pumps do not have this disadvantage, but they are expensive and
It is not easy to maintain as it requires an oil seal. In addition, all of these vacuum pumps are large, disadvantageous in terms of installation space, and also expensive. Compared to these vacuum pumps, diaphragm vacuum pumps are smaller, cheaper, and have a usable range of 760=IO.
However, in the degassing membrane module method described above, the liquid also evaporates under reduced pressure, and this vapor is converted into water droplets within the diaphragm chamber, and the accumulation of these water droplets causes the chamber to The vacuum pump is filled with water, reducing vacuum efficiency and making it difficult to separate liquid and gas, which can guarantee a specified degree of decompression. An object of the present invention is to propose a method for operating a vacuum pump in a degassing membrane separation device that enables liquid-gas separation, and to reduce the cost of the vacuum pump. The method for operating a vacuum pump in a degassing membrane separation device is to connect the inlet of a vacuum pump, which has a variable volume chamber with an inlet valve and a discharge valve, to the permeate side of the membrane module, and to operate the vacuum pump under reduced pressure on the permeate side. In a degassing membrane separation device that permeates and separates gas in a gas-containing liquid, two of the above vacuum pumps are installed in parallel,
In each of these pumps, the liquid passes through the membrane under reduced pressure on the permeate side, evaporates, and condenses in the vacuum pump to discharge the accumulated liquid produced from the vacuum pump, and the vapor permeation side is evacuated. 3. A method of operating a vacuum pump in a degassing membrane separation device, which is characterized in that the following steps are performed alternately. Description of Embodiments 191> Hereinafter, embodiments of the present invention will be explained with reference to the drawings. Ru. In the figure, l is a membrane module, and a gas permeable membrane is used for the membrane, 11 is a low-liquid chamber, l2 is a raw liquid inlet,
13 indicates the raw solution outlet, 14 indicates the permeation gas chamber, P, , P, are two vacuum pumps installed in parallel, and the chamber whose volume is increased or decreased is provided with an intake valve and an exhaust valve. For example, a diaphragm type vacuum pump can be used. ■. , ■■ is each vacuum pump PI, P
This is an automatic valve installed between (1) and the permeation gas chamber (14) of module (1). Vlf%v0 is for each vacuum pump i', ,
p, and valve V. This is an automatic valve installed between ,■■. 4 is the vacuum needle. 5 is an automatic stop valve (cuts off the water when the equipment is stopped or there is an abnormality). 6 is a constant flow valve, 7
is a pressure gauge, and 8 is a flow meter. In the above, vacuum pump P. , P. The permeate gas chamber 1 of the membrane module 1 is depressurized by the alternating operation. A stock solution containing dissolved gas is passed through the stock solution chamber 11 of the module 1, and the gas is permeated through the membrane while the degree of vacuum is kept below the vapor pressure. It is evacuated by a running vacuum pump. In this case, there is also evaporation of the stock solution, and the vapor enters the vacuum pump chamber, cools and condenses on the chamber wall, forms droplets, and accumulates inside the chamber. However, according to the present invention, the pump can be operated smoothly despite such liquid accumulation. In the above, when the valve V++ (Vt+) is closed, the vano rev v1 (Vzw) is open, and the valve V++ (Vt+) is open.
z+) is open, the Vth valve (Vzz) is closed.
Assume that valve Vll is open, valve vII is closed, and the module permeate gas chamber 14 is evacuated by suction and discharge operations of pump 1). When this evacuation force is applied for a certain period of time, the valve V. is closed, valve V■
opens, pump P starts suction/discharge operation, and pump! >> The module permeate gas chamber is evacuated by z. Even if the pump P8 is activated, the pump P8 will remain active for a certain period of time.
The suction/exhaust operation of l continues. At this time, since the Vth valve is open, a large amount of air is taken in and discharged, and due to the strong air flow, the above-mentioned accumulated liquid in the pump P1 can be discharged. After this discharge, the pump P1 is stopped. This operation of draining the accumulated liquid and evacuation of the module permeate gas chamber is repeated alternately for both pumps. Therefore, the permeate gas chamber of the module can be maintained in a continuously reduced pressure state. Furthermore, when a stopped vacuum pump that has discharged accumulated liquid is operated next time, normal depressurization can be guaranteed because there is no accumulated liquid. The evacuation operation duration (stop time) of one pump is 0.9 when the standard vacuum is 11 g.
AmmHg, preferably within the time it reaches 1.1AmmHg. By evacuating both pumps alternately at such time intervals, J! i The degree of reduced pressure on the side of the overgas chamber can be maintained within ±10% of the standard value, and liquid-gas separation can be performed with a reasonable amount of permeation. In the above, the vacuum pump may be of a type in which a piston is attached to a cylinder having an intake valve and an exhaust valve, and the chamber volume is increased or decreased by reciprocating the piston. Moreover, any of a spiral membrane module, a hollow fiber membrane module, a tubular membrane module, a plate type membrane module, etc. can be used as the III module.
上記の作動制御には、自動バルブV I I % V
t Iを一定時間ごとに交互に開閉する時間制御、また
は、減圧度が下限値に達したときに、自動バルブVll
、VZ+の開閉を切換える圧力制御の何れを川いてもよ
い.
次に本発明の運転方法の試験結果を従来法との比較のも
とで説明する.
熔存酸素量8.1ppmの原水を流量:2.5ton/
hr,IISfiモジュール人口圧力:1.5kg/c
+aで膜モジュールに流量して溶存酸素量0. 5p
pmの原水に処理するケースであり、透過側を4011
118g以下に保持する必要がある。かかる減圧下、酸
素がガス状態で膜を透過すると共に水蒸気も5 0 g
/ h rで膜透過し、この水蒸気の45g / h
rは大気中に放散させ得るが、5 g/ It rは
真空ポンプのダイヤフラムチャンバーに凝結、滞溜して
しまう.而るに、一台のダイヤフラム型真空ポンプの連
続運転では、初期運転時30wHgの真空度が2hr後
には4(lmHgに、5hr後には60mHgになって
、脱気}漠モジュールの著しい性能低下が生じた.これ
に対し、本発明に基づき、真空ポンプを二台用い、バル
ブVll、■!1の開閉切換えを一時間間隔で行い、一
方のバルブを閉にしたのちも、一方のポンプの作動をI
O分間持続させたところ、8000時間の運転中、減圧
度を40mHg以下に保持でき、所定通りの酸素脱ガス
処理を行い得た.
〈発明の効果〉
上述した通り、本発明に係る脱気膜分離装置における真
空ポンプの運転方法によれば、ダイヤプラム型真空ポン
プを用いるにもかかわらず、透過側を透過水蒸気の凝縮
障害を排除しつつ所定の減圧度に保持でき、真空ポンプ
に対するコスト、設備スペース上遊離な条件で熔存ガス
含有液体の脱気処理を行い得る.For the above operation control, automatic valve V I I % V
Time control that alternately opens and closes tI at regular intervals, or automatic valve Vll when the degree of pressure reduction reaches the lower limit.
, or the pressure control that switches the opening and closing of VZ+. Next, the test results of the operating method of the present invention will be explained in comparison with the conventional method. Flow rate of raw water with dissolved oxygen content of 8.1 ppm: 2.5 ton/
hr, IISfi module population pressure: 1.5kg/c
+a to flow into the membrane module to reduce the amount of dissolved oxygen to 0. 5p
This is a case where the raw water is treated to pm, and the permeate side is 4011.
It is necessary to keep it below 118g. Under such reduced pressure, oxygen passes through the membrane in a gaseous state, and 50 g of water vapor also passes through the membrane.
/ hr permeates through the membrane, and 45g/h of this water vapor
Although r can be dissipated into the atmosphere, 5 g/It r condenses and accumulates in the diaphragm chamber of the vacuum pump. However, in continuous operation of a single diaphragm vacuum pump, the degree of vacuum is 30 wHg at the initial operation, but after 2 hours, it becomes 4 (lmHg), and after 5 hours, it becomes 60 mHg, resulting in a significant deterioration in the performance of the degassing module. In contrast, based on the present invention, two vacuum pumps were used, and valves Vll and ■!1 were switched open and closed at one-hour intervals, and even after one valve was closed, the other pump did not operate. I
When the operation was continued for 0 minutes, the degree of vacuum could be maintained at 40 mHg or less during 8,000 hours of operation, and the oxygen degassing process could be performed as specified. <Effects of the Invention> As described above, according to the method of operating a vacuum pump in a degassing membrane separation device according to the present invention, the problem of condensation of water vapor permeating the permeation side can be eliminated despite using a diaphragm type vacuum pump. It is possible to maintain a predetermined degree of reduced pressure while reducing the pressure, and it is possible to degas a liquid containing dissolved gas without requiring the cost and equipment space required for a vacuum pump.
図面は本発明に真空ポンプを運転する脱気膜分離装置を
示す説り1図である.
1・・・・・・膜モジュール、 l4・・・・・・透
過ガス室、PI,p!・・・・・・真空ポンプ。The drawing is a diagram illustrating a degassing membrane separation device that operates a vacuum pump according to the present invention. 1...Membrane module, l4...Permeation gas chamber, PI, p! ······Vacuum pump.
Claims (1)
入口を膜モジュールの透過側に連結して、その透過側の
減圧下でガス含有液体中のガスを透過分離する脱気膜分
離装置において、上記真空ポンプを二台並設し、これら
の各ポンプにおいて、上記液体が透過側減圧下で膜を透
過し蒸発し真空ポンプ内で凝縮して生成せる溜液を真空
ポンプ内から排出する操作と、上記透過側を真空引きす
る操作とを交互に行うことを特徴とする脱気膜分離装置
における真空ポンプの運転方法。A degassing membrane separation device that connects the inlet of a vacuum pump with a suction valve and a discharge valve in a variable volume chamber to the permeation side of a membrane module, and permeates and separates gas in a gas-containing liquid under reduced pressure on the permeation side. In this method, two vacuum pumps are installed in parallel, and in each of these pumps, the liquid permeates through the membrane under reduced pressure on the permeate side, evaporates, and condenses in the vacuum pump to generate a accumulated liquid, which is discharged from the vacuum pump. 1. A method for operating a vacuum pump in a degassing membrane separation apparatus, comprising alternately performing the operation and the operation of vacuuming the permeate side.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30731089A JPH03169302A (en) | 1989-11-27 | 1989-11-27 | Operation of vacuum pump in degassing membrane separation apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30731089A JPH03169302A (en) | 1989-11-27 | 1989-11-27 | Operation of vacuum pump in degassing membrane separation apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03169302A true JPH03169302A (en) | 1991-07-23 |
Family
ID=17967610
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP30731089A Pending JPH03169302A (en) | 1989-11-27 | 1989-11-27 | Operation of vacuum pump in degassing membrane separation apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03169302A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5749942A (en) * | 1997-02-14 | 1998-05-12 | Raychem Corporation | Apparatus for extracting a gas from a liquid and delivering the gas to a collection station |
US5762684A (en) * | 1995-11-30 | 1998-06-09 | Dainippon Screen Mfg. Co., Ltd. | Treating liquid supplying method and apparatus |
JP2000102702A (en) * | 1998-09-28 | 2000-04-11 | Erc:Kk | Vacuum deaerator |
-
1989
- 1989-11-27 JP JP30731089A patent/JPH03169302A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5762684A (en) * | 1995-11-30 | 1998-06-09 | Dainippon Screen Mfg. Co., Ltd. | Treating liquid supplying method and apparatus |
US5749942A (en) * | 1997-02-14 | 1998-05-12 | Raychem Corporation | Apparatus for extracting a gas from a liquid and delivering the gas to a collection station |
JP2000102702A (en) * | 1998-09-28 | 2000-04-11 | Erc:Kk | Vacuum deaerator |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2994740B2 (en) | Degassing device | |
US5062273A (en) | Method and apparatus for removal of gas from refrigeration system | |
US7189066B2 (en) | Light gas vacuum pumping system | |
MXPA04003645A (en) | Gas/liquid separator including a liquid trap filter. | |
JPH07185526A (en) | Method and device for deaeration in closed type liquid circulation system | |
JPH03169302A (en) | Operation of vacuum pump in degassing membrane separation apparatus | |
JP2003062403A (en) | Operating method for membrane degasifier | |
JP3043805B2 (en) | Equipment for continuously purifying waste gas from vacuum equipment | |
JP3521778B2 (en) | Operating method of membrane deaerator | |
US3112190A (en) | Method and apparatus for decontaminating hydraulic fluids | |
JP2757610B2 (en) | Bleeding device for refrigerator | |
JP3630787B2 (en) | Nitrogen gas generator with built-in air compressor | |
JPH06178908A (en) | Device for separating liquid from gas by utilizing cyclone and permeable membrane | |
JPH06134446A (en) | Degassed water manufacturing method and degassed water manufacturing module | |
JPH0749159A (en) | Non-condensable gas separation storage device for absorption air conditioner | |
JP2005220750A (en) | Air compressor | |
JP2538486B2 (en) | Connection structure of water-sealed vacuum pump in super deaerator | |
RU1100974C (en) | Diffusion vacuum pump | |
JP2752283B2 (en) | Oil cleaning equipment | |
JP3628390B2 (en) | Nitrogen gas generator with built-in air compressor | |
JP2683988B2 (en) | Drainage structure of water-sealed vacuum pump in super deaerator | |
JP3958524B2 (en) | Oil rotary vacuum pump | |
JP2000102702A (en) | Vacuum deaerator | |
JPH06201231A (en) | Device for removing moisture contained in refrigerant | |
CN118203929A (en) | VPSA technique oxygenerator |