[go: up one dir, main page]

JPH03162417A - Polyether-based copolymer and production thereof - Google Patents

Polyether-based copolymer and production thereof

Info

Publication number
JPH03162417A
JPH03162417A JP30275489A JP30275489A JPH03162417A JP H03162417 A JPH03162417 A JP H03162417A JP 30275489 A JP30275489 A JP 30275489A JP 30275489 A JP30275489 A JP 30275489A JP H03162417 A JPH03162417 A JP H03162417A
Authority
JP
Japan
Prior art keywords
polyether copolymer
polyether
copolymer
alkali metal
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30275489A
Other languages
Japanese (ja)
Inventor
Shigeru Matsuo
茂 松尾
Masayo Nakao
中尾 昌代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP30275489A priority Critical patent/JPH03162417A/en
Publication of JPH03162417A publication Critical patent/JPH03162417A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polyethers (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は新規なポリエーテル系共重合体およびその製造
法に関し、さらに詳しくは、特に耐熱性に優れたポリエ
ーテル系共重合体と,それを得るための製造法とに関す
る. [従来技術および発明が解決しようとする課題]近年、
エンジニアリングプラスチックスとして種々の構造を有
する樹脂が開発され、たとえば自動車分野、電気●電子
分野、精密機械分野.OA機器分野,光通信機器分野な
どの広い分野において用いられている. しかし、その性能はすべての面で充分に満足し得るには
至っておらず、その上、要求性能が厳しくなってきてい
ることから、新しい素材の開発が望まれている. 一方、このエンジニアリングプラスチックスの1つであ
るポリエーテル系共重合体は,耐熱性の樹脂であり、こ
のポリエーテル系共重合体についても種々の提案がなさ
れている. たとえば、特開昭47− 14270号公報においては
,ジニトロベンゾニトリルとジハロゲノベンゾフェノン
と二価フェノールとをアルカリ金属化合物の存在下に反
応させる芳香族ポリエーテル系共重合体の製造方法が提
案されている. しかしながら、この方法によると、充分に高い分子量の
共重合体を得ることができず、その共重合体は酎熱性や
機械的強度の点で必ずしも充分であるとは言い難いもの
である. また、特開昭60− 235835号公報においては,
ジハロゲノベンゾニトリルと4,4′−ジハロゲノベン
ゾフェノンと二価フェノールのアルカリ金属塩とを同時
に反応させることにより、 次式(a): で表わされる繰り返し単位と,次式(b):(b) で表わされる繰り返し単位からなり(ただし、上式中の
Arは二価の芳香族基である.),前記式(a)で表わ
される繰り返し単位の組成比が0.5以上であるポリエ
ーテル系共重合体を製造する方法が提案されている. しかしながら、このポリエーテル系共重合体は非品質で
あるので、ガラス転移温度を超える温度領域においては
機械的強度を維持することができず,これも酎熱性が充
分であるとは言い難いものである. 本発明は前記事情を改善するためになされたものである
. 本発明の目的は、優れた耐熱性、特に充分に高いガラス
転移温度を有する,新しい素材として実用的なポリエー
テル系共重合体と、それを効率良く製造する方法とを提
供することにある.[″aBを解決するための手段] 前記目的を達成するための、請求項lの発明の構成は、
 (1)次式(I); で表わされる繰り返し単位および次式(■):(II) で表わされる繰り返し単位からなり、 前記式 (1)で表わされる繰り返し単位のモル組或比[(I)
/((I)+ (n)11が0.45〜0.80である
とともに、400℃における溶融粘度が1,000ボイ
ズ以上であることを特徴とするポリエーテル系共重合体
であり 前記ポリエーテル系共重合体は、ジハロゲノベンンニト
リルと、4.4・−ビス(4−ハロゲノベンゾイル)ビ
フェニルと,4,4・−ビフェノールとをアルカリ金属
化合物の存在下に中性極性溶媒中で反応させることを特
徴とする方法により製造することができる. 以下、本発明を詳しく説明する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a novel polyether copolymer and a method for producing the same, and more specifically, to a polyether copolymer with particularly excellent heat resistance and a method for producing the same. and a manufacturing method for obtaining it. [Prior art and problems to be solved by the invention] In recent years,
Resins with various structures have been developed as engineering plastics, such as in the automobile field, electric/electronic field, and precision machinery field. It is used in a wide range of fields such as OA equipment and optical communication equipment. However, its performance has not yet reached full satisfaction in all aspects, and the required performance has become more stringent, so the development of new materials is desired. On the other hand, polyether copolymers, which are one of these engineering plastics, are heat-resistant resins, and various proposals have been made regarding these polyether copolymers. For example, JP-A-47-14270 proposes a method for producing an aromatic polyether copolymer in which dinitrobenzonitrile, dihalogenobenzophenone, and dihydric phenol are reacted in the presence of an alkali metal compound. There is. However, according to this method, it is not possible to obtain a copolymer with a sufficiently high molecular weight, and the copolymer cannot necessarily be said to have sufficient heat resistance and mechanical strength. Furthermore, in Japanese Patent Application Laid-Open No. 60-235835,
By simultaneously reacting dihalogenobenzonitrile, 4,4'-dihalogenobenzophenone, and an alkali metal salt of dihydric phenol, a repeating unit represented by the following formula (a): and the following formula (b): (b ) (However, Ar in the above formula is a divalent aromatic group.), and the composition ratio of the repeating units represented by the formula (a) is 0.5 or more. A method for producing a copolymer has been proposed. However, since this polyether copolymer is of poor quality, it cannot maintain mechanical strength in the temperature range exceeding the glass transition temperature, and it is difficult to say that it has sufficient heat resistance. be. The present invention has been made to improve the above situation. An object of the present invention is to provide a polyether copolymer that has excellent heat resistance, particularly a sufficiently high glass transition temperature, and is useful as a new material, and a method for efficiently producing the same. [Means for solving "aB"] The configuration of the invention of claim 1 to achieve the above object is as follows:
(1) It consists of a repeating unit represented by the following formula (I); and a repeating unit represented by the following formula (■): (II), and the molar composition or ratio of the repeating unit represented by the formula (1) [(I )
/((I)+(n)11 is from 0.45 to 0.80, and the polyether copolymer has a melt viscosity of 1,000 voids or more at 400°C. The ether copolymer is produced by combining dihalogenobennitrile, 4,4-bis(4-halogenobenzoyl)biphenyl, and 4,4-biphenol in a neutral polar solvent in the presence of an alkali metal compound. The present invention will be described in detail below.

一ポリエーテル系共重合体一 請求項1に記載のポリエーテル系共重合体において重要
な点の一つは、前記式(r)で表わされる繰り返し単位
と前記式(II)で表わされる繰り返し単位とからなる
とともに、前記式(I)で表わされる繰り返し単位のモ
ル組或比が0.45〜O.aOの範囲にあることである
. 上記単位の繰り返しからなり、かつモル組或比が上記の
範囲にあると,ポリエーテル系共重合体は充分な耐薬品
性、機械的強度等を備え、かつ充分に高いガラス転移温
度を有するのでjw熱性にも優れたものである. 前記式(I)で表わされる繰り返し単位のモル組威比が
0.80を超えるとると、ポリエーテル系共重合体は非
品性となり、耐熱性や耐薬品性に劣るようになる.一方
, 0.45未満では、ポリエーテル系共重合体のガラ
ス転移温度が低くなる.また、本発明のポリエーテル系
共重合体においては、温度400℃における溶融粘度が
t ,oooポイズ以上であることが重要である. この溶融粘度が1 ,000ボイズ未満である低分子量
のポリエーテル系共重合体では、充分な耐熱性および機
械的強度を達成することができないからである. なお、本発明ではたとえば実施例にも示したように、3
0,000ポイズ台の溶融粘度のポリエーテル系共重合
体が得られるが,それでも良好な成形性を発揮すること
ができる.本発明のポリエーテル系共重合体は、たとえ
ば結晶融点が330〜400℃程度であって、結晶性を
有するとともに、充分に高分子量であり、充分な耐熱性
を示すとともに,酎溶剤性、機械的強度に優れ,たとえ
ば電気●電子機器分野、機械分野等における新たな素材
として好適に用いることができる. −ポリエーテル系共重合体の製造方法一本発明のポリエ
ーテル系共重合体は、請求項2に記載の方法に従って、
ジハロゲノベンゾニトリノレと4.4゜−ビス(4−ハ
ロゲノベンソ”イノレ)ビ7エニルと4.4゛−ビフェ
ノールとをアルカリ金属化合物の存在下に中性極性溶媒
中で反応させることにより、製造することができる. 上記ジハロゲノベンゾニトリルの具体例としては、たと
えば,次式; (ただし、式中、Xはハロゲン原子である.)で表わさ
れる2.6−ジハロゲノベンゾニトリルや,次式; X (ただし、式中、Xは前記と同じ意味である.)で表わ
される2,トジハロゲノベンゾニトリルナトが挙げられ
る. これらの中でも、好ましいのは2.6−ジクロロベンゾ
ニトリル、2.6−ジフルオロベンゾニトリル、2.←
ジクロロベンゾニトリル,2.4−ジフルオロベンゾニ
トリルであり、特に好ましいのは2,6−ジクロロベン
ゾニトリルである. 次に、4,4′−ビス(←ハロゲノベンゾイル)ビフェ
ニルとしては、置換しているそのハロゲンに制限は無い
が,好ましいのは塩素とフー2素である. すなわち,本発明で好ましい4,4゛−ビス(4−ハロ
ゲノベンゾイル)ビフェニルは、次式で表わされる. また,本発明においてもう一つの重合或分である4.4
゛−ビフェノールは、下式で表わされる.前記アルカリ
金属化合物は,前記4,r−ビフェノールをアルカリ金
属塩にすることのできるものであればよく、特に制限は
ないが、好ましいのはアルカリ金属度酸塩、アルカリ金
属炭酸水素塩である. 上記アルカリ金属炭酸塩としては、たとえば炭酸リチウ
ム、炭酸ナトリウム、炭酸カリウム,炭酸ルビジウム、
炭酸セシウムなどが挙げられる.これらの中でも、好ま
しいのは炭酸ナトリウム、炭酸カリウムである. 上記アルカリ金属炭酸水素塩としては、たとえば炭酸水
素リチウム、炭酸水素ナトリウム、炭酸水素カリウム,
炭酸水素ルビジウム、炭酸水素セシウムなどが挙げられ
る. これらの中でも、好ましいのは炭酸水素ナトリウム、炭
酸水素カリウムである. 本発明の方法においては、上記各種のアルカリ金属化合
物の中でも、炭酸ナトリウム、炭酸カリウムを特に好適
に使用することができる.前記中性極性溶媒としては、
たとえばN,N−ジメチルホルムアミド、N,N−ジエ
チルホルムアミド、N,N−ジメチルアセトアミド. 
N,N−ジェチルアセトアミド、N,N−ジプロビルア
セトアミド、N,N−ジメチル安息香酸アミド,N−メ
チル−2−ビロリドン、N一エチル−2−ピロリドン,
 N−イソプロビル−2−ピロリドン、N−インブチル
ー2ーピロリドン,N−n−プロビル−2−ピロリドン
、N一n−ブチルー2−ビロリドン、N−シクロヘキシ
ルー2−ピロリドン、N−メチル−3−メチル−2−ビ
ロリドン、N一エチル−3−メチル−2−ピロリドン、
N一メチル−3.4.5 − }リメチル−2−ビロリ
ドン、N−メチル−2−ピペリドン、N一エチル−2−
ピペリドン、N−インプロビル−2−ピペリドン、N−
メチル−6−メチル−2−ピペリドン、N−メチル−3
−エチルピペリドン,ジメチルスルホキシド、ジェチル
スルホキシド、1−メチル−1−オキソスルホラン、1
−エチル−1−オキソスルホラン、1−フェニル−1−
オキソスルホラン、N,N・−ジメチルイミダゾリジノ
ン、ジフェニルスルホンなどが挙げられる,前記ジハロ
ゲノベンゾニトリルの使用割合は、ジハロゲノベンゾニ
トリルと4.4゜−ビス(4−ハロゲノベンゾイル)ビ
フェニルとの合計量に対するモル比で、前記ジハロゲノ
ベンゾニトリルがo,45〜0.80の割合であり、前
記アルカリ金属化合物の使用割合は、前記4,4゜−ビ
フェノールの水酸基1個につき、通常1.01〜2.5
0当量、好マシ〈は1.02〜1.20当量の割合であ
る. 前記中性極性溶媒の使用量については、特に制限はない
が,通常、前記ジハロゲノベンゾニトリルと,前記4,
4゜−ビフェノールと、前記アルカリ金属化合物との合
計100重量部当り、200〜2,000重量部の範囲
で選ばれる. 本発明の方法においては、重合或分の配合順序に特に制
限はないが、一般的にはジハロゲノベンゾニトリルと4
,4゜−ビス(4−ハロゲノベンゾイル)ビフェニルと
4.4゛−ビフェノールとを同時に仕込んで反応させる
か、あるいはジハロゲノベンゾトリルと4,4゜−ビフ
ェノールとを反応させてから、得られる反応生戒物を4
,4゜−ビス(4−ハロゲノベンゾイル)ビフェニルと
反応させる.本発明の方法において、ビス(←ハロゲノ
ベンゾイル)ビフェニルとジハロゲノベンゾニトリルと
の合計量の、前記4.1−ビフェノールの使用量に対す
るモル比は0.99〜1.02、好ましくは1.00〜
1.01とする. 反応温度は通常は150〜380℃、好ましくは180
〜330℃の範囲である..反応温度が150℃未満で
は,反応速度が遅すぎて実用的ではないし、380℃を
超えると、副反応を招くことがある.また,この一連の
反応の反応時間は、通常、0.1〜10時間であり、好
ましくは1時間〜5時間である. 反応終了後、得られるポリエーテル系共重合体を含有す
る中性極性溶媒溶液から、公知の方法に従って、ポリエ
ーテル系共重合体を分離、精製することにより、ポリエ
ーテル系共重合体を得ることができる. このようにして請求項1に記載のポリエーテル系共重合
体は,簡単な工程で効率良く製造することができる. [実施例] 次に実施例に基いて本発明をさらに具体的に説明する. (実施例1) トルエンを満たしたディーンスタルクトラップ、攪拌装
置およびアルゴンガス吹き込み管を備えた内容積300
mJlの反応器に、2,6−ジクロロベンゾニトリル3
.440 g (0.02モル),ビフェノール7.3
66 g (0.04モル),炭酸カリウム6.634
 g (0.048モル)およびN−メチルビロリドン
80mMを入れ、アルゴンガスを吹き込みながら、1時
間かけて室温から195℃にまで昇温させた. 昇温後、少量のトルエンを加えて、生威する水を共沸に
より除去した. 次いで、温度195℃で40分間反応を行なったのち、
4,4゜−ビス(4−フルオロベンゾイル)ビフェニル
7.968 g (0.020モル)のN−メチルビロ
リドン120mjL溶液を加えて,さらに1時間30分
反応を行なった. 反応終了後、生威物をブレンダー(ワーニング社製)で
粉砕し、水、メタノールの順に洗浄を行なってから、乾
燥し,白色粉末状の生威物16.5gを得た. この生威物につきIR測定を行なったところ、2,22
0cm−’の位置にニトリル基による吸収が、1,65
0cm−1の位置にカルポニル基による吸収が,1,2
40cm−1の位置にエーテル結合による吸収がそれぞ
れ確認された. これらの結果および元素分析の結果から、この生成物は
下記の構造の繰り返し単位からなるポリエーテル系共重
合体であると確認された.なお、このポリエーテル系共
重合体の収率は、前記収量から100%であった. ただし、(I) / ( (I) + (II) ) 
=0.5このポリエーテル系共重合体の特性について測
定したところ、温度400℃における溶融粘度(ゼロせ
ん断粘度)が32,000ポイズ、ガラス転移温度が1
96℃、融点が389℃、熱分解開始温度が′560℃
(空気中、5%重量減)であった. なお、溶液粘度の測定を試みたが、どの有機溶媒にも溶
解せず、測定不可能であった.また、400℃でこの共
重合体のプレスフィルムを作製し、難燃性を調べるため
ライターの火に曝したところ、炎はすぐ消え,溶融滴下
もなかった. また、このポリエーテル系共重合体から試験片を射出或
形して,ASTM  D−638に準拠して機械的強度
を測定したところ,下記の結果が得られた. 引張り強度;1100kg/cm2 引張り弾性率; 35,000k g / c m 2
伸び;90% (実施例2) アルゴンガス吹き込み管,Wl拌装置および蒸留装置を
備えた内容積300+nfLのセパラブルフラスコに4
,4゛−ビス(4−フルオロベンゾイル)ビフェニル9
.562 g (0.024モル) . 2.6−ジク
ロロベンゾニトリル2.064 g (0.012モル
) . 4.4’−ビフェノール7.366 g (0
.04モル)、無水炭酸カリウム6.081 g (0
.044モル)、ジフェニルスルフォン80gを入れ,
190℃で45分,250℃で20分、330℃で1時
間反応させた. 反応終了後、生威物をア七トン中にてブレンダーで粉砕
し、この粉砕物をア七トン、水、アセトンの順で洗浄し
て、白色粉末状のポリエーテル系共重合体16.4g 
(収率99%)を得た.この共重合体の特性について測
定したところ、温度400゜Cにおける溶融粘度(ゼロ
せん断粘度)が26.000ポイズ、ガラス転移温度が
191℃、融点が378℃,熱分解開始温度が561℃
(空気中、5%重量減)であった. 実施例1と同様にして元素分析を行なったところ,この
共重合体は実施例lにおける(I)と(II)で表わさ
れる繰り返し単位からなるポリエーテル系共重合体であ
ることが、確認された.なお、繰り返し単位の割合は次
のとおりであつた. (I) / (  (I)  +  (TI)  ) 
 =0.3(実施例3) 実施例1において2.6−ジクロロベンゾニトリルの使
用量を3,784 g (0.022モル)、 4.4
’−ビス(4−フルオロベンゾイル)ビフェニルの使用
割合を7,172 g (0.018モル)に代えたほ
かは実施例1と同様にしてポリエーテル系共重合体を製
造した. 得られたポリエーテル系共重合体の400℃における溶
融粘度は19,000ボイズ、ガラス転移温度は198
℃、融点385℃、熱分解温度は555℃であった.な
お、繰り返し単位の割合は次のとおりであった. (I) / ( (I) + (II) ) =0.5
5(実施例4) 実施例1において2,6−ジクロロベンゾニトリルの使
用量を4,816 g (0.028モル)および4,
4゜−ビス(4−フルオロベンゾイル)ビフェニルの使
用割合を4,781 g (0.012モル)に代えた
ほかは実施例1と同様にしてポリエーテル系共重合体を
製造した. 得られたポリエーテル系共重合体の400℃における溶
融粘度は13,000ポイズ,ガラス転移温度は201
 ’l:!、融点395℃、熱分解温度は552℃であ
った. なお、繰り返し単位の割合は次のとおりであった.  
(r) / { (I) + (II) ) =0.7
[発明の効果] 本発明によれば、優れた機械的強度、耐薬品性、耐溶剤
性等を備えながら耐熱性のとくに優れた実用的なポリエ
ーテル系共重合体と、それを効率良く製造するための方
法とを提供することができる. したがって本発明は電気、電子、機械、化学等の諸分野
に素材として力用なエンジニアリングプラスチックスを
提供するものとして、重要である.
One of the important points in the polyether copolymer according to claim 1 is that the repeating unit represented by the formula (r) and the repeating unit represented by the formula (II) and the molar ratio of the repeating units represented by the formula (I) is 0.45 to 0. It is within the range of aO. When the polyether copolymer is composed of repeating units described above and the molar ratio is within the above range, the polyether copolymer has sufficient chemical resistance, mechanical strength, etc., and has a sufficiently high glass transition temperature. jwIt also has excellent heat resistance. When the molar composition ratio of the repeating unit represented by the formula (I) exceeds 0.80, the polyether copolymer becomes inferior in quality and has poor heat resistance and chemical resistance. On the other hand, if it is less than 0.45, the glass transition temperature of the polyether copolymer becomes low. Further, it is important for the polyether copolymer of the present invention that the melt viscosity at a temperature of 400° C. is t2,00 poise or more. This is because a low molecular weight polyether copolymer having a melt viscosity of less than 1,000 voids cannot achieve sufficient heat resistance and mechanical strength. In addition, in the present invention, for example, as shown in the examples, 3
Although a polyether copolymer having a melt viscosity of 0,000 poise can be obtained, it can still exhibit good moldability. The polyether copolymer of the present invention has, for example, a crystal melting point of about 330 to 400°C, has crystallinity, has a sufficiently high molecular weight, exhibits sufficient heat resistance, and has excellent resistance to solvents and mechanical properties. It has excellent mechanical strength and can be suitably used as a new material in the electrical/electronic equipment field, mechanical field, etc. -Production method of polyether copolymer 1 The polyether copolymer of the present invention is produced according to the method according to claim 2.
Produced by reacting dihalogenobenzonitrinole, 4.4゜-bis(4-halogenobenzo"inole)bi7enyl, and 4.4゛-biphenol in a neutral polar solvent in the presence of an alkali metal compound. Specific examples of the above dihalogenobenzonitrile include 2,6-dihalogenobenzonitrile represented by the following formula; (wherein, X is a halogen atom); 2, dihalogenobenzonitrile represented by -difluorobenzonitrile, 2.←
Dichlorobenzonitrile, 2,4-difluorobenzonitrile, and particularly preferred is 2,6-dichlorobenzonitrile. Next, as for 4,4'-bis(←halogenobenzoyl)biphenyl, there is no restriction on the substituted halogen, but chlorine and fluorine are preferred. That is, 4,4'-bis(4-halogenobenzoyl)biphenyl preferred in the present invention is represented by the following formula. In addition, in the present invention, another polymerization step 4.4
゛-Biphenol is represented by the following formula. The alkali metal compound may be any compound that can convert the 4,r-biphenol into an alkali metal salt, and is not particularly limited, but alkali metal diacids and alkali metal hydrogen carbonates are preferred. Examples of the alkali metal carbonates include lithium carbonate, sodium carbonate, potassium carbonate, rubidium carbonate,
Examples include cesium carbonate. Among these, preferred are sodium carbonate and potassium carbonate. Examples of the alkali metal hydrogen carbonates include lithium hydrogen carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate,
Examples include rubidium hydrogen carbonate and cesium hydrogen carbonate. Among these, preferred are sodium hydrogen carbonate and potassium hydrogen carbonate. In the method of the present invention, among the various alkali metal compounds mentioned above, sodium carbonate and potassium carbonate can be particularly preferably used. As the neutral polar solvent,
For example, N,N-dimethylformamide, N,N-diethylformamide, N,N-dimethylacetamide.
N,N-jethylacetamide, N,N-dipropylacetamide, N,N-dimethylbenzoic acid amide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone,
N-isopropyl-2-pyrrolidone, N-inbutyl-2-pyrrolidone, N-n-propyl-2-pyrrolidone, N-n-butyl-2-pyrrolidone, N-cyclohexy-2-pyrrolidone, N-methyl-3-methyl- 2-pyrrolidone, N-ethyl-3-methyl-2-pyrrolidone,
N-methyl-3.4.5-}limethyl-2-pyrrolidone, N-methyl-2-piperidone, N-ethyl-2-
piperidone, N-improvir-2-piperidone, N-
Methyl-6-methyl-2-piperidone, N-methyl-3
-Ethylpiperidone, dimethyl sulfoxide, diethyl sulfoxide, 1-methyl-1-oxosulfolane, 1
-ethyl-1-oxosulfolane, 1-phenyl-1-
Examples of the dihalogenobenzonitrile include oxosulfolane, N,N-dimethylimidazolidinone, and diphenylsulfone. The molar ratio of the dihalogenobenzonitrile to the total amount is from 45 to 0.80, and the ratio of the alkali metal compound used is usually 1. 01-2.5
0 equivalent, better ratio is 1.02 to 1.20 equivalent. There is no particular restriction on the amount of the neutral polar solvent used, but usually the dihalogenobenzonitrile and the 4.
The amount is selected in the range of 200 to 2,000 parts by weight per 100 parts by weight of the 4°-biphenol and the alkali metal compound. In the method of the present invention, there is no particular restriction on the order of polymerization, but generally dihalogenobenzonitrile and
, 4゜-bis(4-halogenobenzoyl)biphenyl and 4,4゛-biphenol are simultaneously charged and reacted, or dihalogenobenzotolyl and 4,4゜-biphenol are reacted and then the reaction obtained. 4 living things
, 4°-bis(4-halogenobenzoyl)biphenyl. In the method of the present invention, the molar ratio of the total amount of bis(←halogenobenzoyl)biphenyl and dihalogenobenzonitrile to the amount of 4,1-biphenol used is 0.99 to 1.02, preferably 1.00. ~
Set it to 1.01. The reaction temperature is usually 150 to 380°C, preferably 180°C.
The temperature is in the range of ~330°C. .. If the reaction temperature is less than 150°C, the reaction rate is too slow to be practical, and if it exceeds 380°C, side reactions may occur. Further, the reaction time for this series of reactions is usually 0.1 to 10 hours, preferably 1 hour to 5 hours. After completion of the reaction, a polyether copolymer is obtained by separating and purifying the polyether copolymer from the resulting neutral polar solvent solution containing the polyether copolymer according to a known method. Can be done. In this way, the polyether copolymer according to claim 1 can be efficiently produced through simple steps. [Examples] Next, the present invention will be explained in more detail based on Examples. (Example 1) Internal volume 300 equipped with a Dean-Starck trap filled with toluene, a stirring device and an argon gas blowing tube
mJl reactor, 2,6-dichlorobenzonitrile 3
.. 440 g (0.02 mol), biphenol 7.3
66 g (0.04 mol), potassium carbonate 6.634
g (0.048 mol) and 80 mM of N-methylpyrrolidone were added, and the temperature was raised from room temperature to 195°C over 1 hour while blowing argon gas. After raising the temperature, a small amount of toluene was added to remove viable water by azeotropy. Next, after carrying out a reaction at a temperature of 195°C for 40 minutes,
A solution of 7.968 g (0.020 mol) of 4,4°-bis(4-fluorobenzoyl)biphenyl in 120 mjL of N-methylpyrrolidone was added, and the reaction was further carried out for 1 hour and 30 minutes. After the reaction, the raw material was pulverized using a blender (manufactured by Warning Co., Ltd.), washed with water and methanol in that order, and then dried to obtain 16.5 g of white powdery raw material. When we conducted IR measurements on this biomaterial, we found that 2.22
The absorption by the nitrile group at the 0 cm-' position is 1,65
The absorption by the carbonyl group at the 0 cm-1 position is 1,2
Absorption due to ether bond was confirmed at the position of 40 cm-1. From these results and the results of elemental analysis, this product was confirmed to be a polyether copolymer consisting of repeating units with the following structure. The yield of this polyether copolymer was 100% based on the above yield. However, (I) / ((I) + (II))
=0.5 When the properties of this polyether copolymer were measured, the melt viscosity (zero shear viscosity) at a temperature of 400°C was 32,000 poise, and the glass transition temperature was 1.
96℃, melting point 389℃, thermal decomposition start temperature '560℃
(5% weight loss in air). An attempt was made to measure the viscosity of the solution, but it was impossible to measure as it did not dissolve in any organic solvent. In addition, when a press film of this copolymer was prepared at 400°C and exposed to a lighter's flame to test its flame retardance, the flame quickly extinguished and there was no melting and dripping. In addition, a test piece was injected or shaped from this polyether copolymer and its mechanical strength was measured in accordance with ASTM D-638, and the following results were obtained. Tensile strength: 1100 kg/cm2 Tensile modulus: 35,000 kg/cm2
Elongation: 90% (Example 2) In a separable flask with an internal volume of 300+nfL equipped with an argon gas blowing tube, a Wl stirring device, and a distillation device, 4
, 4′-bis(4-fluorobenzoyl)biphenyl 9
.. 562 g (0.024 mol). 2.6-dichlorobenzonitrile 2.064 g (0.012 mol). 4.4'-biphenol 7.366 g (0
.. 04 mol), anhydrous potassium carbonate 6.081 g (0
.. 044 mol) and 80 g of diphenylsulfone were added.
The reaction was performed at 190°C for 45 minutes, at 250°C for 20 minutes, and at 330°C for 1 hour. After the reaction, the raw materials were ground in a blender in acetone, and the pulverized product was washed with acetone, water, and acetone in this order to obtain 16.4 g of a white powdery polyether copolymer.
(yield 99%). Measurement of the properties of this copolymer revealed that the melt viscosity (zero shear viscosity) at a temperature of 400°C was 26,000 poise, the glass transition temperature was 191°C, the melting point was 378°C, and the thermal decomposition onset temperature was 561°C.
(5% weight loss in air). Elemental analysis was conducted in the same manner as in Example 1, and it was confirmed that this copolymer was a polyether copolymer consisting of repeating units represented by (I) and (II) in Example 1. Ta. The proportions of repeating units were as follows. (I) / ((I) + (TI))
=0.3 (Example 3) In Example 1, the amount of 2,6-dichlorobenzonitrile used was 3,784 g (0.022 mol), 4.4
A polyether copolymer was produced in the same manner as in Example 1 except that the proportion of '-bis(4-fluorobenzoyl)biphenyl used was changed to 7,172 g (0.018 mol). The resulting polyether copolymer had a melt viscosity of 19,000 voids and a glass transition temperature of 198 at 400°C.
℃, the melting point was 385℃, and the thermal decomposition temperature was 555℃. The proportions of repeating units were as follows. (I) / ((I) + (II)) = 0.5
5 (Example 4) In Example 1, the amount of 2,6-dichlorobenzonitrile used was 4,816 g (0.028 mol) and 4,6-dichlorobenzonitrile.
A polyether copolymer was produced in the same manner as in Example 1 except that the proportion of 4°-bis(4-fluorobenzoyl)biphenyl used was changed to 4,781 g (0.012 mol). The resulting polyether copolymer had a melt viscosity of 13,000 poise and a glass transition temperature of 201 at 400°C.
'l:! The melting point was 395°C, and the thermal decomposition temperature was 552°C. The proportions of repeating units were as follows.
(r) / { (I) + (II) ) =0.7
[Effects of the Invention] According to the present invention, a practical polyether copolymer having excellent mechanical strength, chemical resistance, solvent resistance, etc. and particularly excellent heat resistance, and the efficient production thereof. We can provide methods for doing so. Therefore, the present invention is important as it provides engineering plastics that are useful as materials in various fields such as electricity, electronics, machinery, and chemistry.

Claims (2)

【特許請求の範囲】[Claims] (1)次式( I ); ▲数式、化学式、表等があります▼ ( I ) で表わされる繰り返し単位および次式(II);▲数式、
化学式、表等があります▼ (II) で表わされる繰り返し単位からなり、前記式( I )で
表わされる繰り返し単位のモル組成比[( I )/{(
I )+(II)}]が0.45〜0.80であるととも
に、400℃における溶融粘度が1,000ポイズ以上
であることを特徴とするポリエーテル系共重合体。
(1) The following formula (I); ▲There are mathematical formulas, chemical formulas, tables, etc.▼ The repeating unit represented by (I) and the following formula (II); ▲Mathematical formula,
There are chemical formulas, tables, etc. ▼ Consisting of repeating units represented by (II), the molar composition ratio of repeating units represented by formula (I) [(I)/{(
I)+(II)}] is from 0.45 to 0.80, and has a melt viscosity at 400°C of 1,000 poise or more.
(2)ジハロゲノベンゾニトリルと、4,4−ビス(4
−ハロゲノベンゾイル)ビフェニルと、4,4−ビフェ
ノールとを、アルカリ金属化合物の存在下に中性極性溶
媒中で反応させることを特徴とする請求項1に記載のポ
リエーテル系共重合体の製造法。
(2) Dihalogenobenzonitrile and 4,4-bis(4
-Halogenobenzoyl)biphenyl and 4,4-biphenol are reacted in a neutral polar solvent in the presence of an alkali metal compound, the method for producing a polyether copolymer according to claim 1. .
JP30275489A 1989-11-21 1989-11-21 Polyether-based copolymer and production thereof Pending JPH03162417A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30275489A JPH03162417A (en) 1989-11-21 1989-11-21 Polyether-based copolymer and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30275489A JPH03162417A (en) 1989-11-21 1989-11-21 Polyether-based copolymer and production thereof

Publications (1)

Publication Number Publication Date
JPH03162417A true JPH03162417A (en) 1991-07-12

Family

ID=17912746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30275489A Pending JPH03162417A (en) 1989-11-21 1989-11-21 Polyether-based copolymer and production thereof

Country Status (1)

Country Link
JP (1) JPH03162417A (en)

Similar Documents

Publication Publication Date Title
KR20120027483A (en) Method for producing poly(arylene ether) block copolymers
US4703104A (en) Preparation of cyanoaryl ether copolymer
JPH03162417A (en) Polyether-based copolymer and production thereof
JPH02117921A (en) New aromatic polyether sulfone copolymer and production thereof
JPH03285916A (en) Polyether copolymer and production thereof
JP2540521B2 (en) Thermoplastic aromatic polyether pyridine and method for producing the same
JPH0632893A (en) Aromatic polyester and its production
JPH01263120A (en) Crystalline aromatic polyether sulfone
JPH03134022A (en) Polyether block copolymer and method for producing the same
JPH03122121A (en) Polyether-based copolymer and production thereof
JP2890260B2 (en) Polyether-based copolymer, method for producing the same, method for producing powder thereof, and polyether-based copolymer composition
JPH03162416A (en) Polyether-based copolymer and production thereof
JPH03106933A (en) Polyether copolymer and its production
JPS62253627A (en) Heat-resistant resin and production thereof
JPH03215524A (en) Polyetherketone copolymer and method for producing the same
JPH0317126A (en) Aromatic polyether copolymer and production thereof
JPH0489825A (en) Polyether polymer and its preparation
JPH059289A (en) Polyether copolymer and method for producing the same
JPH04220425A (en) Polyetherketone copolymer and production thereof
JPH03265628A (en) New polyether copolymer and its manufacturing method
JPS63152627A (en) Aromatic polyether ketone and production thereof
JPH07268095A (en) Method for producing aromatic polyether amide and aromatic polyether amide
JPH03287625A (en) Ether copolymer and its manufacturing method
JPH03181519A (en) Polyether block copolymer and method for producing the same
JPH0433297B2 (en)