[go: up one dir, main page]

JPH03162159A - Digital modulating equipment - Google Patents

Digital modulating equipment

Info

Publication number
JPH03162159A
JPH03162159A JP30089089A JP30089089A JPH03162159A JP H03162159 A JPH03162159 A JP H03162159A JP 30089089 A JP30089089 A JP 30089089A JP 30089089 A JP30089089 A JP 30089089A JP H03162159 A JPH03162159 A JP H03162159A
Authority
JP
Japan
Prior art keywords
modulation
complex
generating circuit
amplifier
generation circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30089089A
Other languages
Japanese (ja)
Inventor
Osamu Ichiyoshi
市吉 修
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP30089089A priority Critical patent/JPH03162159A/en
Publication of JPH03162159A publication Critical patent/JPH03162159A/en
Pending legal-status Critical Current

Links

Landscapes

  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

PURPOSE:To use a C class amplifier as a transmitting amplifier and to easily obtain high power source efficiency by modulating a carrier by a modulating signal for always setting the transition direction of a phase to the prescribed direction. CONSTITUTION:The equipment consists of a complex modulating signal generating circuit 1, a complex carrier generating circuit 2, mixers 3A, 3B, an adder 4, an amplifier 5, and an antenna 6, the complex modulating signal generating circuit 1 is constituted of a 1-bit delayer 11, a comparator 12, a real part waveform generating circuit 13, and an imaginary part waveform generating circuit 14, and the complex carrier generating circuit 2 is constituted of a carrier oscillator 21 and a pi/2 phase shifter 22. According to this constitution, the transition direction of a phase always becomes the prescribed direction, therefore, a modulation frequency characteristic becomes a single side-band. Also, amplitude of a modulated signal always becomes constant, and a linear characteristic is not required for the amplifier. In such a way, the modulating equipment which can use a C class amplifier whose frequency and power efficiency are both high, and also, whose amplitude is constant and whose power efficiency is satisfactory is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は移動体通信(衛星通信)等の無線通信で使用さ
れるディジタル変調方式に関し、特にBPSK変調方式
の変調装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a digital modulation system used in wireless communication such as mobile communication (satellite communication), and particularly relates to a modulation device of the BPSK modulation system.

〔従来の技術〕[Conventional technology]

一般に、BPSK変調方式は、最も簡単なディジタル変
調方式であるばかりでなく、各種の干渉に対して最も強
い変調方式であり、無線通信の分野で広汎に用いられて
いる。第3図に従来のBPSK変調を行う変調装置を示
す。図において、データ源からのデータ系列は、波形整
形フィルタ31を介してミキサ33に入力され、ここで
キャリア発振器32の出力キャリアを乗算変調する。こ
のミキサ33の出力は増幅器34において増幅され、ア
ンテナ35から空間に放射される.このような従来の変
調装置によるBPSK変調の位相遷移図を第4図(A)
に示す。データ“O I1は位相0に、“1”は位相π
に位相シフトキーイソグされ、両位相の間の遷移におい
ては変調信号■は実軸上を点(A,O)から(−A,O
)へ、或いはその逆の経路を辿って変化する。
In general, the BPSK modulation method is not only the simplest digital modulation method, but also the most resistant to various types of interference, and is widely used in the field of wireless communications. FIG. 3 shows a modulation device that performs conventional BPSK modulation. In the figure, a data sequence from a data source is input to a mixer 33 via a waveform shaping filter 31, where it is multiplied and modulated by the output carrier of a carrier oscillator 32. The output of this mixer 33 is amplified by an amplifier 34 and radiated into space from an antenna 35. Figure 4 (A) shows a phase transition diagram of BPSK modulation by such a conventional modulation device.
Shown below. Data “O I1 is phase 0, “1” is phase π
In the transition between both phases, the modulation signal ■ changes from point (A, O) to (-A, O) on the real axis.
) or vice versa.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来の変調装置によるBPSK変調信号は、実
軸上を移動されるために、必ず、第4図(A)に示す上
側帯波(USB)、及び下側帯波(LSB)を有し、そ
のスペクトルは第5図(A)に示す両側帯波変調スペク
トルとなる,USBとLSBは全く同じ情報を含んでい
るので、情報伝送の目的からは本来必要な帯域幅の2倍
の信号を送出し、同時に送信電力も同じく2倍必要とな
り、周波数及び電力効率が共に悪くなる。
Since the BPSK modulated signal by the conventional modulation device described above is moved on the real axis, it always has an upper sideband (USB) and a lower sideband (LSB) shown in FIG. 4(A), The spectrum becomes the double-sided band modulation spectrum shown in Figure 5 (A).Since USB and LSB contain exactly the same information, for the purpose of information transmission, a signal with twice the originally required bandwidth is transmitted. However, at the same time, twice as much transmission power is required, resulting in poor frequency and power efficiency.

その上、第4図(A)から明らかなように、原理的に振
幅変調であるので、増幅器34として線形性を有するも
のでなくてはならず、電力効率もあまり高くできず、特
に移動体通信への応用は困難であった. 本発明の目的は上述した従来の問題を解消し、周波数及
び電力効率が共に高くかつ定振幅で電力効率の良いC級
増幅器(非線形増幅器)の使用を可能とする変調装置を
提供することにある。
Moreover, as is clear from FIG. 4(A), since amplitude modulation is used in principle, the amplifier 34 must have linearity, and the power efficiency cannot be very high. Application to communications was difficult. An object of the present invention is to solve the above-mentioned conventional problems and to provide a modulation device that enables the use of a class C amplifier (nonlinear amplifier) that has high frequency and power efficiency, constant amplitude, and high power efficiency. .

〔課題を解決するための手段] 本発明の変調装置は、ディジタル信号を位相0からπ及
びπからOへの位相の遷移を常に一定方向に回転させる
変調信号を発生する複素変調信号発生回路と、正弦波及
び余弦波のキャリア信号を発生する複素キャリア発生回
路と、前記複素キャリア発生回路の出力を前記複素変調
信号発生回路の出力で複素乗算して変調する変鋼回路と
を備えており、変調回路の出力の実部又は虚部のみを選
択して出力するように構成している。
[Means for Solving the Problems] The modulation device of the present invention includes a complex modulation signal generation circuit that generates a modulation signal that always rotates the phase transition of a digital signal from phase 0 to π and from π to O in a constant direction. , comprising a complex carrier generation circuit that generates sine wave and cosine wave carrier signals, and a steel conversion circuit that modulates the output of the complex carrier generation circuit by complex multiplication by the output of the complex modulation signal generation circuit, It is configured to select and output only the real part or imaginary part of the output of the modulation circuit.

この場合、複素変調信号発生回路は、変調データを遅延
する1ビット遅延器と、遅延されたビットを源データと
比較する比較器と、比較結果から実部波形を発生する実
部波形発生部と、比較結果から虚部波形を発生する虚部
波形発生器とで構戒される。
In this case, the complex modulation signal generation circuit includes a 1-bit delay device that delays modulation data, a comparator that compares the delayed bits with source data, and a real part waveform generator that generates a real part waveform from the comparison result. , and an imaginary part waveform generator that generates an imaginary part waveform from the comparison result.

〔作用〕[Effect]

この構或では、位相の遷移方向が常に一定方向となるた
め、変調周波数特性は単側帯波となり、無線波の占有周
波数帯域幅を従来の半分にする。
In this structure, since the phase transition direction is always constant, the modulation frequency characteristic becomes a single sideband wave, and the occupied frequency bandwidth of the radio wave is halved compared to the conventional one.

また、変調された信号の振幅は常に一定となり、増幅器
に線形特性を必要とすることはない。
Furthermore, the amplitude of the modulated signal is always constant, and the amplifier does not require linear characteristics.

〔実施例〕〔Example〕

次に、本発明を図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

本発明の変調装置の一例を第1図に示す。図において、
1は変調データから複素変調信号を発生する複素変調信
号発生回路、2は複素キャリアを発生する複素キャリア
発生回路、3A,3Bは前記各発生回路1.2の各出力
を乗算する変調回路としてのミキサ、4はミキサ3A,
3Bの出力を加算する加算器、5は電力効率の高い増幅
器、例えばC級増幅器、6はアンテナである。
An example of the modulation device of the present invention is shown in FIG. In the figure,
1 is a complex modulation signal generation circuit that generates a complex modulation signal from modulation data, 2 is a complex carrier generation circuit that generates a complex carrier, and 3A and 3B are modulation circuits that multiply each output of each of the generation circuits 1.2. mixer, 4 is mixer 3A,
3 is an adder for adding the outputs of B, 5 is an amplifier with high power efficiency, for example, a class C amplifier, and 6 is an antenna.

前記複素変調信号発生回路1は、1ビット遅延器11と
、比較器12と、実部波形発生回路13と、虚部波形発
生回路l4で構成され、位相Oからπへの遷移において
は、ディジタル信号のビット周期Tの間に位相がOから
πへ正(負)方向へ回転するように変化し、位相πから
0(2π)への遷移においても同じ正(負)方向に回転
する変調信号を発生する。
The complex modulation signal generation circuit 1 is composed of a 1-bit delay device 11, a comparator 12, a real part waveform generation circuit 13, and an imaginary part waveform generation circuit l4. A modulated signal whose phase rotates in the positive (negative) direction from O to π during the bit period T of the signal, and which rotates in the same positive (negative) direction during the transition from phase π to 0 (2π). occurs.

また、複素キャリア発生回路2は、キャリア発振器2l
と;π/2移相器22とで構成され、正弦波及び余弦波
のキャリア信号を発生する。
Further, the complex carrier generation circuit 2 includes a carrier oscillator 2l
and a π/2 phase shifter 22, and generates sine wave and cosine wave carrier signals.

この構戒によれば、変調データは、各ビットデータと、
1ビット遅延器l1により1ビット遅延されたデータと
が比較器l2で比較され、その上で実部波形発生回路1
3,虚部波形発生回路l4を通して複素数の変調信号と
して実部.虚部がそれぞれミキサ3A,3Bに出力され
る。また、複素キャリア発生回路2では、キャリア信号
の一部をπ/2移相器22で移相し、それぞれミキサ3
A,3Bに出力される。そして、ミキサ3A,3Bによ
って両者を複素乗算することで前記キャリアは複素変調
される。
According to this precept, modulated data consists of each bit data and
The data delayed by 1 bit by the 1-bit delay device l1 is compared by the comparator l2, and then the real part waveform generation circuit 1
3. The real part is output as a complex modulated signal through the imaginary part waveform generating circuit l4. The imaginary parts are output to mixers 3A and 3B, respectively. In addition, in the complex carrier generation circuit 2, a part of the carrier signal is phase-shifted by a π/2 phase shifter 22, and a part of the carrier signal is phase-shifted by a mixer 3.
It is output to A and 3B. Then, the carrier is complex-modulated by complex multiplication of both by the mixers 3A and 3B.

そして、この変調された信号は、加算器4において加算
され、その上で増幅器5で増幅されてアンテナ6から送
出される。
The modulated signals are then added in an adder 4, amplified in an amplifier 5, and sent out from an antenna 6.

なお、データと実部,虚部の各変調信号の状態を第2図
に示す。
Incidentally, the states of the data, real part, and imaginary part of each modulation signal are shown in FIG.

したがって、このBPSK変調によれば、第4図(B)
において、変調データが0の時には点(A,O)に、デ
ータが1の時には点(−A,O)にそれぞれ位相シフト
キーイングが行なわれるのはこれまでのBPSKと同じ
である。しかしながら、データがOからlに変化する時
に変調位相の推移は同一振幅で正方向に回転し、点(0
,A)を通過してビット周期Tをかけて、点(−A,O
)に到る。同様にデータが1からOに変化する時番こは
、点(−A,O)から同一振幅でやはり正方向に位相は
変化し、点(0,−A)を通過して点(A,O)に到る
Therefore, according to this BPSK modulation, as shown in FIG.
In this case, phase shift keying is performed at the point (A, O) when the modulated data is 0, and at the point (-A, O) when the data is 1, as in the conventional BPSK. However, when the data changes from O to l, the transition of the modulation phase rotates in the positive direction with the same amplitude, and the point (0
,A), multiplied by the bit period T, and the point (-A,O
). Similarly, when the data changes from 1 to O, the phase also changes in the positive direction with the same amplitude from point (-A, O), passes through point (0, -A), and then changes to point (A, O). Reach O).

この結果、変調信号は常に一定振幅で、位相6よ正方向
にのみ変化する。したがって、変調スペクトルは第5図
(B)に示すように、単側帯波(上側帯波)となる。仮
に、位相を常に負方向に回転させれば、変調スペクトル
は第5図(B)と反対に下側帯波(LSB)となるが、
いずれでも基本的な違いはない。
As a result, the modulation signal always has a constant amplitude and changes only in the positive direction from phase 6. Therefore, the modulation spectrum becomes a single sideband wave (upper sideband wave) as shown in FIG. 5(B). If the phase were always rotated in the negative direction, the modulation spectrum would be a lower sideband (LSB), contrary to Fig. 5(B).
There is no fundamental difference between them.

これにより、この変調信号の周波数帯域は従来の半分の
帯域となり、周波数及び電力効率が共に改善される。ま
た、振幅が一定であるため、C級増幅器等の非線形増幅
器を使用することができ、電力効率も改善できる。
As a result, the frequency band of this modulated signal becomes half the conventional band, and both frequency and power efficiency are improved. Furthermore, since the amplitude is constant, a nonlinear amplifier such as a class C amplifier can be used, and power efficiency can also be improved.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、位相の遷移方向を常に一
定方向に設定した変調信号でキャリアを変調しているた
め、変調周波数特性は単側帯波となり、無線波の占有周
波数帯域幅を従来の半分とし、周波数利用効率が2倍と
なる。したがって、受信側において同じC/Nを得るの
に必要な送信電力は従来の半分となる。しかも、変調さ
れた信号の振幅は常に一定なので、送信増幅器としてC
級増幅器を用いることができ、高い電源効率が容易に実
現できる。
As explained above, in the present invention, since the carrier is modulated with a modulation signal whose phase transition direction is always set in a constant direction, the modulation frequency characteristic becomes a single sideband, and the occupied frequency bandwidth of the radio wave is The frequency usage efficiency is doubled. Therefore, the transmission power required to obtain the same C/N on the receiving side is half that of the conventional method. Moreover, since the amplitude of the modulated signal is always constant, C
class amplifiers can be used, and high power supply efficiency can be easily achieved.

また、信号振幅が一定であることから、受信器のAGC
は単純なハードリミタでよく、受信器の構造を簡単にで
きるという効果もある。
Also, since the signal amplitude is constant, the receiver's AGC
A simple hard limiter suffices, which has the effect of simplifying the structure of the receiver.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のBPSK変調方式の変調回路のブロッ
ク図、第2図は変調データとその実部,虚部の信号波形
図、第3図は従来の変調回路のブロック図、第4図(A
)及び(B)はそれぞれ従来及び本発明の変調信号の位
相面図、第5図(A)及び(B)はそれぞれ従来及び本
発明の変調周波数帯域を示す図である。 ■・・・複素変調信号発生回路、2・・・複素キャリア
発生回路、3A,3B・・・短キサ、4・・・加算器、
5・・・増幅器、6・・・アンテナ、1l・・・1ビッ
ト遅延器、12・・・比較器、13・・・実部波形発生
回路、l4・・・虚部波形発生回路、21・・・キャリ
ア発振器、22・一・π/2移相器、31・・・波形整
形フィルタ、32・・・キャリア発振器、33・・・ξ
キサ、34・・・増幅器、35・・・アンテナ。 〉 第4 図 (A) CB) Δ 第5 図 U f
Figure 1 is a block diagram of a modulation circuit using the BPSK modulation method of the present invention, Figure 2 is a signal waveform diagram of modulated data and its real and imaginary parts, Figure 3 is a block diagram of a conventional modulation circuit, and Figure 4 ( A
) and (B) are phase diagrams of the modulation signals of the conventional and the present invention, respectively, and FIGS. 5(A) and (B) are diagrams showing the modulation frequency bands of the conventional and the present invention, respectively. ■...Complex modulation signal generation circuit, 2...Complex carrier generation circuit, 3A, 3B...Short mixer, 4...Adder,
5... Amplifier, 6... Antenna, 1l... 1-bit delay device, 12... Comparator, 13... Real part waveform generation circuit, l4... Imaginary part waveform generation circuit, 21. ...Carrier oscillator, 22.1.π/2 phase shifter, 31..Waveform shaping filter, 32..Carrier oscillator, 33..ξ
Kisa, 34...Amplifier, 35...Antenna. 〉 Fig. 4 (A) CB) Δ Fig. 5 U f

Claims (1)

【特許請求の範囲】 1、ディジタル信号を位相0又はπにシフトキーイング
する変調装置において、0からπ及びπから0への位相
の遷移を常に一定方向に回転させる変調信号を発生する
複素変調信号発生回路と、正弦波及び余弦波のキャリア
信号を発生する複素キャリア発生回路と、前記複素キャ
リア発生回路の出力を前記複素変調信号発生回路の出力
で複素乗算して変調する変調回路とを備え、この変調回
路の出力の実部又は虚部のみを選択して出力するように
構成したことを特徴とするディジタル変調装置。 2、複素変調信号発生回路は、変調データを遅延する1
ビット遅延器と、遅延されたビットを源データと比較す
る比較器と、比較結果から実部波形を発生する実部波形
発生部と、比較結果から虚部波形を発生する虚部波形発
生器とを備えてなる特許請求の範囲第1項記載のディジ
タル変調装置。
[Claims] 1. A complex modulation signal that generates a modulation signal that always rotates phase transitions from 0 to π and from π to 0 in a constant direction in a modulation device that shift-keys a digital signal to phase 0 or π. comprising a generation circuit, a complex carrier generation circuit that generates sine wave and cosine wave carrier signals, and a modulation circuit that modulates the output of the complex carrier generation circuit by complex multiplication with the output of the complex modulation signal generation circuit, A digital modulation device characterized in that it is configured to select and output only the real part or the imaginary part of the output of the modulation circuit. 2. The complex modulation signal generation circuit delays the modulation data.
A bit delayer, a comparator that compares the delayed bits with source data, a real part waveform generator that generates a real part waveform from the comparison result, and an imaginary part waveform generator that generates an imaginary part waveform from the comparison result. A digital modulation device according to claim 1, comprising:
JP30089089A 1989-11-21 1989-11-21 Digital modulating equipment Pending JPH03162159A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30089089A JPH03162159A (en) 1989-11-21 1989-11-21 Digital modulating equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30089089A JPH03162159A (en) 1989-11-21 1989-11-21 Digital modulating equipment

Publications (1)

Publication Number Publication Date
JPH03162159A true JPH03162159A (en) 1991-07-12

Family

ID=17890357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30089089A Pending JPH03162159A (en) 1989-11-21 1989-11-21 Digital modulating equipment

Country Status (1)

Country Link
JP (1) JPH03162159A (en)

Similar Documents

Publication Publication Date Title
EP0716526B1 (en) Method of producing modulating waveforms with constant envelope
US5375258A (en) Circuit for generating signals in phase quadrature and associated method therefor
US4761798A (en) Baseband phase modulator apparatus employing digital techniques
US5774492A (en) Low-complexity direct conversion receiver for delay-and-correlate transmitted reference signaling
US6587010B2 (en) Modulated radio frequency signal generation method and modulated signal source
CA2275589A1 (en) Digital continuous phase modulation for a dds-driven phase locked loop
US6826371B1 (en) Variable rate DPSK system architecture
JPH0681169B2 (en) Quadrature modulation method and device
JPH0646032A (en) Spread spectrum communication system
KR920001831A (en) Transmitter with electronic device for generating modulated carrier signal
KR950704875A (en) Code Division Multiple Access Transmitters and Receivers
US8693959B1 (en) System and apparatus for a direct conversion receiver and transmitter
US7372891B1 (en) Signal generator and decoder
US5652552A (en) Phase modulator
US8965290B2 (en) Amplitude enhanced frequency modulation
US6738414B2 (en) Radio and communication method using a transmitted intermediate frequency
WO2022260749A3 (en) Constant envelope bi-phase shift keying (ce-bpsk) modulation for "mode s" and other communication applications
US4748641A (en) Suppressed carrier modulation method
US4475216A (en) FSK Data transceiver
JPH03162159A (en) Digital modulating equipment
CN116074824A (en) System and method for transmitting and receiving encrypted physical layer information at radio frequency end
US20040235444A1 (en) Orthogonal frequency division multiplexing transceiver and method of operating the same
US5049839A (en) Biphase modulaton circuit having continuous phase changes
US6356580B1 (en) Direct sequence spread spectrum using non-antipodal phase shift keying
KR102377698B1 (en) Apparatus and method for wireless data transmitting