[go: up one dir, main page]

JPH03160990A - Method for activating insoluble proteins produced with genetically modified bacteria - Google Patents

Method for activating insoluble proteins produced with genetically modified bacteria

Info

Publication number
JPH03160990A
JPH03160990A JP1299728A JP29972889A JPH03160990A JP H03160990 A JPH03160990 A JP H03160990A JP 1299728 A JP1299728 A JP 1299728A JP 29972889 A JP29972889 A JP 29972889A JP H03160990 A JPH03160990 A JP H03160990A
Authority
JP
Japan
Prior art keywords
protein
reducing agent
insoluble
fraction
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1299728A
Other languages
Japanese (ja)
Inventor
Hiroshi Iida
寛 飯田
Nobuyuki Honma
信幸 本間
Satoshi Hanzawa
敏 半澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP1299728A priority Critical patent/JPH03160990A/en
Publication of JPH03160990A publication Critical patent/JPH03160990A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Enzymes And Modification Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)

Abstract

PURPOSE:To sterilize a protein without causing the denaturation and decomposition of the objective protein by carrying out the heat-treatment of a fraction containing the insoluble protein, addition of a reducing agent and the subsequent removing operation prior to the activation operation of the insoluble protein produced by genetic engineering process and accumulated in cells. CONSTITUTION:An insoluble protein is produced by a gene recombination microorganism and accumulated in the microbial cell. The protein is activated by disintegrating the cell, recovering the insoluble fraction, suspending the recovered component and activating in a state capable of expressing the activity. The above process is carried out as follows. The fraction containing the protein is subjected to heat-treatment and addition of a reducing agent at an arbitrary time from the disintegration of the cell to the activation operation and the added reducing agent is removed from the above fraction after the heat- treatment and the addition of the reducing agent and before the activation operation. The reducing agent is e.g. 2-mercaptoethanol or bithioerythritol. The heat-treatment is carried out e.g. at about 70-90 deg.C for about 0.5-1hr for the sterilization of E.coli.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、遺伝子工学的手法により調製された遺伝子組
換菌により製造された不溶性蛋白質の活性化法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for activating an insoluble protein produced by a genetically modified bacterium prepared by genetic engineering techniques.

(従来の技術) 近年の遺伝子工学に係る技術の進歩により、目的とする
蛋白質、ペプチド等(以下、本明細書では特別の記載を
しない限り単に蛋白質という)を大腸菌、枯草菌又は酵
母等の菌体中で製造することが可能となった。目的とす
る蛋白質は、通常、宿主として使用する菌体が天然には
製造することのない、いわゆる異8蛋白質であることが
多い。
(Prior art) With recent advances in genetic engineering technology, target proteins, peptides, etc. (hereinafter simply referred to as proteins unless otherwise specified) can be produced using bacteria such as Escherichia coli, Bacillus subtilis, or yeast. It is now possible to produce it within the body. The protein of interest is often a so-called hetero-8 protein that is not naturally produced by the bacterial cells used as the host.

製造された目的蛋白質が特に異種蛋白質である場合には
、それらは宿主中で不溶性蛋白質として不溶性塊(in
clusion  body)を形成し、蓄積されるこ
とがある。不溶性塊を形成した目的蛋白質は、本来の生
理活性を発現し得ない形態(三次構造)に折り畳まれて
いるため、可溶化(脱折り畳み)及び再折り畳みと呼ば
れる活性化操作を行う必要がある(活性化操作としては
、例えば特開昭59−161321号、特開昭60−5
00893号が知られている)。
In particular, when the produced target proteins are heterologous proteins, they may be present in the host as insoluble proteins (insoluble aggregates).
fusion bodies) and may accumulate. The target protein that has formed an insoluble mass is folded into a form (tertiary structure) that cannot express its original physiological activity, so it is necessary to perform an activation operation called solubilization (unfolding) and refolding ( As the activation operation, for example, JP-A-59-161321, JP-A-60-5
No. 00893 is known).

ところで、遺伝子工学的手法で製造された生物や異種の
遺伝子を組込まれた微生物を取り扱う上では、生物災害
(バイオハザード)を防止することが重要であり、この
ため、菌体に対して熱処理、酸処理、アルカリ処理又は
有機溶媒処理等の殺菌処理を実施することが普通である
By the way, when handling organisms manufactured by genetic engineering methods or microorganisms into which foreign genes have been incorporated, it is important to prevent biohazards, and for this reason, heat treatment, heat treatment, etc. It is common to carry out sterilization treatments such as acid treatment, alkali treatment or organic solvent treatment.

(従来技術の課題) 異種蛋白質を菌体により製造した場合には、該蛋白質は
不溶性蛋白質として菌体中に蓄積されることが多く、こ
れら蛋白質を生理活性を有する形態で得ようとすれば菌
体を破砕し不溶性画分を回収し、該画分を懸濁し活性化
操作を実施する必要が生じる。
(Problems with the Prior Art) When a heterologous protein is produced by a bacterial cell, the protein is often accumulated in the bacterial cell as an insoluble protein. It becomes necessary to crush the body, collect an insoluble fraction, suspend the fraction, and perform an activation operation.

この様な操作において、前記した生物災害又は最終的に
生理活性を有する形態に活性化された蛋白質標品の使用
した菌体による汚染の防止という観点では、操作中に熱
処理、酸処理、アルカリ処理又は有機溶媒処理等の殺菌
処理を実施することが望まれるが、これら処理を実施す
ると製造された蛋白質自体が変性又は分解する等してし
まい、その回収量が低下するという課題がある。
In such operations, heat treatment, acid treatment, and alkali treatment are necessary from the viewpoint of preventing the above-mentioned biological hazards or contamination of protein preparations that are ultimately activated into physiologically active forms by bacterial cells. Alternatively, it is desirable to carry out sterilization treatment such as organic solvent treatment, but when these treatments are carried out, the produced protein itself is denatured or decomposed, resulting in a problem that the amount of recovered protein is reduced.

(課題を解決するための手段) 以上の様な従来技術の課題点に鑑みて、本発明者らは特
に加熱による殺菌処理を不溶性蛋白質を活性を発現し得
る形態で得るための一連の操作中に実施することについ
て鋭意検討したところ、加熱処理を目的蛋白質と還元剤
を接触させた状態で実施するか又は加熱処理後に目的蛋
白質と還元剤を接触させることにより目的蛋白質の変性
・分解を引き起こさずに滅菌が可能なことを見出だし、
本発明を完成させた。即ち本発明は、遺伝子組換菌で製
造され該菌体中に蓄積された不溶性蛋白質について、菌
体を破砕して不溶性画分を回収し、懸濁し、活性を発現
し得る形態に活性化する一連の操作において、菌体の破
砕から活性化する操作に至る任意の時点で該蛋白質を含
有する画分について加熱処理及び還元剤を添加する操作
と、前記加熱処理及び還元剤を添加する操作の後であり
かつ活性化する操作の前に添加された還元剤を前記画分
から除去する操作を実施することを特徴とする遺伝子組
換菌で製造された不溶性蛋白質の活性化法である。以下
本発明を詳細に説明する。
(Means for Solving the Problems) In view of the above-mentioned problems of the prior art, the present inventors particularly performed sterilization treatment by heating during a series of operations to obtain insoluble proteins in a form capable of expressing activity. After careful consideration of the method of carrying out the heat treatment, we found that by carrying out the heat treatment with the target protein in contact with the reducing agent, or by bringing the target protein into contact with the reducing agent after the heat treatment, the target protein would not be denatured or decomposed. discovered that it is possible to sterilize
The present invention has been completed. That is, the present invention deals with insoluble proteins produced by genetically modified bacteria and accumulated in the cells, by disrupting the cells, collecting the insoluble fraction, suspending it, and activating it into a form capable of expressing activity. In a series of operations, the fraction containing the protein is subjected to heat treatment and a reducing agent is added at any point from crushing the bacterial cells to activation; This is a method for activating an insoluble protein produced by a genetically modified bacterium, which comprises performing an operation to remove the added reducing agent from the fraction after and before the activation operation. The present invention will be explained in detail below.

本発明は、目的蛋白質を不溶性塊として内部に含有する
菌体を材料として、該蛋白質を本来の生理活性を発現し
得る形態で得るための一連の操作に関するものである。
The present invention relates to a series of operations for obtaining a target protein in a form capable of expressing its original physiological activity, using bacterial cells containing the target protein as an insoluble mass.

従って、菌体自体は大腸菌、枯草菌、酵母等の通常の遺
伝子工学的手法で使用される微生物であれば何等制限は
なく、また目的蛋白質についても制限はない。
Therefore, there are no restrictions on the bacterial cells themselves, as long as they are microorganisms used in common genetic engineering methods, such as Escherichia coli, Bacillus subtilis, or yeast, and there are no restrictions on the target protein.

本発明でいう不溶性蛋白質を含有する画分とは、不溶性
画分を内部に蓄積した菌体自体あるいは該菌体を含む溶
液、菌体を破砕した菌体破砕液、菌体破砕液から回収さ
れた不溶性画分等、目的とする蛋白質が主として含有さ
れる画分を意味する5 ものである。本発明では、例えば2−メルカプトエタノ
ール、ジチオトレイトール、ジチオエリトリトール等の
公知の還元剤を使用することができる。これら還元剤の
添加量としては、実施しようとする熱処理の温度及びそ
のlIs間を考慮して適宜決定すればよく、特別の制限
はない。後に本発明の実施例で説明される様に、プロウ
ロキナーゼを内部に蓄積した大腸菌についての処理にお
ける添加量を例示すれば、最終的にこれら還元剤の濃度
が不溶性蛋白質を含有する画分中で06 05%以上と
なるようにすることで熱処理による蛋白質の変性・分解
を防止する効果を得ることができるが、好ましくは0.
5%以上となるようにすることでよりその効果を高める
ことが可能である。
In the present invention, the fraction containing insoluble proteins refers to the bacterial cells themselves that have accumulated insoluble fractions, a solution containing the bacterial cells, a bacterial cell suspension obtained by disrupting bacterial cells, or a fraction recovered from the bacterial cell disruption solution. This refers to a fraction that mainly contains the protein of interest, such as an insoluble fraction. In the present invention, known reducing agents such as 2-mercaptoethanol, dithiothreitol, and dithioerythritol can be used. The amount of these reducing agents to be added may be appropriately determined in consideration of the temperature of the heat treatment to be carried out and its lIs, and there are no particular limitations. As will be explained later in the Examples of the present invention, to give an example of the amount added in the treatment of E. coli that has accumulated prourokinase, the final concentration of these reducing agents in the fraction containing insoluble protein is By setting the content to 0.6% or more, it is possible to obtain the effect of preventing protein denaturation and decomposition due to heat treatment, but preferably 0.05% or more.
The effect can be further enhanced by setting it to 5% or more.

本発明で実施する熱処理は、菌体を殺菌するために必要
な時間と温度を適宜決定して実施すれば良い。大腸菌に
ついて例示すれば、70〜90℃にて0.5〜1時間の
処理を実施すれば良い。
The heat treatment carried out in the present invention may be carried out by appropriately determining the time and temperature necessary to sterilize the bacterial cells. For example, for E. coli, the treatment may be carried out at 70 to 90°C for 0.5 to 1 hour.

本発明では、熱処理の手法自体には何等制限はなく、ま
た熱処理に付属する操作についても制限は6 ないが、目的蛋白質の変性・分解を防止するためには熱
処理の後、不溶性蛋白質を含有する画分を冷却すると良
い。
In the present invention, there are no restrictions on the heat treatment method itself, and there are no restrictions on the operations attached to the heat treatment, but in order to prevent the target protein from denaturation and decomposition6, it is necessary to contain insoluble protein after the heat treatment. It is best to cool the fraction.

還元剤の添加は、熱処理を実施する前に行っても良いし
、熱処理を実施した後に行っても良く、更には熱処理を
実施するのと同時に実施しても良いが、使用する還元剤
が熱処理により影響を受け易いものである場合には熱処
理の後に添加することが,好ましい。添加された還元剤
は、目的蛋白質である不溶性蛋白質についての活性化操
作に先立って分離する。これは、還元剤が存在すると再
折り畳み操作においてジスルフィド結合がうまく形成さ
れず、良好な活性化操作が達成されなくなることを防止
するものである。この操作自体は、活性化操作における
可溶化処理を施される以前の蛋白質は不溶性である、と
いう性質を利用して例えば遠心分離や限外濾過等の操作
により簡単に達成可能である。
The reducing agent may be added before the heat treatment, after the heat treatment, or even at the same time as the heat treatment, but the reducing agent used may be added during the heat treatment. If the material is easily affected by heat treatment, it is preferable to add it after heat treatment. The added reducing agent is separated prior to activation of the insoluble protein of interest. This prevents disulfide bonds from being poorly formed in the refolding operation in the presence of a reducing agent, which prevents a good activation operation from being achieved. This operation itself can be easily accomplished by operations such as centrifugation and ultrafiltration, taking advantage of the fact that proteins are insoluble before being solubilized in the activation operation.

以下に、具体的に本発明を説明する。The present invention will be specifically explained below.

1菌体を破砕する操作 菌体の破砕は、物理的手法又は化学的手法によれば良く
、物理的手法としては、例えばホモジナイズや超音波を
用いる手法が例示できる。化学的手法としては、例えば
リゾチームや適当な界面活性剤を添加する方法が例示で
きるが、これらの方法では目的蛋白質の不可逆的変性が
生じ易いため、物理的手法を採用し、かつ溶液中で実施
することが好ましい。
Operation for disrupting one microbial cell The microbial cells may be disrupted by a physical method or a chemical method, and examples of the physical method include homogenization and a method using ultrasound. Examples of chemical methods include adding lysozyme or an appropriate surfactant, but these methods tend to cause irreversible denaturation of the target protein, so physical methods are used and the method is carried out in a solution. It is preferable to do so.

先に説明した様に本発明は菌体の破砕操作において実施
することも可能である。つまり、菌体を培養液から遠心
分離等の操作により集薗した後、適当な緩衝液等に懸濁
し、還元剤を添加し、熱処理を実施し、次いで菌体の破
砕操作を実施しても良い。また、菌体破砕が終了した時
点で発明を実施することも可能である。
As explained above, the present invention can also be implemented in the crushing operation of bacterial cells. In other words, after collecting the bacterial cells from the culture medium by centrifugation or other operations, suspending them in an appropriate buffer, adding a reducing agent, heat treatment, and then crushing the bacterial cells. good. Moreover, it is also possible to carry out the invention at the time when bacterial cell disruption is completed.

2菌体破砕液からの不溶性画分の回収 不溶性画分の回収は、菌体破砕物を懸濁した菌体破砕物
懸濁液について遠心分離や限外濾過等を実施すれば良い
。この得られた不溶性画分にっいて本発明を実施する場
合には得られた画分を適当な緩衝液等に懸濁する等して
おけば良い。
2. Recovery of insoluble fraction from crushed bacterial cell solution The insoluble fraction may be recovered by centrifugation, ultrafiltration, or the like on a suspension of crushed bacterial cells. When carrying out the present invention using the obtained insoluble fraction, the obtained fraction may be suspended in an appropriate buffer or the like.

3活性化操作 活性化操作は、通常、不溶性蛋白質を可溶化する処理と
該可溶化された蛋白質を再折り畳みする処理からなる。
3 Activation Operation The activation operation usually consists of a treatment to solubilize an insoluble protein and a treatment to refold the solubilized protein.

再折り畳みにおいては、目的蛋白質と還元剤が共存して
いると正しいジスルフィド結合の形成が妨げられるため
、本操作に先立って添加された還元剤を分離する。可溶
化する処理を実施した後では目的蛋白質は可溶性蛋白質
として存在するため、還元剤の分離は困難となるためで
ある。活性化操作としては、例えば特開昭591613
21号、特開昭60−500893号等が知られている
が、本発明では特別の制限はない。
During refolding, if the target protein and reducing agent coexist, the formation of correct disulfide bonds will be hindered, so the reducing agent added prior to this operation is separated. This is because after the solubilization treatment, the target protein exists as a soluble protein, making it difficult to separate the reducing agent. As an activation operation, for example, Japanese Patent Application Laid-Open No. 591613
No. 21, JP-A No. 60-500893, etc. are known, but the present invention is not particularly limited thereto.

(発明の操作) 本発明によれば、菌体で製造された不溶性蛋白質を生理
活性を発現し得る形態で得るための一連の処理操作にお
いて、目的蛋白質の変性・分躬9 を引き起こさずに菌体を殺菌し、生物災害を引き起こす
可能性や最終的に調製された蛋白質の菌体での汚染の可
能性をを減少させることが可能である。しかも本発明の
方法は、還元剤の添加と熱処理の実施という比較的勘弁
な操作により達成可能であり、既存の遺伝子工学的手法
のための設備内で実施可能である。
(Operations of the Invention) According to the present invention, in a series of processing operations for obtaining an insoluble protein produced by bacterial cells in a form capable of expressing physiological activity, bacteria can It is possible to sterilize the body and reduce the possibility of causing a biohazard or contaminating the final prepared protein with the bacteria. Furthermore, the method of the present invention can be achieved by relatively simple operations of adding a reducing agent and performing heat treatment, and can be implemented within existing equipment for genetic engineering techniques.

本発明では、殺菌を熱処理という物理的手法により達成
できるから、例えばアルカリ性物質や酸性物質、界面活
性剤又はその他の薬品を使用する必要がなく、コスト的
にも安価であり、また使用した薬剤での目的蛋白質の汚
染の心配もない。
In the present invention, sterilization can be achieved by a physical method called heat treatment, so there is no need to use alkaline substances, acidic substances, surfactants, or other chemicals, and the cost is low. There is no need to worry about contamination of the target protein.

更に、本発明によれば、1」的蛋白質を分解する恐れの
ある菌体由来のプロテアーゼを失活させることが可能で
あるから、結果として目的蛋白質の収量を高めることも
できる。
Furthermore, according to the present invention, it is possible to inactivate protease derived from bacterial cells that may degrade target proteins, and as a result, the yield of target proteins can be increased.

(実施例) 以下に本発明を更に詳細に説明するため実施例を記載す
るが、本発明はこれら尖施例に限定さ1 0 れるものではない。
(Examples) Examples will be described below to explain the present invention in more detail, but the present invention is not limited to these examples.

なお本実施例で使用した菌体は大腸菌(KY1436株
)であり、製造した目的蛋白質はヒトブロウロキナーゼ
(以下、プロウロキナーゼという)である。プロウロキ
ナーゼは大腸菌にとっては異種蛋白質であり、不溶性蛋
白質として大腸菌内に蓄積される。
The bacterial cell used in this example was Escherichia coli (KY1436 strain), and the target protein produced was human brourokinase (hereinafter referred to as prourokinase). Prourokinase is a foreign protein to E. coli and accumulates within E. coli as an insoluble protein.

製造されたプロウロキナーゼの活性は、プロウロキナー
ゼについてプロテアーゼ処理を行いウロキナーゼに変換
した後、ウロキナーゼの特異的基質であるピログルタミ
ル●グリシル●アルギニルパラニトロアニリド塩酸塩を
使用し、K o h nOらの方法(Biotechn
ology  2、628、1984年)に従って測定
し、過熱処理及び還元剤の添加を実施していない場合の
湿菌体1g当たりの不溶性画分に由来する活性を100
%として相対的に示した。
The activity of the produced pro-urokinase was determined by treating pro-urokinase with protease and converting it into urokinase, using pyroglutamyl, glycyl, and arginyl paranitroanilide hydrochloride, which is a specific substrate of urokinase. method (Biotechn
2, 628, 1984), and the activity derived from the insoluble fraction per 1 g of wet bacterial cells when no superheating treatment or addition of a reducing agent was performed.
Relatively expressed as %.

実施例1 プロウロキナーゼをコードする遺伝子を有す11 るブラスミドで大腸菌を形質転換し、M9培地で培養し
た(該プラスミドは特開昭62−143686号に記載
されたものであり、]二業技術院微生物工業技術研究所
に第8341号として昭和60年7月11日に寄託され
ている)。培地のODが10となった時点で培地にI 
PTGを添加して蛋白質の発現を誘導し、更に7時間培
養した。
Example 1 Escherichia coli was transformed with a 11 plasmid containing the gene encoding prourokinase and cultured in M9 medium (the plasmid was described in JP-A-62-143686). (Deposited as No. 8341 with the National Institute of Microbial Technology on July 11, 1985). When the OD of the medium reaches 10, add I to the medium.
Protein expression was induced by adding PTG, and the cells were further cultured for 7 hours.

培養終了後、菌体を含む培養液をホモジナイザー(マン
トンゴーリン社製)により破砕し、菌体破砕物溶液を得
た。該溶液について遠心分離を行い、製造されたプロウ
ロキナーゼを含む不溶性画分を回収した。湿菌体1g相
当の不溶性画分を10mlの純水に懸濁し、70℃で1
時間熱処理した後、水冷し、最終濃度がそれぞれ0.5
%又は20mMとなるように2一メルカプトエタノール
又はジチオトレイトールを添加した。
After the culture was completed, the culture solution containing the bacterial cells was crushed using a homogenizer (manufactured by Manton-Gorlin) to obtain a solution of crushed bacterial cells. The solution was centrifuged and an insoluble fraction containing the produced prourokinase was collected. Suspend the insoluble fraction equivalent to 1 g of wet bacterial cells in 10 ml of pure water, and incubate at 70°C for 1 hour.
After heat treatment for an hour, the final concentration was 0.5.
% or 20 mM.

室温で30分間放置した後、遠心分離を実施し、不溶性
画分を回収した。
After standing at room temperature for 30 minutes, centrifugation was performed to collect the insoluble fraction.

続いて回収された不溶性画分を特開昭59−16132
1号に記載された方法に従って活性化1 2 した。まず不溶性画分を20mlの0.1M}リス塩酸
緩衝液(pH8.0)に懸濁し、続いて20mlの8M
グアニジン塩酸塩溶液を添加し室温で2時間放置した後
、0.05M}リス塩酸緩衝液(pH8.0)を添加し
てグアニジン塩酸塩濃度をIMに低下させ、更に0.2
mMになるようにグルタチオンを添加して一晩放置した
Subsequently, the collected insoluble fraction was
Activation 1 2 was performed according to the method described in No. 1. First, the insoluble fraction was suspended in 20 ml of 0.1 M Lis-HCl buffer (pH 8.0), and then 20 ml of 8 M
After adding the guanidine hydrochloride solution and leaving it at room temperature for 2 hours, 0.05M} Lis-HCl buffer (pH 8.0) was added to lower the guanidine hydrochloride concentration to IM, and then further 0.2
Glutathione was added to a concentration of mM and left overnight.

得られた溶液中のプロウロキナーゼについての活性につ
いて表1に示す。なお、表中、MEは2−メルカプトエ
タノールを、DTTはジチオトレイトールをそれぞれ示
す。
Table 1 shows the prourokinase activity in the obtained solution. In addition, in the table, ME represents 2-mercaptoethanol and DTT represents dithiothreitol.

1 3 表1 表1によれば、熱処理を実施していない場合の還元剤の
添加の有無によるウロキナーゼ活性の変化はわずかであ
るが、熱処理を実施した場合には大きく異なり、還元剤
の添加により変性・分角クが防止されていることが分か
る。
1 3 Table 1 According to Table 1, there is only a slight change in urokinase activity depending on the presence or absence of the addition of a reducing agent when heat treatment is not performed, but there is a large difference when heat treatment is performed; It can be seen that denaturation and arcing are prevented.

1 4 実施例 2 実施例1と同様にして調製された湿菌体1gに相当する
不溶性画分を5mM  EDTAを含む10mMリン酸
緩衝液(pH7.0)に懸濁し、70℃で30分又は1
時間加熱した後水冷し、その一部を採取して生存する菌
体の数及び菌体に由来するプロテアーゼ活性を測定した
。また、その残りの溶液について最終濃度が0.5%と
なる様に2−メルカプトエタノールを添加し、室温で3
0分間放置した後遠心分離を行って不溶性画分を回収し
た。
1 4 Example 2 An insoluble fraction equivalent to 1 g of wet bacterial cells prepared in the same manner as in Example 1 was suspended in 10 mM phosphate buffer (pH 7.0) containing 5 mM EDTA, and incubated at 70°C for 30 minutes or 1
After heating for a period of time, the mixture was cooled with water, and a portion thereof was collected to measure the number of surviving bacterial cells and the protease activity derived from the bacterial cells. In addition, 2-mercaptoethanol was added to the remaining solution so that the final concentration was 0.5%, and 3-mercaptoethanol was added at room temperature.
After standing for 0 minutes, centrifugation was performed to collect the insoluble fraction.

回収された不溶性画分について実施例1と同様の活性化
操作を実施した後、そのプロウロキナーゼの活性を測定
した。結果を表2に示す。
The recovered insoluble fraction was subjected to the same activation procedure as in Example 1, and then its prourokinase activity was measured. The results are shown in Table 2.

なお、生存する菌体数は、採取した溶液を30℃で3日
間、M9寒天培地にて培養して生じたコロニーの数から
、培養した溶液1ml当たりの菌体数を求めた。菌体由
来のプロテアーゼ活性は、採取した溶液を1%カゼイン
(pH7.5)に37℃で作用させ、1・リクロロ酢酸
で反応を停止し15 た後、酸可溶性画分の280nm吸光度を測定して求め
、加熱処理をしていない湿菌体1gに相当する不溶性画
分に由来する活性を100%としたときの相対活性にて
示した。
The number of surviving bacterial cells was determined from the number of colonies produced by culturing the collected solution on an M9 agar medium at 30° C. for 3 days, and the number of bacterial cells per ml of the cultured solution. The protease activity derived from bacterial cells was determined by reacting the collected solution with 1% casein (pH 7.5) at 37°C, stopping the reaction with 1-lichloroacetic acid, and then measuring the absorbance at 280 nm of the acid-soluble fraction. The relative activity was calculated based on the activity derived from the insoluble fraction corresponding to 1 g of wet bacterial cells that had not been heat treated as 100%.

表2 表2からは、大腸菌の殺菌は70℃、30分間の熱処理
にて十分であり、その場合には菌体に由来するプロテア
ーゼ活性は約半分に減少するものの、プロウロキナーゼ
活性は8割以上残存する1 6 ことが分かる。この様に、熱処理には生存する細胞の殺
菌という効果とともに目的蛋白質を分解する恐れのある
菌体由来のプロテアーゼの活性を減少させる効果も有し
、しかも還元剤の添加により目的蛋白質の変性・分解は
防止されるという特徴を有することが分かる。
Table 2 From Table 2, heat treatment at 70°C for 30 minutes is sufficient to sterilize E. coli, and in that case, protease activity derived from the bacterial cells is reduced by about half, but prourokinase activity is reduced by more than 80%. It can be seen that 1 6 remains. In this way, heat treatment has the effect of sterilizing living cells and also reduces the activity of protease derived from bacterial cells that may degrade the target protein.Additionally, the addition of a reducing agent denatures and degrades the target protein. It can be seen that it has the characteristic that it is prevented.

実施例 3 実施例1と同様にして得た湿菌体1g相当の不溶性画分
を5mM  EDTAを含む10mMリン酸緩衝液(p
H7.0)に懸濁し、80℃以上の温度で30分又は1
時間加熱処理を行った後、氷冷し、最終濃度が0.05
〜1.0%となる様に2一メルカプトエタノールを添加
して室温で30分間放置し、遠心分離を行って不溶性画
分を回収した。
Example 3 The insoluble fraction equivalent to 1 g of wet bacterial cells obtained in the same manner as in Example 1 was added to 10 mM phosphate buffer (p
H7.0) and at a temperature of 80°C or higher for 30 minutes or 1
After heat treatment for an hour, cool on ice until the final concentration is 0.05.
2-mercaptoethanol was added to the mixture to give a concentration of ~1.0%, the mixture was left to stand at room temperature for 30 minutes, and the insoluble fraction was collected by centrifugation.

回収された不溶性画分について実施例1と同様の活性化
操作を実施し、プロウロキナーゼ活性をa1り定した。
The collected insoluble fraction was subjected to the same activation procedure as in Example 1, and the prourokinase activity a1 was determined.

結果を表3に示す。なお、表中MEは2−メ1 7 ルカプトエタノールを示すものである。The results are shown in Table 3. In addition, ME in the table is 2-Me1 7 This indicates lucaptoethanol.

1 8 表3からは、大腸菌にてプロウロキナーゼを製造した場
合には、80℃、1時間又は90℃、30分の熱処理で
あれば0.5%の2−メルカプトエタノールの添加によ
り約50%の活性を保護できることが分かり、しかも、
90℃、1時間又は煮沸状態での30分の熱処理におい
ても、0.5%程度の還元剤を添加することにより20
〜30%の活性が保護されるが分かる。
1 8 From Table 3, when prourokinase is produced using Escherichia coli, if it is heat treated at 80°C for 1 hour or 90°C for 30 minutes, the addition of 0.5% 2-mercaptoethanol will reduce the concentration by about 50%. It was found that the activity of
Even in heat treatment at 90℃ for 1 hour or 30 minutes in a boiling state, by adding about 0.5% reducing agent,
It can be seen that ~30% of the activity is protected.

実施例 4 実施例1と同様にして得た湿菌体1g相当の不溶性画分
を純水に懸濁し、70℃にて30分間処理した後、水冷
し、遠心分離を行なって不溶性画分を回収した。
Example 4 An insoluble fraction equivalent to 1 g of wet bacterial cells obtained in the same manner as in Example 1 was suspended in pure water, treated at 70°C for 30 minutes, cooled with water, and centrifuged to remove the insoluble fraction. Recovered.

回収された不溶性画分中のプロウロキナーゼについて、
その活性を前記のようにし゛C測定した。
Regarding prourokinase in the collected insoluble fraction,
The activity was measured as described above.

還元剤は、加熱処理前又は加熱処理開始後15分の時点
(熱処理中)で0.5%となるように2−メルカプトエ
タノールを添加した。結果を表4に示す。
As the reducing agent, 2-mercaptoethanol was added at a concentration of 0.5% before the heat treatment or 15 minutes after the start of the heat treatment (during the heat treatment). The results are shown in Table 4.

1 つ 表4からは、還元剤の添加は熱処理前に行われても良い
(表1の結果を参照のこと)し、熱処理中に実施しても
良いことが分かる。
1. From Table 4, it can be seen that the reducing agent may be added before the heat treatment (see the results in Table 1) or during the heat treatment.

Claims (1)

【特許請求の範囲】[Claims] (1)遺伝子組換菌で製造され該菌体中に蓄積された不
溶性蛋白質について、菌体を破砕して不溶性画分を回収
し、懸濁し、活性を発現し得る形態に活性化する一連の
操作において、菌体の破砕から活性化する操作に至る任
意の時点で該蛋白質を含有する画分について加熱処理及
び還元剤を添加する操作と、前記加熱処理及び還元剤を
添加る操作の後でありかつ活性化する操作の前に添加さ
れた還元剤を前記画分から除去する操作を実施すること
を特徴とする遺伝子組換菌で製造された不溶性蛋白質の
活性化法。
(1) Regarding insoluble proteins produced by genetically modified bacteria and accumulated in the bacterial cells, a series of steps are taken to crush the bacterial cells, collect the insoluble fraction, suspend it, and activate it into a form capable of expressing activity. In the operation, the fraction containing the protein is heat treated and a reducing agent is added at any point from the crushing of the bacterial cells to the activation operation, and after the heat treatment and the reducing agent is added. 1. A method for activating an insoluble protein produced using a genetically modified bacterium, which comprises performing an operation for removing the added reducing agent from the fraction before the activation operation.
JP1299728A 1989-11-20 1989-11-20 Method for activating insoluble proteins produced with genetically modified bacteria Pending JPH03160990A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1299728A JPH03160990A (en) 1989-11-20 1989-11-20 Method for activating insoluble proteins produced with genetically modified bacteria

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1299728A JPH03160990A (en) 1989-11-20 1989-11-20 Method for activating insoluble proteins produced with genetically modified bacteria

Publications (1)

Publication Number Publication Date
JPH03160990A true JPH03160990A (en) 1991-07-10

Family

ID=17876245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1299728A Pending JPH03160990A (en) 1989-11-20 1989-11-20 Method for activating insoluble proteins produced with genetically modified bacteria

Country Status (1)

Country Link
JP (1) JPH03160990A (en)

Similar Documents

Publication Publication Date Title
JP4913074B2 (en) Animal-free product-free method and method for purifying botulinum toxin
JP5951490B2 (en) Methods and systems for purifying unconjugated botulinum neurotoxins
CN104797595B (en) Method for producing proteolytically processed polypeptide
TWI294914B (en) Animal product free media and processes for obtaining a botulinum toxin
KR20190111161A (en) Process and system for obtaining botulinum neurotoxin
JPS6055118B2 (en) Novel bacterial alkaline protease and its production method
Matta et al. Isolation and partial characterization of a thermostable extracellular protease of Bacillus polymyxa B-17
Sierecka Purification and partial characterization of a neutral protease from a virulent strain of Bacillus cereus
JP3253108B2 (en) Compositions containing proteases produced by Vibrio and methods for use in debridement and wound healing
EP1032675B1 (en) Attaching substances to micro-organisms
JPWO2012124668A1 (en) Method for measuring the activity of arylsulfatase
Rogers et al. The bacterial autolysins
Dostál et al. The precursor of secreted aspartic proteinase Sapp1p from Candida parapsilosis can be activated both autocatalytically and by a membrane-bound processing proteinase
JPH11243961A (en) New catalase, gene of the same, and composition containing the same, and preparation of catalase by genetic engineering
JPH03160990A (en) Method for activating insoluble proteins produced with genetically modified bacteria
RU2127758C1 (en) Method of recombinant streptokinase preparing
EP0183776B2 (en) A process for isolating and activating a substantially insoluble polypeptide using non-ionic detergents.
Nagamori et al. Purification and some properties of dipeptidyl carboxypeptidase from Bacillus pumilus
JPH0451893A (en) Method for recovering urokinase-like enzymic precursor
Setlow Degradation of dormant spore protein during germination of Bacillus megaterium spores
JPH0650985B2 (en) New E. coli host
JPS62151185A (en) Recominant dna molecule
JPH02227076A (en) Method for activating insoluble proteins produced with genetically modified bacteria
JPH06181790A (en) Production of recombinant protein
Hauer et al. BETA TOXIN (PHOSPHOLIPASE C) GENE OF CLOSTRIDIUM HEMOLTICUM