[go: up one dir, main page]

JPH03159956A - Production of porous refractory for gas blowing - Google Patents

Production of porous refractory for gas blowing

Info

Publication number
JPH03159956A
JPH03159956A JP1300004A JP30000489A JPH03159956A JP H03159956 A JPH03159956 A JP H03159956A JP 1300004 A JP1300004 A JP 1300004A JP 30000489 A JP30000489 A JP 30000489A JP H03159956 A JPH03159956 A JP H03159956A
Authority
JP
Japan
Prior art keywords
titanium dioxide
gas blowing
magnesia
porous refractory
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1300004A
Other languages
Japanese (ja)
Inventor
Akihiro Tsuchinari
昭弘 土成
Toshiyuki Hokii
利之 保木井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harima Ceramic Co Ltd
Original Assignee
Harima Ceramic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harima Ceramic Co Ltd filed Critical Harima Ceramic Co Ltd
Priority to JP1300004A priority Critical patent/JPH03159956A/en
Priority to KR1019900018595A priority patent/KR910009593A/en
Priority to DE4114388A priority patent/DE4114388A1/en
Publication of JPH03159956A publication Critical patent/JPH03159956A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/03Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite
    • C04B35/04Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite based on magnesium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/03Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite
    • C04B35/04Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite based on magnesium oxide
    • C04B35/043Refractories from grain sized mixtures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D1/00Treatment of fused masses in the ladle or the supply runners before casting
    • B22D1/002Treatment with gases
    • B22D1/005Injection assemblies therefor
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To obtain the subject porous refractory for gas blowing, having excellent spalling resistance, gas permeability, etc., by molding a mixture of magnesia as a main material containing specific amounts of titanium dioxide and fine alumina and sintering. CONSTITUTION:(A) 0.3-10wt.% titanium dioxide of rutile structure and (or) anatase structure is blended with (B) 0.4-15wt.% alumina having <=100mum average particle diameter and (C) the rest of magnesia. Then the prepared mixture of magnesia as a main material is molded and then sintered to give porous refractory for gas blowing. Further blending of <=10wt.% one or more selected from compounds containing cations of Si<4+>, Zr<4+>, Fe<3+>, Mg<2+>, Li<+>, Ni<2+> and Cr<2>+ having the same or larger diameter of cation than that of titanium can prevent reduction in corrosion resistance caused by addition of titanium dioxide.

Description

【発明の詳細な説明】 = 1 〔産業上の利用分野1 本発明は、耐川性に優れたガス吹き込み川耐火物を製造
する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION = 1 [Industrial Field of Application 1] The present invention relates to a method for producing a gas-blown river refractory having excellent river resistance.

〔従来の技術] 溶融金属の温度調整、成分均一化、非金h尾介化物の除
去などを目的として、ポーラスプラグをもって溶融金属
に不活性ガスを吹込むことが行われている(例えば特開
昭49−437705 q・公報)1、また、溶#l鋳
造用ノズルにおいて、非金属介在物の付置によるノズル
閉塞を防止するために、ノズル内周面から不活wI.カ
スを吹き込むことが知られている(例えば失開昭54−
34342号公報、実.開昭53−128317号公報
,特開昭56−148453号公報)。
[Prior art] Inert gas is blown into molten metal using a porous plug for the purpose of adjusting the temperature of molten metal, making the composition uniform, removing non-gold H tailing compounds, etc. In addition, in the nozzle for molten #l casting, inert wI. It is known to blow in scum (for example, when the
Publication No. 34342, Act. JP-A-53-128317, JP-A-56-148453).

このガス吹き込みに使用されるポーラス質耐火物の材質
は、アルミナ質が主流である(例えば特開昭50−45
810号公報号)。
The material of the porous refractory used for this gas blowing is mainly alumina (for example, JP-A-50-45
Publication No. 810).

[発明が解決しようとする課題] アルジナ質耐火物は、ml・1食性および耐スポーリン
グ性に優れている。しかし、ガス吹き込み用ポーラス質
耐火物として使用すると、不活性ガスによる冷却作用に
より、溶鋼接触面との間に著しい温度差が生じ、ア2 ルミナ質耐火物であってもスポーリングによる損傷を免
れることはできない。そして、スポーリングにより亀裂
が発生すると溶鋼の侵入でガス透過刊が低下する、、ま
た、その亀裂が大きい場合は、湯漏れなとの大JF故を
招く。
[Problems to be Solved by the Invention] Algina refractories are excellent in ml/1 corrosion resistance and spalling resistance. However, when used as a porous refractory for gas blowing, the cooling effect of the inert gas creates a significant temperature difference between the contact surface and the molten steel, and even aluminum refractories can avoid damage due to spalling. It is not possible. When cracks occur due to spalling, gas permeability decreases due to the intrusion of molten steel, and if the cracks are large, this can lead to major accidents such as leakage of hot water.

熱膨脹率の小さい溶融シリカなとのシリカ質原{′[、
あるいは熱膨脹を吸収する作用を持つ炭素粉なとを添加
し、耐スポーリング性を改pτすることが知られている
。しかし、いずれも十分な効果が得られないとJ(に、
シリカ質原料では添力旧1(か多いと低融点物質の生+
1xで耐食性の低1・か若しい。−・方、炭素粉は気孔
を閉塞してガス透過性を低下させる。
Siliceous materials such as fused silica with a small coefficient of thermal expansion
Alternatively, it is known to add carbon powder, which has the effect of absorbing thermal expansion, to improve the spalling resistance pτ. However, if sufficient effects cannot be obtained with either method,
For siliceous raw materials, the additive is
1x has low corrosion resistance. - On the other hand, carbon powder blocks pores and reduces gas permeability.

本発明は、以」−の欠点のないカス吹き込み用ポーラス
耐火物を提供することを[]的としている。
The object of the present invention is to provide a porous refractory for slag blowing that does not have the following disadvantages.

〔課題を解決するための手段] 本発明は、th !jk割合で二酸化チタン0.3〜1
0%と・l/均径100llm以下のアルミナ0.4〜
15w+%.残部がマグネシア主材の配合物を成形後、
焼成することを特徴としたガス吹き込み川ポーラス耐火
物の製遣方法である。
[Means for Solving the Problems] The present invention provides th! Titanium dioxide 0.3-1 in jk ratio
0% and l/alumina with a uniform diameter of 100 llm or less 0.4~
15w+%. After molding the compound where the remainder is mainly magnesia,
This is a manufacturing method for gas-blown porous refractories characterized by firing.

以下、本発明をさらに詳細に説明する。The present invention will be explained in more detail below.

本発明で使川するニ醇化チタンは、例えばイルメナイ1
・なとを原1′」とし、これを精製、焼成、粉砕して製
造される。その隠ぺい力、若色力、不溶性なとの詔性質
によって、従来より塗1+ .インキ、紙、プラスチッ
クなどの充填剤、あるいは磁器原料、研磨利、区梨品、
化わ1品などに仙川されおり、市販品からも人トできる
The titanium di-diluted material used in the present invention is, for example, Ilmenai 1
・It is produced by refining, firing, and crushing the raw material 1'. Due to its concealing power, youthful color power, and insoluble edict properties, it has traditionally been used as a coating of 1+. Ink, paper, plastic fillers, porcelain raw materials, abrasive materials, porcelain products, etc.
It is widely used in various products, and it can also be obtained from commercially available products.

二酸化チタンはルチール型とアナターゼ型とが知lチれ
ているか、本発明ではいずれの形態でも使用できる。
Titanium dioxide is known to be of the rutile type and the anatase type, and both forms can be used in the present invention.

その粒度は、微量添加でも効果をあげるために、平均杼
を例えばn4μIll以ドQ)微’+−7. /−で使
用するのが何ましい。
In order to achieve the effect even when added in a small amount, the particle size should be adjusted to an average particle size of, for example, from n4 μIll to Q) fine'+-7. It is strange to use /-.

配介物中に山ぬる 酸化チタンの添加割合は、重llk
;’PI 令テ0.3〜10 % トt 6 . 0.
+i%J 91!l テ(1;l: Ill スポーリ
ング性の効果がなく、10%を超えると強度の低下で耐
食性に劣る。最も灯ましい範四は、0.5〜5%である
The addition ratio of titanium oxide in the inclusion is heavy
;'PI 0.3-10% 6. 0.
+i%J 91! l Te (1; l: Ill There is no effect on spalling properties, and if it exceeds 10%, the strength will decrease and the corrosion resistance will be poor. The most favorable range is 0.5 to 5%.

本発明において二酸化チタンの添加がポーラス酊・j火
物のml・Iスポーリング性を向上させるのは、つぎの
理山によるものと思われる。すなわち、−酸化チタンは
ポーラス祠大物の製込におけるt/f. Ily過程で
耐火材中のアルミナ成分と反応し、マ[・リックス部に
チタン酸アルミニウムを生成する。焼成後のこのチタン
酸アルミニウムを顕微鏡で観察すると、チタン酸アルミ
ニウムの結晶粒界に亀裂か確認される。ml・Iスポー
リング性の11′リ上は、この桔晶粒界の亀裂が熱応力
を吸収することによると思われる。したがって、アルミ
ナ成分を持たない耐火材との組合せではチタン酸アルミ
ニウムが生代しないので、本発明の効果は得られない。
The reason why the addition of titanium dioxide in the present invention improves the spalling properties of porous porous materials is believed to be due to the following rationale. That is, titanium oxide is used at t/f in manufacturing of large porous objects. In the Ily process, it reacts with the alumina component in the refractory material, producing aluminum titanate in the matrix. When this aluminum titanate is observed under a microscope after firing, it is confirmed that there are cracks in the grain boundaries of the aluminum titanate. The 11' increase in ml·I spalling property is thought to be due to the absorption of thermal stress by cracks in the crystal grain boundaries. Therefore, in combination with a refractory material that does not have an alumina component, aluminum titanate does not grow, and the effects of the present invention cannot be obtained.

主骨材としてのマグネシアは、焼成品、電融品のいすれ
でもよい。経済性の点からすると、安価な焼結品の力を
使用するのがAfましい。1′1′I.子形状も、1分
(1%品、球状品のいすれでもよい。粒度は、ポーラス
質組織が得られるように、例えば中間径を少なくしたも
のにする。
Magnesia as the main aggregate may be either a fired product or an electrofused product. From an economic point of view, it is desirable to use the power of inexpensive sintered products. 1'1'I. The particle shape may be either a 1% particle or a spherical particle.The particle size is, for example, one with a small intermediate diameter so as to obtain a porous structure.

チタン酸アルミニウムの結晶粒界の亀裂は酎・1スポリ
ング性の向上に効果がある)又而、機械的強度を低ドさ
せるためか、二酸化チタンの添加量が増すにしたがって
嗣食性低下の傾向かみられる。これを解決するには、さ
らに、陽イオンの半径がチタンの陽イオンの半径と同勢
もしくはそれ以ドであるSi”、Zr”、ト゛(・゜、
Mg”、l.i”、Ni”またはCr’+の陽イオンを
{f?る化合物から選ばれる一種以1″を添加ずること
かI’fましい。
(Cracks in the grain boundaries of aluminum titanate are effective in improving the spatter resistance.)Also, as the amount of titanium dioxide added increases, the splintering resistance tends to decrease, perhaps because it lowers the mechanical strength. It will be done. To solve this problem, it is necessary to use Si'', Zr'', and ゛(・゜,
It is preferable to add one or more cations selected from the following compounds: Mg'', l.i'', Ni'' or Cr'+.

これは、これらの化合物かチタンの陽イオンの゛1′−
径と同等もしくはそれ以ドの陽イオンを有していること
で、ポーラス耐火物の焼成時に生成されるチタン酸アル
ミニウムと固溶し、チタン酸アルミニウムの結晶の発辻
を抑制し、&’■’u’ll’′lVILfコ必・Bl
以lニ(II ’A カ止e ル(rlを防11・する
ためと思われる,1 これらの化含物の具体例は、例えばSiO,、M)<0
, Fo,03、Cr, 0,、Nip, Lid. 
ZrO,なとがある。これらの化合物の粒度は特に限定
されるものではないが、反応性をj−hめるために微拉
かAIましく、例乙ば・14均粒1’ I O f1μ
Il以ドとする。これらの化合物を添加する場合、配合
物中に山める割合は重1律割合で10%以下とする。1
0%を超えるとチタン酸アルミニウムの桔品粒界の亀裂
の発生が抑制されすぎるため、耐スポーリング性向1一
の効果が得られない。また、これらの化合物添加による
効呆を1・分に得ようとすると、1%以J’. fA加
する必要かある。
This is because these compounds or the titanium cation '1'-
By having cations equal to or larger than the diameter, it forms a solid solution with aluminum titanate produced during firing of porous refractories, suppresses the formation of aluminum titanate crystals, and suppresses the formation of aluminum titanate crystals. 'u'll''lVILfkomust・BL
It seems that this is to prevent rl, 1 Specific examples of these compounds include, for example, SiO, M)<0
, Fo,03, Cr, 0,, Nip, Lid.
There is ZrO. The particle size of these compounds is not particularly limited, but in order to reduce the reactivity, it is preferable to use finely milled or AI-like particles.
Let Il be de. When these compounds are added, their proportion in the formulation should be 10% or less on a weight basis. 1
If it exceeds 0%, the occurrence of cracks at the grain boundaries of aluminum titanate is too suppressed, so that the effect of improving spalling resistance (1) cannot be obtained. In addition, if you try to obtain the effect by adding these compounds in 1 min, it will be more than 1% J'. Is it necessary to add fA?

以1−.の他にも、本発明ではポーラス質耐火物の製逍
6 において知られている耐火骨材、金属粉、粘土などの添
加剤を、本発明の効果を阻害しない範囲で添加してもよ
い。
Below 1-. In addition, in the present invention, additives such as refractory aggregate, metal powder, clay, etc. known in the production of porous refractories may be added to the extent that they do not impede the effects of the present invention.

威形は、無機質あるいは有機質のバインダーを配合物全
体に対して重量割合で外掛け1〜5%程度添加し、混線
後、任意形状に加圧する。
For shaping, an inorganic or organic binder is added in an amount of about 1 to 5% by weight based on the entire mixture, and after cross-mixing, it is pressed into an arbitrary shape.

焼成は、1300〜1800℃が好ましい..〔実施例
] 以下、本発明実施例とその比較例とを示す。
The firing temperature is preferably 1300 to 1800°C. .. [Example] Examples of the present invention and comparative examples thereof are shown below.

第1表は、各例で用いた二酸化チタンの品質を示す。Table 1 shows the quality of the titanium dioxide used in each example.

第2表は、各例の配合組成とそれにより製造されたボラ
ス質耐火物の試験結果である。
Table 2 shows the compounding composition of each example and the test results of the bolus refractories produced therefrom.

各例は、ポーラス質の耐火物組織を得るために、通常の
耐火物に比べて中間径の骨相粒子を少なくした配合組成
にした。また、成形には結合剤としてリグニンスルホン
酸カルシウムを水に溶解させた状態で添加し、混線後、
フリクションプレスにて加圧した。焼成は1700℃×
6時間で行った。
In each example, in order to obtain a porous refractory structure, a blending composition was used in which the amount of intermediate-diameter bone phase particles was reduced compared to that of a normal refractory. In addition, calcium lignin sulfonate is added as a binder to the molding process in a state dissolved in water.
Pressure was applied using a friction press. Firing at 1700℃
I went there in 6 hours.

試験方法は、次のとおりてある。The test method is as follows.

具掛気孔率  ・・・JIS−R2205に箪じて測定
Porosity: Measured according to JIS-R2205.

7 圧縮強さ    ・JIS−R2206に準じて測定。7 Compressive strength - Measured according to JIS-R2206.

通 気 率  ・・常温空気によるillU定。Air permeability: illU constant with room temperature air.

一スポーリング性 30 X 40 X 120n+m
の試験片を電気炉にて30分加熱後、空冷し、これを繰
り迦してf(4裂発生までの回数をillll定した。
- Spalling property 30 x 40 x 120n+m
The test piece was heated in an electric furnace for 30 minutes, then cooled in the air, and this process was repeated to determine f (the number of times until four cracks occurred).

嗣食性    ・鋼片を侵食剤とした回転侵食試験によ
り測定した。1650“C×30分を3 11+1くり
返すした後、溶損寸法を測定し、比較例5の耐火物の溶
損寸法を100とした指数で示した。数値が小さいほど
耐食性に優れる 実機試験  ・ポーラスプラグとスライディングノズル
用」ユノスルとを製造し、ポーラスプラグは3001溶
鋼取鍋、上ノズルは60竃,タンデイシュにそれぞれ装
着し、耐用M数をiota定した。表中、データが空欄
のものは、未使用。
Erosion resistance - Measured by rotary erosion test using a steel piece as an eroding agent. After repeating 1650"C x 30 minutes 3 11+1 times, the erosion dimension was measured and expressed as an index with the erosion dimension of the refractory of Comparative Example 5 as 100. The smaller the value, the better the corrosion resistance. A porous plug and a "YUNOSUL" for sliding nozzles were manufactured, and the porous plug was installed in a 3001 molten steel ladle, the upper nozzle was installed in a 60 furnace, and a tundish, and the durable M number was determined by iota. In the table, blank data are unused.

8 一7一 本発明実施例はいずれも耐スポーリング性に優れている
。本発明実施例の中でも8〜10は耐スポーリング性に
加えて耐食性が優れており、ポーラスプ上ノズルでの実
機試験では実施例1〜2よりさらに耐用回数が向上した
8-71 All of the examples of the present invention are excellent in spalling resistance. Among Examples 8 to 10 of the present invention, in addition to spalling resistance, corrosion resistance was excellent, and in an actual machine test using a porous sp top nozzle, the service life was further improved compared to Examples 1 to 2.

二酸化チタンの添加量が多すぎる比較例2は、耐食性に
劣る。マグネシア粉および酸化クロムの添加量が多すぎ
る比較例3および4は酎スポーリング性に劣る。
Comparative Example 2, in which too much titanium dioxide was added, had poor corrosion resistance. Comparative Examples 3 and 4, in which the amounts of magnesia powder and chromium oxide added are too large, are inferior in the spalling properties.

〔効果〕〔effect〕

以上の実施例の試験結果からも明らかなように、本発明
によって得られるポーラス耐火物はガス吹き込み時に受
ける著しい温度差に対しても優れた耐スポーリング性を
示す。また、耐食性およびガス透過性を損うこともない
。したがって、湯漏れなどの大事故などを懸念すること
もなく、その用途に応じて、ガス吹き込みによる溶鋼か
く拌、ノズル閉塞防止といった機能をいかんなく発揮す
ることができる。
As is clear from the test results of the above examples, the porous refractory obtained by the present invention exhibits excellent spalling resistance even against the significant temperature difference experienced during gas injection. Moreover, corrosion resistance and gas permeability are not impaired. Therefore, there is no need to worry about major accidents such as leakage of hot water, and functions such as stirring molten steel by blowing gas and preventing nozzle clogging can be fully performed depending on the application.

Claims (3)

【特許請求の範囲】[Claims] (1)重量割合で、二酸化チタン0.3〜10%、平均
径100μm以下のアルミナ0.4〜15%、残部がマ
グネシア主材の配合物を成形後、焼成することを特徴と
したガス吹き込み用ポーラス耐火物の製造方法。
(1) Gas blowing characterized by molding a mixture of 0.3 to 10% titanium dioxide, 0.4 to 15% alumina with an average diameter of 100 μm or less, and the balance mainly consisting of magnesia, and then firing it. Method for manufacturing porous refractories for use.
(2)重量割合で二酸化チタン0.3〜10%、平均径
100μm以下のアルミナ0.4〜15%、イオン半径
がチタンの陽イオンの半径と同等もしくはそれ以下であ
るSi^4^+、Zr^4^+、Fe^3^+、Mg^
2^+、Li^+、Ni^2^+Sl^3^+またはC
r^3^+の陽イオンを有する化合物から選ばれる一種
以上を10%以下、残部がマグネシア主材の配合物を成
形後、焼成することを特徴としたガス吹き込み用ポーラ
ス耐火物の製造方法。
(2) Titanium dioxide 0.3-10% by weight, alumina 0.4-15% with an average diameter of 100 μm or less, Si^4^+ whose ionic radius is equal to or smaller than the radius of the titanium cation; Zr^4^+, Fe^3^+, Mg^
2^+, Li^+, Ni^2^+Sl^3^+ or C
A method for producing a porous refractory for gas blowing, characterized in that a compound containing 10% or less of one or more selected from compounds having an r^3^+ cation and the remainder being magnesia is molded and then fired.
(3)二酸化チタンが、ルチール型および/またはアナ
ターゼ型である請求項1または2記載のガス吹き込み用
ポーラス耐火物の製造方法。
(3) The method for producing a porous refractory for gas blowing according to claim 1 or 2, wherein the titanium dioxide is of rutile type and/or anatase type.
JP1300004A 1989-11-17 1989-11-17 Production of porous refractory for gas blowing Pending JPH03159956A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP1300004A JPH03159956A (en) 1989-11-17 1989-11-17 Production of porous refractory for gas blowing
KR1019900018595A KR910009593A (en) 1989-11-17 1990-11-16 Manufacturing method of gas repellent for poreus refractory
DE4114388A DE4114388A1 (en) 1989-11-17 1991-05-02 Spalling-resistant porous refractory mfr. for gas blowing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1300004A JPH03159956A (en) 1989-11-17 1989-11-17 Production of porous refractory for gas blowing

Publications (1)

Publication Number Publication Date
JPH03159956A true JPH03159956A (en) 1991-07-09

Family

ID=17879571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1300004A Pending JPH03159956A (en) 1989-11-17 1989-11-17 Production of porous refractory for gas blowing

Country Status (3)

Country Link
JP (1) JPH03159956A (en)
KR (1) KR910009593A (en)
DE (1) DE4114388A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0465351A (en) * 1990-07-05 1992-03-02 Mitsubishi Materials Corp Mgo sintered body and production thereof
JP2007217260A (en) * 2006-02-20 2007-08-30 Itochu Ceratech Corp Porous refractory material

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4319741C2 (en) * 1993-06-15 1997-12-04 Ulbricht Joachim Doz Dr Ing Ha Process for the preparation of magnesium oxide based refractory products
DE4337916A1 (en) * 1993-11-06 1995-05-11 Aken Magnesitwerk Gmbh Shaped and unshaped refractory compositions based on magnesia
KR100396112B1 (en) * 2001-03-19 2003-08-27 전홍정 Rice-cake type green laver containing flavor and method for producing the same
KR101717949B1 (en) 2015-04-20 2017-03-20 문기경 Preparation Method for Kelp Jelly Like Meat Using Extract of Sea Weed
WO2021054498A1 (en) * 2019-09-19 2021-03-25 씨제이제일제당 (주) Edible sheet containing seaweed and preparation method therefor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE684932C (en) * 1934-06-06 1939-12-08 Steatit Magnesia Akt Ges Electrical insulating body
US3531307A (en) * 1967-02-23 1970-09-29 Intern Pipe & Ceramics Corp Ceramic article and method for producing same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0465351A (en) * 1990-07-05 1992-03-02 Mitsubishi Materials Corp Mgo sintered body and production thereof
JP2007217260A (en) * 2006-02-20 2007-08-30 Itochu Ceratech Corp Porous refractory material

Also Published As

Publication number Publication date
DE4114388A1 (en) 1992-11-05
KR910009593A (en) 1991-06-28

Similar Documents

Publication Publication Date Title
EP1595617B2 (en) Spherical casting sand
JP2549450B2 (en) Novel refractory compositions containing monoclinic zirconia and articles formed from the compositions exhibiting improved high temperature mechanical strength and improved thermal shock resistance
JP3009705B2 (en) Chromium oxide refractories with improved thermal shock resistance
JPH03159956A (en) Production of porous refractory for gas blowing
JPS6110055A (en) Fused chromium-alumina refractory brick, composition manufactured from granular fused material and manufacture
WO2009062070A1 (en) Material used to combat thermal expansion related defects in high temperature casting processes
EP1810956A1 (en) Zirconia based monothilic refractory
JPH09301780A (en) Lightweight monolithic refractory
JP2890052B2 (en) Method for producing porous refractory for gas injection
JP2960631B2 (en) Irregular refractories for lining molten metal containers
US3752682A (en) Zircon-pyrophyllite unfired refractory bricks and method for the manufacture of the same
JP4776953B2 (en) Casting manufacturing method
JPH03159955A (en) Production of porous refractory for gas blowing
JPH03205341A (en) Production of porous refractory for gas blowing
AU638794B2 (en) Chrome oxide refractory composition
JPH0633179B2 (en) Irregular refractory for pouring
WO2009046128A1 (en) Material used to combat thermal expansion related defects in the metal casting process
JP2683217B2 (en) Nozzle for molten steel casting
JP3027721B2 (en) Porous plug refractory and manufacturing method thereof
JPH03170367A (en) Refractories for continuous casting and their manufacturing method
JP3157310B2 (en) Refractory
JPH0437453A (en) Nozzle for casting wide and thin slab
JPS63260648A (en) Mold material for precision casting and casting method using it
JP3176836B2 (en) Irregular refractories
JPH0459677A (en) Production of porous refractory material for gas blowing