[go: up one dir, main page]

JPH03159533A - Super high speed rotor - Google Patents

Super high speed rotor

Info

Publication number
JPH03159533A
JPH03159533A JP1341008A JP34100889A JPH03159533A JP H03159533 A JPH03159533 A JP H03159533A JP 1341008 A JP1341008 A JP 1341008A JP 34100889 A JP34100889 A JP 34100889A JP H03159533 A JPH03159533 A JP H03159533A
Authority
JP
Japan
Prior art keywords
sleeve
magnet
permanent magnet
rare earth
high speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1341008A
Other languages
Japanese (ja)
Inventor
Shinsaku Imagawa
信作 今川
Yusuke Sakagami
裕介 坂上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP1341008A priority Critical patent/JPH03159533A/en
Publication of JPH03159533A publication Critical patent/JPH03159533A/en
Pending legal-status Critical Current

Links

Landscapes

  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

PURPOSE:To enhance tensile strength of a rotor and to protect a magnet against breakdown by fitting a sleeve, for applying compression stress in the axial direction onto a magnet, to the outer circumference of the rotary pole of a rare earth magnet. CONSTITUTION:A permanent magnet 2 comprises a magnetic body containing rare earth elements, and it is magnetized in predetermined direction to provide a rotary pole. A sleeve 3 is shrinkage fitted on the magnet 2 in order to apply a strong compression stress onto the magnet 2 toward the center thereof. Centrifugal force F to be applied on the permanent magnet 2 can be expressed by a formula F=mromega<2>, where (m) is mass, (r) is radius, and omega is rotary angular speed. Predetermined compression stress is previously applied onto the magnet 2 from the outer circumference toward the center through shrinkage fitting of the sleeve 3 so that centrifugal force F during high speed rotation to be applied onto the magnet will be within the allowable limit of tensile force. Since the centrifugal force to be applied onto the rotary pole during high speed rotation does not deviate from the limit of tensile strength of the permanent magnet, the permanent magnet is protected against breakdown.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、超高速回転のタービン軸に直結される回転電
機の超高速回転子に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an ultra-high-speed rotor of a rotating electrical machine that is directly connected to an ultra-high-speed rotating turbine shaft.

(従来の技術) 近年、内燃機関の排気ガスをタービンに導いて高速回転
させ、該タービン軸に取付けたコンブレッサを駆動し、
内燃機関に過給気を圧送するターボチャージャが広く使
用されている.そして、この種のターボチャージャのタ
ービン軸に電動一発電機となる回転電機を取付け、排気
エネルギーを電力として回生したり、またはパッテリな
どからの電源を回転電機に供給して電動駆動し、過給作
動を助勢することが行われている. このようなタービン軸に配置した回転電機の回転子は超
高速回転に駆動されるので、遠心力による破壊防止用の
外筒を有する永久磁石を回転子としたターボチャージャ
用発電機の提案が特開昭62−254649号に開示さ
れている.(発明が解決しようとする課題) 回転電機の回転数を高速にするとエネルギー密度が高く
なるため小型にすることができ、回転子に永久磁石を用
いた場合には磁気特性の優れた希土類磁石を使用するこ
とになる。
(Prior Art) In recent years, exhaust gas from an internal combustion engine is guided to a turbine, rotated at high speed, and a compressor attached to the turbine shaft is driven.
Turbochargers are widely used to forcefully feed supercharged air to internal combustion engines. A rotating electric machine that serves as an electric generator is attached to the turbine shaft of this type of turbocharger, and the exhaust energy is regenerated as electricity, or power from a battery is supplied to the rotating electric machine to drive it electrically and supercharge it. There are efforts being made to assist the operation. Since the rotor of such a rotating electrical machine placed on the turbine shaft is driven to extremely high speed rotation, it is particularly important to propose a turbocharger generator whose rotor is a permanent magnet that has an outer cylinder to prevent damage caused by centrifugal force. It is disclosed in Kaisho 62-254649. (Problem to be solved by the invention) When the rotational speed of a rotating electric machine is increased, the energy density increases, so it can be made smaller. When permanent magnets are used in the rotor, rare earth magnets with excellent magnetic properties can be used. Will be using it.

しかし希土類磁石、例えば希土類コバルト磁石は、圧縮
応力に対しては機械的強度が高い(約80kgf/同2
)が、引張応力に対しては約5kgf/III12程度
と弱い.そのため、上述の公開公報に開示された提案で
は永久磁石の外周に外筒(スリーブ)を設けて破壊防止
用としているが、超高速回転における遠心力(F=mr
ω2 )による引張応力が、希土類磁石の引張強度の限
界を超過すると破壊してしまうということが考えられる
However, rare earth magnets, such as rare earth cobalt magnets, have high mechanical strength against compressive stress (approximately 80 kgf/2
), but it has a weak tensile stress of about 5 kgf/III12. Therefore, in the proposal disclosed in the above-mentioned publication, an outer cylinder (sleeve) is provided around the outer circumference of the permanent magnet to prevent destruction, but the centrifugal force (F = mr
It is conceivable that if the tensile stress caused by ω2) exceeds the tensile strength limit of the rare earth magnet, it will break.

本発明はこのような問題に鑑みてなされたものであり、
その目的は超高速回転する回転電機の回転子の永久磁石
に対して、圧縮予圧を与えることによって、回転子の引
張強度を高めるようにした超高速回転子を提供すること
にある。
The present invention was made in view of such problems,
The purpose is to provide an ultra-high-speed rotor in which the tensile strength of the rotor is increased by applying compressive preload to the permanent magnets of the rotor of a rotating electrical machine that rotates at ultra-high speed.

(課題を解決するための手段) 本発明によれば、希土類元素を含む磁石素材からなる永
久磁石の回転磁極外周面に、該永久磁石に対して中心軸
方向に圧縮応力を与えるスリーブを嵌合せしめた超高速
回転子が提供され、さらにこのスリーブは、前記永久磁
石の3倍以上の比弾性率を有する材料を用いた超高速回
転子が提供される。
(Means for Solving the Problems) According to the present invention, a sleeve that applies compressive stress to the permanent magnet in the central axis direction is fitted onto the outer peripheral surface of the rotating magnetic pole of a permanent magnet made of a magnetic material containing rare earth elements. Furthermore, the sleeve is made of a material having a specific elastic modulus three times or more that of the permanent magnet.

(作用) 本発明では回転磁極の外周に焼ばめや形状記憶合金の特
性を利用したスリーブによって、希土類磁石に対して中
心方向に圧縮応力を加えてあるので、高速回転による遠
心力が加わっても、希土類磁石の引張限度を超えること
なく、特に、回転速度が10万rpm以上になった場合
でも、スリーブが永久磁石の3倍以上の比弾性率を有し
ていることにより、永久磁石とスリーブの間の面圧が維
持され、これによって、遠心力による希土類磁石の破壊
が防止される。
(Function) In the present invention, compressive stress is applied toward the center of the rare earth magnet by shrink fitting or a sleeve utilizing the properties of shape memory alloy on the outer periphery of the rotating magnetic pole, so centrifugal force due to high speed rotation is applied. The sleeve has a specific elastic modulus that is more than three times that of a permanent magnet, so it can be used without exceeding the tensile limit of rare earth magnets, especially when the rotation speed exceeds 100,000 rpm. Surface pressure between the sleeves is maintained, thereby preventing destruction of the rare earth magnet due to centrifugal force.

(実施例) つぎに本発明の実施例について図面を用いて詳細に説明
する. 第1図は本発明の第1の実施例の構成を示す断面図であ
る。
(Example) Next, an example of the present invention will be explained in detail using the drawings. FIG. 1 is a sectional view showing the configuration of a first embodiment of the present invention.

同図において、1は高強度鋼材からなる回転軸で、例え
ばターボチャージャのタービンとコンプレッサとの回転
軸となるものであり、該回転軸はベアリングにより軸支
され、片側に取付けられたタービンにより超高速回転す
るものである.2は肉厚の円筒状の希土類磁石(永久磁
石)であり、例えばサマリウムーコバルトのような希土
類元素を含んだ磁性体からなり、所定の方向に着磁され
て回転M18iとなるもので、対応する固定子との電磁
作用により、電動機または発電機を構成するものである
. 3は希土類磁石2の外周に嵌め込まれたスリーブで、強
靭な金属が用いられ、希土類磁石2の外周壁から中心に
向って強力な圧縮応力を与えるため、焼ばめによって嵌
め込まれている.第2図はスリーブを加熱して焼ばめを
行う直前の状態の説明図であり、所定の高温度に加熱さ
れて直径が大となったスリーブ3゛を希土類磁石2の外
周に嵌合せしめた後、スリーブ3゛を常温に戻すとスリ
ーブ3゜の直径が小となり、希土類磁石2の外周に強固
に嵌め込まれ、さらに外周壁から中心方向に希土類磁石
2に対して圧縮応力を与えるように締め付けるものであ
る。
In the figure, reference numeral 1 denotes a rotating shaft made of high-strength steel, which serves as the rotating shaft for, for example, a turbine and a compressor in a turbocharger. It rotates at high speed. 2 is a thick cylindrical rare earth magnet (permanent magnet), made of a magnetic material containing rare earth elements such as samarium-cobalt, and magnetized in a predetermined direction to rotate M18i. An electric motor or generator is created through electromagnetic interaction with the stator. A sleeve 3 is fitted around the outer periphery of the rare earth magnet 2. It is made of strong metal and is fitted by shrink fitting in order to apply a strong compressive stress from the outer peripheral wall of the rare earth magnet 2 toward the center. FIG. 2 is an explanatory diagram of the state immediately before heating the sleeve and shrink-fitting it. The sleeve 3', which has been heated to a predetermined high temperature and has a large diameter, is fitted onto the outer periphery of the rare earth magnet 2. After that, when the sleeve 3゛ is returned to room temperature, the diameter of the sleeve 3゛ becomes smaller, and it is firmly fitted to the outer periphery of the rare earth magnet 2, and further applies compressive stress to the rare earth magnet 2 from the outer peripheral wall toward the center. It is a constricting thing.

ここで希土類磁石2に加わる遠心力Fは第1図に示すよ
うに、質量m、回転半径r1回転による角速度ωの場合
にF=mrω2 で表わされるため、予め、スリーブ3
の焼ばめによる所定の圧縮応力を外周より中心方向に希
土類磁石2にかけておき、高速回転時の遠心力Fが希土
類磁石に加わっても、その引彊限度以下となるように構
成されているものである。
Here, as shown in FIG. 1, the centrifugal force F applied to the rare earth magnet 2 is expressed as F=mrω2 when the mass m and the rotation radius r1 are the angular velocity ω.
A predetermined compressive stress is applied to the rare earth magnet 2 from the outer periphery toward the center by shrink fitting, and even if centrifugal force F is applied to the rare earth magnet during high speed rotation, it is configured so that the shrinkage limit is below or below. It is.

また、スリーブ3の素材は非磁性体で高強度のものであ
り、さらに、スリーブ自身の遠心力による引張応力には
、希土類磁石に与える圧縮予圧に対応する引張応力が加
重されるので、スリーブの素材についてはこれらの応力
に十分耐えるものが採用されている.なお、第3図は回
転子の回転数とスリーブの応力との関連を示す曲線図で
ある. 第4図は本実施例が適用される回転電機付ターボチャー
ジャの断面図である。
In addition, the material of the sleeve 3 is a non-magnetic material with high strength, and the tensile stress of the sleeve itself due to centrifugal force is added to the tensile stress corresponding to the compressive preload applied to the rare earth magnet. The materials used are those that can withstand these stresses. Furthermore, Fig. 3 is a curve diagram showing the relationship between the rotation speed of the rotor and the stress of the sleeve. FIG. 4 is a sectional view of a turbocharger with rotating electric machine to which this embodiment is applied.

つぎに第4図の断面図について説明すると、ターボチャ
ージャ10は図示していないエンジンの排気エネルギー
により駆動されて空気を圧縮し、この圧気をエンジンに
過給気として供給するものである. 11はタービンでlJt気管l2からの排気ガスにより
駆動されるもの、13はコンブレツサで回転軸1により
タービン11と連結されて回転駆動され、吸入空気口l
4からの空気を圧縮してエンジンに送気するものである
. 15はベアリングで、回転軸lを軸支するものであり、
該ベアリング15とコンブレツサ13との間の回転@1
上に前記の永久磁石2゛が回転磁極として取付けられて
いる. 8は固定子で、永久磁石2の四転子に電磁的に対応する
ものであり、コア−81とコイル82とを有している。
Next, referring to the sectional view of FIG. 4, the turbocharger 10 is driven by the exhaust energy of an engine (not shown) to compress air and supply this pressurized air to the engine as supercharging air. 11 is a turbine driven by the exhaust gas from lJt trachea l2; 13 is a compressor connected to turbine 11 by rotary shaft 1 and driven to rotate;
This compresses the air from 4 and sends it to the engine. 15 is a bearing that supports the rotating shaft l;
Rotation between the bearing 15 and the compressor 13 @1
The above-mentioned permanent magnet 2' is attached as a rotating magnetic pole on top. A stator 8 electromagnetically corresponds to the four rotors of the permanent magnet 2, and has a core 81 and a coil 82.

そしてエンジンからの排気エネルギーが大きくターボチ
ャージャ10の過給作動に余力のあるときは、超高速に
駆動される永久磁石2による磁束の変化によって、固定
子8のコイル82に誘起される電力を電源としてバツテ
リを充電したり、一方、エンジンが低速高負荷の状態に
て排気エネルギーが少なく、十分な過給圧がターボチャ
ージャ10から得られないときは、バツテリからのTL
fiエネルギーを固定子8に供給して回転子をカ行させ
、コンブレツサ13の過給作動を付勢してエンジンへの
ブースト圧を上昇させるように構成されている. つぎに、このように構成された本実施例の作動を説明す
る。
When the exhaust energy from the engine is large and there is surplus power for supercharging the turbocharger 10, the electric power induced in the coil 82 of the stator 8 is used as a power source by changing the magnetic flux caused by the permanent magnet 2 driven at ultra high speed. On the other hand, when the engine is running at low speed and high load with little exhaust energy and sufficient boost pressure cannot be obtained from the turbocharger 10, the TL from the battery is charged.
It is configured to supply fi energy to the stator 8 to move the rotor, energize the supercharging operation of the compressor 13, and increase the boost pressure to the engine. Next, the operation of this embodiment configured as described above will be explained.

上述のような構成の回転子が排気エネルギーにより超高
速に回転駆動されると、中心軸より外方向に向って強力
な遠心力が回転子に加わり、永久磁石2およびスリーブ
3にそれぞれ外方向への引張応力が加わることになる。
When the rotor configured as described above is driven to rotate at extremely high speed by exhaust energy, a strong centrifugal force is applied to the rotor outward from the central axis, causing the permanent magnet 2 and the sleeve 3 to move outward. This will result in a tensile stress of .

そして、希土類磁石の引張強度は前述のようにサマリク
ムーコバルト磁石が5kgf/■ 程度で小さいが、外
周に嵌合されたスリーブ3は永久磁石2に対して圧縮応
力を与えるように嵌め込まれており、この場合希土類磁
石の圧縮応力は約80kgf/Illm2であるので、
強い圧縮応力を加えられた永久磁石2に、超高速回転時
の遠心力が作用しても変形や破損することなく耐えられ
るものである。
As mentioned above, the tensile strength of the rare earth magnet is small at about 5 kgf/■ for the Samarikmu cobalt magnet, but the sleeve 3 fitted around the outer periphery is fitted so as to apply compressive stress to the permanent magnet 2. In this case, the compressive stress of the rare earth magnet is about 80 kgf/Illm2, so
The permanent magnet 2 to which strong compressive stress is applied can withstand centrifugal force during ultra-high speed rotation without deformation or damage.

つぎに本発明の第2の実施例について説明する。Next, a second embodiment of the present invention will be described.

第5図は第2の実施例の構成を示す断面図で、1は回転
軸、2は希土類磁石からなる永久磁石でvJl図と同一
のものである. 31は形状記憶合金からなる外筒で、例えば、N i 
−T i系合金が用いられており、予め永久磁石の外径
より小さい寸法で形状記憶処理を行っておき、その変態
温度より低い温度にて永久磁石2が内側に装着されるよ
うに形成し、永久磁石2の外周に装着後、合金の変態温
度以上に加温して強固に嵌合せしめたものである。した
がって、外筒31が形状回復後は永久磁石2に対して外
周より中心方向に向い圧縮応力を加えており、回転磁極
の超高速回転には前述の第1の実施例におけるスリーブ
3の作動と同様に、希土類磁石からなる永久磁石2の破
損を防止することになる.ところで、回転子の静止時に
永久磁石とスリーブの間に26の締め代を設定して、永
久磁石に対して中心軸方向の圧縮予圧を与えても、一般
には、回転が増大するにつれて面圧は低下する.永久磁
石とスリーブの間の面圧Pmは ρ 1 ρ2 EI E2 νl ν2 a b C :永久磁石の密度 :スリーブの密度 :永久磁石の弾性係数 :スリーブの弾性係数 :永久磁石のボアソン比 :スリーブのボアソン比 :永久磁石の内半径 :スリーブの外半径 :永久磁石の外半径、 (即ち、スリーブの内半径) ω :角速度 で与えられる。
FIG. 5 is a sectional view showing the configuration of the second embodiment, in which 1 is a rotating shaft and 2 is a permanent magnet made of a rare earth magnet, which is the same as the vJl diagram. 31 is an outer cylinder made of a shape memory alloy, for example, N i
- A Ti-based alloy is used, which has been subjected to shape memory treatment in advance to a size smaller than the outer diameter of the permanent magnet, and is formed so that the permanent magnet 2 is attached inside at a temperature lower than its transformation temperature. After being attached to the outer periphery of the permanent magnet 2, it is heated to a temperature higher than the transformation temperature of the alloy to firmly fit it. Therefore, after the outer cylinder 31 recovers its shape, it applies compressive stress to the permanent magnet 2 from the outer periphery toward the center, and the ultra-high speed rotation of the rotating magnetic pole is achieved by the operation of the sleeve 3 in the first embodiment described above. Similarly, damage to the permanent magnet 2 made of rare earth magnets is prevented. By the way, even if an interference of 26 is set between the permanent magnet and the sleeve when the rotor is stationary, and compressive preload is applied to the permanent magnet in the direction of the central axis, the surface pressure generally decreases as the rotation increases. descend. The surface pressure Pm between the permanent magnet and the sleeve is ρ 1 ρ2 EI E2 νl ν2 a b C: Permanent magnet density: Sleeve density: Permanent magnet elastic modulus: Sleeve elastic modulus: Permanent magnet Boisson's ratio: Sleeve Boisson's ratio: Inner radius of permanent magnet: Outer radius of sleeve: Outer radius of permanent magnet, (i.e., inner radius of sleeve) ω: Given by angular velocity.

つまり、回転子の角速度が10万rpm以土になると、
永久磁石とスリーブの間の面圧Pmが例に近づいて、遠
心力により永久磁石が破壊されることがある。とくに、
スリーブの比弾性率E2/ρ2が小さいとPmの低下が
著しく、超高速回転では、補強にならないという問題が
あった.そこで、こうした問題に対処することを可能に
した本発明の第3の実施例について説明する.第6図は
第3の実施例の構成を示す断面図、第7図は、スリーブ
と永久磁石との間の面圧を示す特性図である.図におい
て、シャフト1には円筒状の永久磁石2を嵌合せ、その
外周面にスリーブ32を嵌合せてある。4は、磁石2の
軸方向端面を覆うプレートである. 第7図では、永久磁石とスリーブの間の面圧Pmが、回
転数Nによって変化する状態を示している。ここで、上
記面圧Pmを求める(1)式の第1項において、静止時
の締め代2δは、永久磁石2及びスリーブ32の熱膨張
係数によりその上限値が定まる.一方、第2項は角速度
(回転数)の自乗に比例するが、その係数は一般には、
正であり、角速度が増加するにつれて、Pmlfn少し
、スリーブの補強効果が薄れる。図では、実線により、
スリーブの比弾性率E2/ρ2が小さい場合を、一点鎖
線により、スリーブの比弾性率E2/ρ2が大きい場合
を対比して示す。以下、この点について説明する, いま定格回転における角速度をω。とすると、定格回転
時にも、スリーブ32の補強効果を残すには、 度をσ8/ρ2とすると、スリーブ自身の遠心力による
応力が次式、 墾’rc リコ)Cゝ→(3 +Jよ>VJ で与えられることから、 スリーブが破壊しない条 となるので、上記(2)式に代入して、が必要条件とな
る。
In other words, when the angular velocity of the rotor becomes 100,000 rpm or more,
If the surface pressure Pm between the permanent magnet and the sleeve approaches the above example, the permanent magnet may be destroyed by centrifugal force. especially,
If the specific elastic modulus E2/ρ2 of the sleeve was small, the Pm would drop significantly, and there was a problem that it would not be reinforced at ultra-high speed rotation. Therefore, a third embodiment of the present invention that makes it possible to deal with these problems will be described. FIG. 6 is a sectional view showing the configuration of the third embodiment, and FIG. 7 is a characteristic diagram showing the surface pressure between the sleeve and the permanent magnet. In the figure, a cylindrical permanent magnet 2 is fitted onto a shaft 1, and a sleeve 32 is fitted onto the outer peripheral surface of the permanent magnet 2. 4 is a plate that covers the axial end face of the magnet 2. FIG. 7 shows a state in which the surface pressure Pm between the permanent magnet and the sleeve changes depending on the rotation speed N. Here, in the first term of equation (1) for determining the surface pressure Pm, the upper limit of the interference 2δ at rest is determined by the thermal expansion coefficients of the permanent magnet 2 and the sleeve 32. On the other hand, the second term is proportional to the square of the angular velocity (rotation speed), but its coefficient is generally
positive, and as the angular velocity increases, the reinforcing effect of the sleeve weakens by a little Pmlfn. In the figure, the solid line indicates
A case where the specific elastic modulus E2/ρ2 of the sleeve is small is shown by a dashed-dotted line in comparison with a case where the specific elastic modulus E2/ρ2 of the sleeve is large. This point will be explained below. The angular velocity at the rated rotation is ω. Then, in order to maintain the reinforcing effect of the sleeve 32 even at the rated rotation, if the degree is σ8/ρ2, the stress due to the centrifugal force of the sleeve itself is expressed as follows: Since it is given by VJ, it becomes a condition that the sleeve does not break, so by substituting it into equation (2) above, becomes the necessary condition.

ところで、10万rpm以上の超高速回転子においては
、小型化のため永久磁石には、磁気エネルギー密度が大
きい希土類磁石を使用することになる。その熱膨張係数
は、IOXIO  8程度であることから、スリーブの
内半径Cに対する締め代δの割合は、 δ/ c < 10x loe x  300= 3 
x lj3が上限である.また、希土類磁石の比重は約
8、弾性係数は200GPa程度なので、 p l/E、 〜  3′1゜゛′9? 〜 4 × 
lOフ2ao z 10′1 である。ところがスリーブが厚くなると、回転子表面の
磁束密度が低下して磁石としての性能が低下するので、
a:c:b〜1 :3:4程度が限界となる。その場合
のボアソン比は0.2〜0. 3なので、これを0.2
として となる。また、スリーブ材の比強度σ6 /ρ2も高々
5X10’m程度なので、上記(3)式より、−”− 
E2 /92 >7.I  XIO’ 〜3 E, /
p,となる。したがって、静止時の締め代δを最大にす
るには、10万rpm以上の超高速回転子のスリーブ材
には、その比弾性率が永久磁石の3倍以上のものを選択
する必要がある。例えば、スリーブ材の具体例として窒
化硅素、炭素繊維強化プラスチック、炭素繊維強化金属
が指摘できる.このように本実施例によれば、回転磁極
として使用される円筒状の希土類磁石と該磁石の内側に
嵌合せたシャフト、及び、該磁石の外周面に嵌合せたス
リーブから成る超高速回転子に対して、スリーブ材に、
永久磁石の3倍以上の比弾性率を有する材料を用いて、
圧縮予圧を加えることによって10万rpm以上でも永
久磁石を補強することができ、永久磁石の破壊を防止す
る効果がある。
By the way, in an ultra-high speed rotor of 100,000 rpm or more, rare earth magnets with high magnetic energy density are used as permanent magnets in order to downsize the rotor. Since its thermal expansion coefficient is about IOXIO 8, the ratio of interference δ to the inner radius C of the sleeve is δ/ c < 10x loe x 300 = 3
x lj3 is the upper limit. Also, the specific gravity of rare earth magnets is about 8 and the elastic modulus is about 200 GPa, so p l/E, ~ 3'1゜゛'9? ~ 4 ×
1O 2ao z 10'1. However, as the sleeve becomes thicker, the magnetic flux density on the rotor surface decreases and its performance as a magnet decreases.
The limit is about a:c:b~1:3:4. In that case, Boisson's ratio is 0.2 to 0. 3, so set this to 0.2
As. Also, the specific strength σ6/ρ2 of the sleeve material is about 5×10'm at most, so from the above equation (3), -"-
E2 /92 >7. I XIO' ~3 E, /
p. Therefore, in order to maximize the interference δ when stationary, it is necessary to select a material whose specific elastic modulus is three times or more that of a permanent magnet as a sleeve material for an ultra-high-speed rotor that operates at 100,000 rpm or more. For example, silicon nitride, carbon fiber reinforced plastic, and carbon fiber reinforced metal can be pointed out as specific examples of sleeve materials. As described above, according to this embodiment, an ultra-high-speed rotor is constructed of a cylindrical rare earth magnet used as a rotating magnetic pole, a shaft fitted inside the magnet, and a sleeve fitted on the outer peripheral surface of the magnet. In contrast, to the sleeve material,
Using a material with a specific elastic modulus more than three times that of a permanent magnet,
By applying compressive preload, the permanent magnet can be reinforced even at speeds of 100,000 rpm or more, which has the effect of preventing destruction of the permanent magnet.

以上、本発明を上述の3つの実施例によって説明したが
、本発明の主旨の範囲内で種々の変形が可能であり、こ
れらの変形を本発明の範囲から排除するものではない. (発明の効果) 本発明によれば、希土類元素を含む磁石素材からなる回
転磁極の外周に、中心軸方向に圧縮応力を与えるスリー
ブを焼ばめや形状記憶合金の特性を応用して嵌合させた
ので、希土類磁石には常に内方に向う圧縮応力が加わっ
ており、したがって回転磁極の超高速回転時の遠心力が
働いても、希土類磁石の引張応力の限度を超えることな
く、とくに、10万rpm以上でも永久磁石を補強する
ことができ、その破壊が防止できる効果が得られる。
Although the present invention has been described above using the three embodiments described above, various modifications can be made within the scope of the gist of the present invention, and these modifications are not excluded from the scope of the present invention. (Effects of the Invention) According to the present invention, a sleeve that applies compressive stress in the direction of the central axis is fitted to the outer periphery of a rotating magnetic pole made of a magnet material containing rare earth elements by shrink fitting or by applying the characteristics of a shape memory alloy. As a result, inward compressive stress is always applied to the rare earth magnet, so even if centrifugal force is applied during ultra-high speed rotation of the rotating magnetic poles, the tensile stress limit of the rare earth magnet will not be exceeded. The permanent magnet can be reinforced even at speeds of 100,000 rpm or higher, and its destruction can be prevented.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例の構成を示す断面図、第
2図はその実施例の焼ばめを行う直前の説明図、第3図
は回転子の回転数とスリーブの応力との関連を示す曲線
図、第4図は本実施例が適用される回転電機付ターボチ
ャージャの断面図、第5図は第2の実施例の構成を示す
断面図、第6図は第2の実施例の構成を示す断面図、第
7図は、スリーブと永久磁石との間の面圧を示す特性図
である. 1・・・回転軸、2・・・永久磁石、3・・・スリーブ
(外筒)、10・・・ターボチャージャ、11・・・タ
ービン、13・・・コンブレッサ.
Fig. 1 is a cross-sectional view showing the configuration of the first embodiment of the present invention, Fig. 2 is an explanatory diagram of the embodiment immediately before shrink fitting, and Fig. 3 shows the rotation speed of the rotor and the stress of the sleeve. 4 is a sectional view of a turbocharger with a rotating electrical machine to which this embodiment is applied, FIG. 5 is a sectional view showing the configuration of the second embodiment, and FIG. 6 is a sectional view of the FIG. 7 is a sectional view showing the structure of the embodiment of the present invention, and FIG. 7 is a characteristic diagram showing the surface pressure between the sleeve and the permanent magnet. DESCRIPTION OF SYMBOLS 1...Rotating shaft, 2...Permanent magnet, 3...Sleeve (outer cylinder), 10...Turbocharger, 11...Turbine, 13...Compressor.

Claims (4)

【特許請求の範囲】[Claims] (1)希土類元素を含む磁石素材からなる永久磁石の回
転磁極外周面に、該永久磁石に対して中心軸方向の圧縮
予圧を与えるスリーブを嵌合せしめたことを特徴とする
超高速回転子。
(1) An ultrahigh-speed rotor characterized in that a sleeve that applies compressive preload in the central axis direction to the permanent magnet is fitted onto the outer peripheral surface of the rotating magnetic pole of a permanent magnet made of a magnetic material containing a rare earth element.
(2)前記スリーブは、前記永久磁石の3倍以上の比弾
性率を有する材料を用いたことを特徴とする請求項(1
)に記載の超高速回転子。
(2) Claim (1) characterized in that the sleeve is made of a material having a specific elastic modulus three times or more that of the permanent magnet.
) Ultra high speed rotor.
(3)前記スリーブは、焼嵌めあるいは冷嵌めにより圧
縮予圧を与えたことを特徴とする請求項(1)または(
2)に記載の超高速回転子。
(3) The sleeve is provided with compression preload by shrink fitting or cold fitting.
The ultra-high speed rotor described in 2).
(4)前記スリーブは形状記憶合金を使用し、該合金の
変態温度以下にて拡げて永久磁石に装着させ、形状回復
により嵌合せしめたことを特徴とする請求項(1)記載
の超高速回転子。
(4) The ultra-high speed according to claim (1), wherein the sleeve is made of a shape memory alloy, expanded at a temperature below the transformation temperature of the alloy, attached to a permanent magnet, and fitted by shape recovery. rotor.
JP1341008A 1989-08-23 1989-12-28 Super high speed rotor Pending JPH03159533A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1341008A JPH03159533A (en) 1989-08-23 1989-12-28 Super high speed rotor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP1-217110 1989-08-23
JP21711089 1989-08-23
JP1341008A JPH03159533A (en) 1989-08-23 1989-12-28 Super high speed rotor

Publications (1)

Publication Number Publication Date
JPH03159533A true JPH03159533A (en) 1991-07-09

Family

ID=26521818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1341008A Pending JPH03159533A (en) 1989-08-23 1989-12-28 Super high speed rotor

Country Status (1)

Country Link
JP (1) JPH03159533A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994022206A1 (en) * 1993-03-19 1994-09-29 Daikin Industries, Ltd. Ultra-high speed brushless dc motor
JP2008029153A (en) * 2006-07-24 2008-02-07 Toyota Motor Corp Rotor for high rotation motor
DE112009001631T5 (en) 2008-06-30 2011-04-21 Meidensha Corporation Rotor structure for rotating machine of permanent magnet type

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994022206A1 (en) * 1993-03-19 1994-09-29 Daikin Industries, Ltd. Ultra-high speed brushless dc motor
JP2008029153A (en) * 2006-07-24 2008-02-07 Toyota Motor Corp Rotor for high rotation motor
DE112009001631T5 (en) 2008-06-30 2011-04-21 Meidensha Corporation Rotor structure for rotating machine of permanent magnet type
US8482178B2 (en) 2008-06-30 2013-07-09 Meidensha Corporation Rotor structure of permanent magnet type rotary machine

Similar Documents

Publication Publication Date Title
CA1271509A (en) Electric generator for use in turbocharger
CN86105376A (en) high speed electric-generator
US5074115A (en) Turbocharger with rotary electric machine
US4769993A (en) Turbocharger for internal combustion engines
US5214333A (en) Engine with flywheel generator
US11139704B2 (en) Salient pole rotor with magnetic pole portions, concave portions and cylindrical cover portion with fiber filament
EP1333558A3 (en) Rotor for rotating electric machine and method of fabricating the same, for gas turbine power plant
JP2847756B2 (en) Rotating electric machine rotor
JPH03159533A (en) Super high speed rotor
JPS6342180Y2 (en)
JPS61237830A (en) Turbo-charger for internal-combustion engine
JPH03173329A (en) High speed rotor
JPH0356049A (en) Rotor for rotary electric machine
JPH0660735U (en) Super high speed rotor
JP2847757B2 (en) Rotating electric machine rotor
JPH0311950A (en) Rotor for electric rotary machine
JPH10271725A (en) Permanent-magnet rotor of very high-speed rotating machine
JPH027842A (en) Rotary machine
JPH01122351A (en) Rotary electric machine for turbo charger
JPH0311949A (en) Rotor for electric rotary machine
CN101517210A (en) Element which generates a magnetic field
JPH03203540A (en) Generator unit
JPH11187618A (en) Turbogenerator
CN218102755U (en) Magnetic steel applied to high-speed motor rotor
JPH0544536B2 (en)