[go: up one dir, main page]

JPH03159126A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH03159126A
JPH03159126A JP29832689A JP29832689A JPH03159126A JP H03159126 A JPH03159126 A JP H03159126A JP 29832689 A JP29832689 A JP 29832689A JP 29832689 A JP29832689 A JP 29832689A JP H03159126 A JPH03159126 A JP H03159126A
Authority
JP
Japan
Prior art keywords
electrode material
material layer
silicon film
thin silicon
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29832689A
Other languages
Japanese (ja)
Inventor
Yuji Tsukada
塚田 雄二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP29832689A priority Critical patent/JPH03159126A/en
Publication of JPH03159126A publication Critical patent/JPH03159126A/en
Pending legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To prevent erosion of an electrode wiring by depositing a thin silicon film on the surface of an electrode material layer, forming a resist layer on the surface and performing wet etching. CONSTITUTION:A thin silicon film 13 is deposited on the surface of an electrode material layer 11 to be patterned, and after a resist layer 14 is formed on the surface of the thin silicon film 13, exposed and developed, the thin silicon film 13 is removed as the resist layer 14 used as a mask followed by wet etching of the electrode material layer 11. For example on the surface of the electrode material layer 11 formed by depositing Al or Al-Si by means of evaporation or sputtering, the thin silicon film 13 as thick as 500 to 2000 angstrom is deposited by means of sputtering. Then after HMDS is applied on the surface of the thin silicon film 13 and a positive resist layer 14 is spin-on-applied on the surface and soft-baked, it is exposed and developed and then hard baking is performed. Then the thin silicon film 13 is first removed and the electrode material layer 11 is isotropically etched sequentially.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明はアルミとレジストとの密着性が悪いことに起因
するアルミ層上部の所謂“虫食い′”の防止に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to the prevention of so-called "worm-eaten" on the upper part of the aluminum layer due to poor adhesion between aluminum and resist.

(ロ)従来の技術 IC,LSIの製造においては、個々の素子を結線する
ための電極配線の形成が必要不可欠である。電極材料と
してはAIアルミニウム)、又はAN−Si(アルミニ
ウムーシリコン)が主に用いられ、材料の堆積とホトエ
ッチによるパターニングにより前記電極配線が形成され
る。電極材料のホトエツチングには等方性と異方性との
2通りがあって、異方性の方が微細加工に適するものの
、側面が傾斜し平坦化に有利なことから、等方性エツチ
ングは欠かせない存在である。また、両者の利点を活か
して上半分を等方、下半分を異方性で行うことも行われ
ている。
(B) Conventional Technology In the manufacture of ICs and LSIs, it is essential to form electrode wiring for connecting individual elements. As the electrode material, AI (aluminum) or AN-Si (aluminum-silicon) is mainly used, and the electrode wiring is formed by depositing the material and patterning by photoetching. There are two types of photoetching for electrode materials: isotropic and anisotropic. Although anisotropic is more suitable for microfabrication, isotropic etching is more suitable for flattening because the sides are inclined. It is an essential presence. Furthermore, taking advantage of the advantages of both, the upper half is isotropic and the lower half is anisotropic.

第2図(A)(B)は上記電極配線のホトエツチング工
程を示し、先ず絶縁層(1)上に1電極材料層(2)を
蒸着又はスパッタにより堆積し、その表面にホトレジス
トによるレジスト層(3)を形成し、このレジスト層(
3)をマスクとして第2図Bに示す如く電極材料層〈2
)をウェットエツチングすることにより電極配線(4)
を形成する(例えば、特開昭64−39026号公報)
FIGS. 2(A) and 2(B) show the photoetching process of the electrode wiring. First, one electrode material layer (2) is deposited on the insulating layer (1) by vapor deposition or sputtering, and a resist layer (of photoresist) is formed on the surface of the electrode material layer (2). 3) and this resist layer (
3) as a mask, the electrode material layer <2
) by wet etching the electrode wiring (4)
(For example, Japanese Patent Application Laid-open No. 64-39026)
.

そして、前記ホトレジストは従来のネガ型に替り微細化
が有利なポジ型が主流になっている。
As for the photoresists, positive type photoresists, which are advantageous in miniaturization, have become mainstream instead of the conventional negative type.

(ハ)発明が解決しようとする課題 しかしながら、ポジ型レジストと電極材料のアルミとは
密着性が悪いという難点がある。そのため、レジスト層
(3)と電極材料層(3)との密着部にエツチング液が
侵入して、第3図に示すように電極配線(4)の上部(
トップ)に材料がオーバーエッチされた欠け、所謂虫食
い(5)が発生し、電極配線(4)の信頼性低下を招く
欠点があった。
(c) Problems to be Solved by the Invention However, there is a drawback in that the positive resist and the aluminum electrode material have poor adhesion. Therefore, the etching solution enters into the close contact between the resist layer (3) and the electrode material layer (3), and as shown in FIG.
There was a problem in that the material was over-etched and chipped (so-called moth bite (5)) occurred on the top (top), leading to a decrease in the reliability of the electrode wiring (4).

(ニ)課題を解決するための手段 本発明は上記従来の欠点に鑑み成されたもので、電極材
料層(11)の表面にシリコン薄膜(13)を堆積し、
この表面にレジスト層(14)を形成してウェットエツ
チングを行うことにより虫食い現象を防止した半導体装
置の製造方法を提供するものである。
(d) Means for Solving the Problems The present invention was made in view of the above-mentioned conventional drawbacks, and consists of depositing a silicon thin film (13) on the surface of the electrode material layer (11),
The present invention provides a method for manufacturing a semiconductor device in which the worm-eaten phenomenon is prevented by forming a resist layer (14) on this surface and performing wet etching.

(ホ)作用 本発明によれば、シリコン薄膜(13)とレジスト層(
14)とが良好な密着性を示し、且つシリコン薄膜(1
3)と電極材料層(11)との密着性はレジスト層(1
4)と電極材料層(11)とのそれよりは大きいので、
電極材料層(11)界面へのエツチング液の侵入を防止
できる。
(E) Function According to the present invention, the silicon thin film (13) and the resist layer (
14) shows good adhesion, and the silicon thin film (1
3) and the electrode material layer (11).
4) and the electrode material layer (11),
It is possible to prevent the etching solution from entering the interface of the electrode material layer (11).

(へ)実施例 以下に本発明の一実施例を第1図(A)(B)を用いて
詳細に説明する。
(F) Example An example of the present invention will be described below in detail with reference to FIGS. 1(A) and 1(B).

第1図Aはレジストパターンの形成が終了した断面を示
している。電極材料層(11)は、素子形成が終了した
シリコンウェハ表面を覆うSiOt等から成る絶縁膜(
12)上に設けられ、12(アルミニウム)又はシリコ
ンを数%含有するAN−Si(アルミニウムーシリコン
)を蒸着又はスパッタ法により堆積することで得られる
。膜厚は0.5〜2.0μである。尚、絶縁膜(12)
には下層の配線又は素子を構成する拡散領域とコンタク
トするためのコンタクトホール(図示せず)が設けられ
ている。
FIG. 1A shows a cross section after formation of a resist pattern is completed. The electrode material layer (11) is an insulating film (made of SiOt, etc.) that covers the surface of the silicon wafer on which element formation has been completed.
12) and is obtained by depositing AN-Si (aluminum-silicon) containing several percent of 12 (aluminum) or silicon by vapor deposition or sputtering. The film thickness is 0.5 to 2.0μ. In addition, the insulating film (12)
A contact hole (not shown) is provided for contacting the underlying wiring or the diffusion region constituting the element.

その後、電極材料層(11)の表面にスパッタ法により
膜厚500〜2000人のノンドープ、N型、P型のシ
リコン薄膜(13)を堆積する。
Thereafter, a non-doped N-type, P-type silicon thin film (13) is deposited on the surface of the electrode material layer (11) to a thickness of 500 to 2000 by sputtering.

尚、シリコン薄膜(13)の堆積の前に、電極材料層(
11)の表面をポジレジストの現像液のような、アルカ
リ水溶液で処理することにより、電極材料層(11)の
表面に自然酸化により形成されたアルミナ(AQgos
)を除去できるのでシリコン薄膜(13)との密着性を
一層向上できる。また、電極材料層(11)がAffi
 −Siであればこれらの工程は比較的簡単な工程で済
ませることができる。つまり、電極材料Jffi(11
)として使用するアルミ・シリコン(AN −Si)形
成用のスパッタ装置に、アルミ・シリコン(12−Si
)とシリコン(Si)との2つのターゲットを持たせ、
先ず八ρ−Siのターゲットで電極材料層(11)を堆
積し、続いてシリコン(Si)ターゲットだけに切換え
てシリコン薄膜(13)を積層することにより、同一装
置内の1回の処理で積層構造にできる。
Note that before depositing the silicon thin film (13), the electrode material layer (
By treating the surface of the electrode material layer (11) with an alkaline aqueous solution such as a positive resist developer, alumina (AQgos) formed by natural oxidation is formed on the surface of the electrode material layer (11).
) can be removed, further improving the adhesion with the silicon thin film (13). Further, the electrode material layer (11) is Affi
-Si, these steps can be completed with relatively simple steps. In other words, the electrode material Jffi (11
) to form aluminum silicon (AN-Si).
) and silicon (Si),
First, the electrode material layer (11) is deposited using a target of 8ρ-Si, and then the silicon thin film (13) is deposited by switching only to a silicon (Si) target, so that the electrode material layer (11) can be deposited in a single process in the same device. It can be made into a structure.

続いてシリコン薄膜(13)の表面に有機シランの一種
であるHMDS(ヘキサメチルジシラザン)を塗布し、
表面にポジ型レジスト層(14)をスピンオン塗布する
。HMDSはシリコン表面に吸着した水分に対して親水
性の基を配向し、疎水性の基を上側に配向して疎水性の
ホトレジストとの密着性を向上させるものである。前記
ホトレジストは、例えばAZ−2400(商品名)やP
FR7760(商品名)等を利用し、4,000rpm
、60秒で塗布し膜厚2.0〜4.0μmに形成した。
Next, HMDS (hexamethyldisilazane), which is a type of organic silane, is applied to the surface of the silicon thin film (13).
A positive resist layer (14) is spin-on applied to the surface. HMDS orients hydrophilic groups with respect to water adsorbed on the silicon surface, and orients hydrophobic groups upward to improve adhesion to hydrophobic photoresist. The photoresist is, for example, AZ-2400 (trade name) or P
Using FR7760 (product name) etc., 4,000 rpm
The coating was applied in 60 seconds to form a film with a thickness of 2.0 to 4.0 μm.

ソフトベークは、100℃、数分間で行った。Soft baking was performed at 100°C for several minutes.

次にウェハをステッパ等の露光装置にセットし、所望の
パターンを描画したホトマスクによってレジスト層〈1
4)を露光する。露光はDeepUV(遠紫外線)を照
射した。露光後、アルカリ水溶液から成る現像液でレジ
スト層(14)を現像し、120℃、数十分間のハード
ベークを行う。
Next, the wafer is set in an exposure device such as a stepper, and a resist layer <1
4) Expose. Exposure was performed using Deep UV (far ultraviolet rays). After exposure, the resist layer (14) is developed with a developer consisting of an alkaline aqueous solution, and hard baked at 120° C. for several tens of minutes.

尚、露光時に電極材料層(11〉の表面をシリコン薄膜
(13)が覆っているので、その膜厚を適宜選択するこ
とによりA2表面の露光光の反射(ハレーション)防止
被膜として利用できる。膜厚は、露先光の波長に鑑みシ
リコン薄膜(13)内で反射光が相殺されるような厚み
に設定しておけば良い。ハレーション防止被膜として利
用すれば、レジストパターンの線幅減少を防止できるの
で正確なレジストパターンを形成できる。
Since the silicon thin film (13) covers the surface of the electrode material layer (11>) during exposure, it can be used as an anti-reflection (halation) film for the exposure light on the A2 surface by appropriately selecting the film thickness. The thickness should be set to such a value that the reflected light is canceled out within the silicon thin film (13) in consideration of the wavelength of the exposure light.If used as an anti-halation film, it will prevent line width reduction of the resist pattern. Therefore, accurate resist patterns can be formed.

そして第1図Bに示すように、先ずシリコン薄膜(13
)を除去し続いて電極材料層(11)を等方工・ノチン
グする。シリコン薄膜(13)のエツチングはCDE(
ケミカルドライエッチ〜−)やRIE(リアクティブイ
オンエツチング)の完全異方性エツチングでレジストパ
ターンを忠実に再現する。その後、レジスト層(14)
およびシリコン薄膜(13)をマスクとして例えばリン
酸(uspoa ) :酢#(C1,C00H):硝酸
(HNO,>溶液でスプレーエツチングすることにより
、レジストパターンに対応したパターンの電極配線(1
5)を形成する。エツチングモードは等方性であるから
、膜厚方向への侵食が進むと同時に横方向への侵食も進
む。結果、電極配線(15)の断面は側面が傾斜した台
形状となる。
Then, as shown in FIG. 1B, first a silicon thin film (13
) is removed, and then the electrode material layer (11) is isotropically etched and notched. The silicon thin film (13) is etched using CDE (
Completely anisotropic etching such as chemical dry etching (--) or RIE (reactive ion etching) faithfully reproduces resist patterns. After that, the resist layer (14)
Then, by spray etching with a solution of, for example, phosphoric acid (uspoa): vinegar # (C1, C00H): nitric acid (HNO) using the silicon thin film (13) as a mask, the electrode wiring (1) is patterned in a pattern corresponding to the resist pattern.
5) Form. Since the etching mode is isotropic, the erosion progresses in the lateral direction as well as in the film thickness direction. As a result, the cross section of the electrode wiring (15) becomes trapezoidal with inclined sides.

そして最後に、レジスト層(14)とシリコン薄膜(1
3)を順次除去して次のステップへと移行する。
And finally, resist layer (14) and silicon thin film (1
3) are sequentially removed and the process moves to the next step.

レジスト層(14)の除去は硝酸によるエツチング、シ
リコン薄膜(13)の除去はCDE(ケミカルドライエ
ツチャー)で行った。次のステップとは、層間絶縁膜と
上層配線の形成や、パッシベーション被膜の形成等を指
す。
The resist layer (14) was removed by etching with nitric acid, and the silicon thin film (13) was removed by CDE (chemical dry etcher). The next step refers to the formation of an interlayer insulating film and upper layer wiring, the formation of a passivation film, etc.

以上に説明した本発明の方法によれば、電極材料層(1
1)のアルミニウムとシリコン薄膜(13〉のジノコン
とが良好な密着性を有するので、電極材料層(11〉の
ウェットエツチング時にエツチング液が両者の界面に侵
入することが無く、従って電極配置(15)の上部(ト
ップ)が部分的に欠落する“虫食い°”現象の発生を防
止できる。
According to the method of the present invention explained above, the electrode material layer (1
Since the aluminum of 1) and the dinocon of the silicon thin film (13>) have good adhesion, the etching solution does not enter the interface between the two during wet etching of the electrode material layer (11>). ) can prevent the occurrence of the "moth-eaten °" phenomenon in which the top part of the product is partially missing.

(ト)発明の効果 以上に説明した如く、本発明によればシリコン薄膜(1
3)を設けることによって電極配線(15)の“虫食い
′”不良を防止できるので、信頼性の高い電極配線(1
5)を形成できる利点を有する。
(g) Effects of the invention As explained above, according to the present invention, the silicon thin film (1
3) can prevent "worm-eaten" defects in the electrode wiring (15), resulting in highly reliable electrode wiring (15).
5).

また、シリコン薄膜(13)をハレーション防止被膜と
しても用いることにより、レジストの線幅減少をも防止
できる他、工程の簡略化を図れる。
Further, by using the silicon thin film (13) as an antihalation coating, it is possible to prevent a decrease in the line width of the resist and also to simplify the process.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図Aと第1図Bは本発明を説明するための断面図、
第2図Aと第2図Bは従来例を説明するための断面図、
第3図は従来例を説明するための平面図である。 第1図A 14レジヅ1
FIG. 1A and FIG. 1B are cross-sectional views for explaining the present invention,
FIG. 2A and FIG. 2B are cross-sectional views for explaining the conventional example,
FIG. 3 is a plan view for explaining a conventional example. Figure 1 A 14 Regizu 1

Claims (3)

【特許請求の範囲】[Claims] (1)パターニングすべき電極材料層の表面にシリコン
薄膜を堆積する工程、 前記シリコン薄膜の表面にレジスト層を形成し、これを
露光、現像する工程、 前記レジスト層をマスクとして前記シリコン薄膜を除去
し、続いて前記電極材料層をウェットエッチングする工
程とを具備することを特徴とする半導体装置の製造方法
(1) A step of depositing a silicon thin film on the surface of the electrode material layer to be patterned, a step of forming a resist layer on the surface of the silicon thin film, exposing and developing it, and removing the silicon thin film using the resist layer as a mask. and, subsequently, wet etching the electrode material layer.
(2)前記電極材料層はAl又はAl−Siであること
を特徴とする半導体装置の製造方法。
(2) A method for manufacturing a semiconductor device, wherein the electrode material layer is Al or Al-Si.
(3)前記レジスト層はポジ型レジストであることを特
徴とする請求項第1項に記載の半導体装置の製造方法。
(3) The method for manufacturing a semiconductor device according to claim 1, wherein the resist layer is a positive resist.
JP29832689A 1989-11-16 1989-11-16 Manufacture of semiconductor device Pending JPH03159126A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29832689A JPH03159126A (en) 1989-11-16 1989-11-16 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29832689A JPH03159126A (en) 1989-11-16 1989-11-16 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH03159126A true JPH03159126A (en) 1991-07-09

Family

ID=17858212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29832689A Pending JPH03159126A (en) 1989-11-16 1989-11-16 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH03159126A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008182198A (en) * 2006-12-12 2008-08-07 Asml Netherlands Bv Method of manufacturing lithographic device, lithographic cell, and computer program

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008182198A (en) * 2006-12-12 2008-08-07 Asml Netherlands Bv Method of manufacturing lithographic device, lithographic cell, and computer program

Similar Documents

Publication Publication Date Title
US5023203A (en) Method of patterning fine line width semiconductor topology using a spacer
US4514253A (en) Manufacture of thin film transistor
JPH08255752A (en) Semiconductor element with low reflectance coating and its preparation
JPH0476496B2 (en)
JPS588579B2 (en) hand tai souchi no seizou houhou
US4954218A (en) Method for etching a pattern
JP3665095B2 (en) Pattern formation method
JPH03159126A (en) Manufacture of semiconductor device
JPH03278432A (en) Forming method for wiring of semiconductor device
JP3140369B2 (en) Method of forming electrode pattern at deep groove bottom
JPH03200330A (en) Manufacture of semiconductor device
JPH0467333B2 (en)
JP2962262B2 (en) Method of forming fine gate electrode
US20030059718A1 (en) Method for forming a contact window in a semiconductor device
JPH0555130A (en) Production of semiconductor device
JPH038338A (en) Manufacture of multilayer wiring structure
JPH0670954B2 (en) Method for manufacturing semiconductor device
JPS5825229A (en) Manufacture of semiconductor device
JP2703327B2 (en) Method for manufacturing semiconductor device
JP2737256B2 (en) Method for manufacturing semiconductor device
JPH0855857A (en) Working method of insulating film
JPH05217934A (en) Formation of contact hole
KR0166787B1 (en) Wiring method of semiconductor device
JPH0373526A (en) Pattern formation method
KR19990055460A (en) Pad Formation Method of Semiconductor Device