JPH03157764A - Machine translation device - Google Patents
Machine translation deviceInfo
- Publication number
- JPH03157764A JPH03157764A JP1298671A JP29867189A JPH03157764A JP H03157764 A JPH03157764 A JP H03157764A JP 1298671 A JP1298671 A JP 1298671A JP 29867189 A JP29867189 A JP 29867189A JP H03157764 A JPH03157764 A JP H03157764A
- Authority
- JP
- Japan
- Prior art keywords
- translation
- translated
- language
- occurrence
- dictionary
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000013519 translation Methods 0.000 title claims description 64
- 238000012937 correction Methods 0.000 abstract description 4
- 230000014616 translation Effects 0.000 description 51
- 238000000034 method Methods 0.000 description 9
- 239000000284 extract Substances 0.000 description 5
- 238000010586 diagram Methods 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 238000010187 selection method Methods 0.000 description 1
Landscapes
- Machine Translation (AREA)
Abstract
Description
【発明の詳細な説明】 産業上の利用分野 本発明は、機械翻訳装置に関する。[Detailed description of the invention] Industrial applications The present invention relates to a machine translation device.
従来の技術
一般に、機械翻訳装置においては、原文を翻訳する際、
単語辞書の情報を参照し、原文を構成する各表現に対し
て訳語を付与する必要がある。この時、単語辞書には、
第一言語の一つの表現に対して複数の第二言語の訳語が
記述されている場合がある。そこで、これらの複数の訳
語の内から、適切なaI<語を一つ選ぶことが必要とな
る。Conventional technology Generally speaking, when translating an original text in a machine translation device,
It is necessary to refer to the information in the word dictionary and assign a translation to each expression that makes up the original sentence. At this time, in the word dictionary,
There are cases where multiple second language translations are written for one expression in the first language. Therefore, it is necessary to select one appropriate aI< word from among these plural translation words.
二二に、従来においては、単語辞書中の第一言語のある
表現(見出し語と呼ぶ)に対して第二言語の訳語が複数
ある場合、見出し語の文中における構文的・意味的性質
に応じて、それらの複数の訳語の内から適切なものを選
ぶようにしている。22. Conventionally, when there are multiple translations in the second language for a certain expression (called a headword) in the first language in a word dictionary, it is necessary to I try to choose the appropriate one from among these multiple translations.
つまり、第二言語に属する訳語は、第一言語に属する見
出し語との対応において選択されることになる(例えば
、特開昭60−247787号公報参照)。In other words, translated words belonging to the second language are selected based on their correspondence with headwords belonging to the first language (see, for example, Japanese Patent Laid-Open No. 60-247787).
発明が解決しようとする課題
ところが、このような訳語の選択方式の場合には次のよ
うな不都合がある。Problems to be Solved by the Invention However, such a translation selection method has the following disadvantages.
一般に、訳語は第一言語における見出し語との対応にお
いてではなく、第二言語における訳文中の訳語間の関係
(これを、共起関係と呼ぶ)において定められる場合が
ある。例えば、英日翻訳の場合で、
close eyes
という第一言語の2つの見出し語から構成される表現を
翻訳する場合を考える。各見出し語、”close”と
”eyes とに対し、各々次のように複数の訳Jμ
が対応しているとする。Generally, translated words are sometimes determined not by their correspondence with headwords in the first language, but by the relationship between the translated words in the translated text in the second language (this is called a co-occurrence relationship). For example, in the case of English-Japanese translation, consider the case where an expression "close eyes" consisting of two headwords in the first language is to be translated. For each headword, “close” and “eyes,” there are multiple translations as follows:
Suppose that it is compatible.
−close :閉じる、閉める
’eyes :目
この場合、” c l o s 6 ”の訳語としては
「閉じる」の方が「閉める」より適切である。しかし、
この適切さは、第一言語における見出し語” c l
o s e ”と”eyes との構文的・意味的性
質から生じるのではなく、第二言語における訳語r目」
と「閉じる・閉めるJの「目を閉じる」とは言えるが「
目を閉める」とは普通言わないという性質から生じてい
る(このことを、「目」と「閉じる」とは共起関係にあ
ると呼ぶ)。-close: close, shut 'eyes': eyes In this case, ``close'' is more appropriate than ``shut'' as a translation for ``clos 6''. but,
This appropriateness is due to the fact that the lemma in the first language
It does not arise from the syntactic and semantic properties of ``o s e'' and ``eyes,'' but rather the translation in the second language.
and ``Close/Close J'' can be said to ``close your eyes,'' but ``
This arises from the fact that we do not normally say "close your eyes" (this is called a co-occurrence relationship between "eyes" and "close").
ここに、第一言語における見出し語の性質に応じて、第
二言語の訳語を定めるという従来方式の場合、上記のよ
うな場合の訳語選択を行うためには次のような情報が必
要となる。In the case of the conventional method of determining the translation word in the second language according to the properties of the entry word in the first language, the following information is required to select the translation word in the above case. .
・目的語が“eyeS ならば、”close”の訳
語は「閉じる]
・目的語が“window”ならば、”close
の訳語は「閉める」
このように、本来、第二言語における性質(この場合、
共起関係)を、第一言語の性質(この場合、目的語が”
eyes かどうか)として扱うために、第一、第二
言語に跨る情報が必要となり、一つの言語内で閉じた情
報に比べて、情報の収集、修正、管理は困難である。・If the object is “eyeS”, the translation of “close” is “close”.・If the object is “window”, then the translation is “close”.
The translation of ``shut'' is, in this way, originally a property in the second language (in this case,
co-occurrence relationship) and the property of the first language (in this case, the object is
In order to treat the language as "eyes or not", information that spans the first and second languages is required, and it is difficult to collect, modify, and manage information compared to information that is confined within a single language.
課題を解決するための手段
入力された第一言語の原文を、解析部により解析して原
文の構造を抽出し、この原文の構造と、lj語辞書に記
憶された第一言語及び第二言語の単語に関する辞書情報
とを用いて訳文生成部により第二言語の訳文を生成する
ようにした機械翻訳装置において、訳語間の共起r4A
係を記憶し前記訳文生成部による訳語選択に供される共
起関係辞書を前記訳文生成部に接続して設けた。Means for solving the problem The input original text in the first language is analyzed by the analysis unit to extract the structure of the original text, and the structure of the original text and the first language and second language stored in the LJ dictionary are extracted. In a machine translation device in which a translation generation unit generates a translation in a second language using dictionary information regarding words, co-occurrence r4A between translated words
A co-occurrence relationship dictionary is connected to the translated text generating unit and is used for selecting translated words by the translated text generating unit.
作用
訳語の選択が、第一、第二言語間に跨る情報でなく、共
起関係辞書に記憶させた訳語間の共起関係という第二言
語内の情報を利用して行われるので、訳語選択のための
情報の収集、修正、管理が容易なものとなる。Since the selection of action translations is performed using information in the second language, such as co-occurrence relations between translated words stored in the co-occurrence relationship dictionary, rather than information that spans between the first and second languages, the selection of translation words is This makes it easier to collect, modify, and manage information for purposes.
実施例
請求項1記載の発明の一実施例を図面に基づいて説明す
る。第1図は機械翻訳装置の概略構成を示すブロック図
であり、キーボード等の入力部lと、解析部2と、単語
辞書3と、訳文生成部4と、表示部5とをベースとし、
さらに、訳文生成部4に接続された共起関係辞書6とよ
りなる。Embodiment An embodiment of the invention recited in claim 1 will be described based on the drawings. FIG. 1 is a block diagram showing a schematic configuration of a machine translation device, which is based on an input section l such as a keyboard, an analysis section 2, a word dictionary 3, a translation generation section 4, a display section 5,
Furthermore, it consists of a co-occurrence relationship dictionary 6 connected to the translation generation unit 4.
ここに、第2図に示すように入力部lから第一言語の原
文、例えば
原文二I C1□s6 my eyes。Here, as shown in FIG. 2, the input unit 1 inputs the original text in the first language, for example, the original text 2 I C1□s6 my eyes.
を入力する。解析部2は単語辞書3を用いて原文を解析
し、原文の構造を抽出する。上側の原文の場合、解析さ
れた原文の構造は、
のようになる。本実施例の原文の構造は、原文に含まれ
る各見出し語の依存関係を木データとして表現したもの
である。即ち、II I IIとII eyes II
は”close”と、II myllは”eyes”と
依存関係にある。木を構成する節点をノードと呼ぶ。次
に、訳文生成部4は単語辞書3を用いて、原文の構造を
構成する原文の見出し語に対して、訳語の候補を、原文
の依存関係の種類に応じて適当な語形に変形して付与す
る。この結果、次のような訳文の構造が得られる。Enter. The analysis unit 2 analyzes the original text using the word dictionary 3 and extracts the structure of the original text. In the case of the upper original text, the structure of the parsed original text is as follows. The structure of the original text in this embodiment is such that the dependence relationships between the headwords included in the original text are expressed as tree data. That is, II II II and II eyes II
is dependent on "close", and II myll is dependent on "eyes". The nodes that make up the tree are called nodes. Next, the translation generation unit 4 uses the word dictionary 3 to transform candidate translation words into appropriate word forms according to the type of dependency relationship in the original text for the headwords in the original text that make up the structure of the original text. Give. As a result, the following translation structure is obtained.
このように得られた訳文の構造中の各ノードに対し、各
々一つの訳語を選択する。One translated word is selected for each node in the structure of the translated text obtained in this way.
この選択のため、本実施例では以下の処理を行う。For this selection, the following processing is performed in this embodiment.
a、訳文の構造中に複数の訳語が付与されているノード
をリストアツブする。このようなノードを多脂ノードと
呼ぶ。本例では、”close”のノードのみに複数の
訳語「閉じる」 「閉める」が付与されている。a. Restore nodes to which multiple translation words are attached in the structure of the translated sentence. Such nodes are called fatty nodes. In this example, only the node "close" is given multiple translations "close" and "close".
b、リストアツブされた多脂ノードと依存関係にあるノ
ードを調べ、それに付与されている訳語と、もとのノー
ドの訳語の組合せの全てを求める。本例の場合、
(私は、閉じる)
(私は、閉める)
(目を、閉じる)
(目を、閉める)
の4つの組合せが得られる。これらの組合せを共起候補
と呼ぶ。b. Examine nodes that have a dependency relationship with the restored multi-fatty node, and find all combinations of translated words assigned to it and translated words of the original node. In this example, four combinations are obtained: (I close) (I close) (I close my eyes) (I close my eyes). These combinations are called co-occurrence candidates.
C9一方、共起関係辞書6中には、第3図(a)に例示
するように第二言語の単語間の正しい共起関係が記憶さ
れている。図中、各行は一つの共起関係を示す。C9 On the other hand, the co-occurrence relationship dictionary 6 stores correct co-occurrence relationships between words in the second language, as illustrated in FIG. 3(a). In the figure, each row indicates one co-occurrence relationship.
d、上記すによる共起候補が、共起関係辞書6中に含ま
れているかどうかを調べる。このような共起候補をアク
ティブ共起候補と呼ぶ。本例の場合であれば、 (目を
、閉じる)がアクティブ共起候補である。d. Check whether the co-occurrence candidate according to the above is included in the co-occurrence relationship dictionary 6. Such co-occurrence candidates are called active co-occurrence candidates. In this example, (eyes, close) is an active co-occurrence candidate.
e、多脂ノードの複数の訳語に対し、アクティブ共起候
補に含まれる回数をカウントし、最もカウントの大きい
訳語を選択する。もし、等しいカウントのものがあった
り、カウントが全てOであれば、適当なデフォルト処理
を定めて一つに絞る。e. Count the number of times that multiple translations of a fat node are included in active co-occurrence candidates, and select the translation with the largest count. If there are equal counts, or if all counts are O, set an appropriate default process and narrow it down to one.
本例の場合、多脂ノード′″close”の訳語のカウ
ントは「閉じる」が1.「閉めるJが0なので、「閉じ
る」が選択される。In the case of this example, the count of translated words for the fat node ``close'' is 1. Since "Close J" is 0, "Close" is selected.
ちなみに、本例の場合は、多脂ノードが原文中に一つだ
けある場合を考えたが、多脂ノードが複数ある場合でも
、上記の処理a〜までを同様に行い、処理eに代えて、
文中の全ての多脂ノードのカウントの合計が最大になる
訳語の組合せになるように訳語を定めればよい。要する
に、訳語を選択する際、共起関係辞書6の情報を参考と
すればよく、その参考の仕方は特に限定されないもので
ある。By the way, in the case of this example, we considered the case where there is only one fat-rich node in the original text, but even if there are multiple fat-rich nodes, the above processes a through to are performed in the same way, and instead of process e, ,
The translation words may be determined so as to create a combination of translation words that maximizes the total count of all fatty nodes in the sentence. In short, when selecting a translation word, the information in the co-occurrence relationship dictionary 6 may be referred to, and the method of reference is not particularly limited.
また、本例では、共起関係として、2つの語の関係を想
定しているが、3つ以上の話の共起関係も同様に扱うこ
とができる。Further, in this example, a relationship between two words is assumed as the co-occurrence relationship, but a co-occurrence relationship between three or more stories can be handled in the same way.
また、共起関係辞書6の記憶内容としては、第3図(b
)に示すように、共起関係にある語、その共起関係の種
類を一般化して表す共起関係記号(この場合、目的格や
主格など)に分離して持つようにしてもよい。そして、
処理dにおいて、共起関係辞書6を検索する際に、まず
、語の組がマツチするものがあるかどうか調べ、マツチ
すれば、その共起関係記号が、共起候補の共起関係と整
合するかどうか(例えば、「を」は目的格と整合する)
によって、アクティブ共起候補かどうかを判定するよう
にすればよい。これによれば、より効率的に共起関係を
表現できる。要するに、共起関係辞書6中の情報の表現
方法も特に限定されるものではない。The contents of the co-occurrence relationship dictionary 6 are shown in FIG.
), words in a co-occurrence relationship may be separated into co-occurrence relationship symbols (in this case, objective case, nominative case, etc.) that generalize and express the type of co-occurrence relationship. and,
In process d, when searching the co-occurrence relationship dictionary 6, it is first checked to see if there is a match between the word pairs, and if there is a match, the co-occurrence relationship symbol matches the co-occurrence relationship of the co-occurrence candidate. whether or not (for example, “wo” is consistent with the objective case)
It is only necessary to determine whether or not it is an active co-occurrence candidate. According to this, co-occurrence relationships can be expressed more efficiently. In short, the method of expressing information in the co-occurrence relationship dictionary 6 is not particularly limited either.
上述のようにして得られた、各ノードに対し一つの訳語
が付与された訳語構造を基に、訳文生成部4は訳文、例
えば
訳文;私は私の目を閉じる。Based on the translated word structure obtained as described above, in which one translated word is assigned to each node, the translated text generation unit 4 generates a translated text, for example, a translated text; I close my eyes.
を生成し、必要に応じて表示部5に出力する。is generated and output to the display section 5 as necessary.
つづいて、請求項2記載の発明の一実施例を説明する。Next, an embodiment of the invention according to claim 2 will be described.
上記実施例の機械翻訳装置においては、必要となる共起
関係の情報の量は、かなりの量となるため、自動的に収
集できることが望まれる。In the machine translation apparatus of the embodiment described above, the amount of information on co-occurrence relationships required is considerable, so it is desirable to be able to automatically collect the information.
この点、従来よりこのような共起関係を文章から自動的
に抽出する試みがなされている。例えば、情報処理学会
第38口金国大会論文集中の[テキストからの共起関係
辞書出の試み」によれば、係す受は解析を用い、文章よ
り単語間の共起関係を自動的に抽出することが示されて
いる。しかし、自然言語の複雑さから、誤った共起関係
の抽出を完全に除外することは難しい。In this regard, attempts have been made to automatically extract such co-occurrence relationships from sentences. For example, according to ``Attempt to create a dictionary of co-occurrence relationships from text'' in the Information Processing Society of Japan's 38th National Conference Paper Collection, Uke uses analysis to automatically extract co-occurrence relationships between words from sentences. It has been shown that However, due to the complexity of natural language, it is difficult to completely exclude incorrect extraction of co-occurrence relationships.
また、必要な訳語選択の情報を全て収集して用意してお
くのは、言語現象の膨大さを考えると困難であり、個々
のユーザの必要に応じた情報のみを収集することで効率
化を図ることが望まれる。Furthermore, it is difficult to collect and prepare all the necessary information for selecting translations, considering the vastness of linguistic phenomena. It is hoped that this will be done.
この点、従来にあっては、翻訳装置が翻訳した不適切な
訳語をユーザが修正した場合、その訳語に印を付け、次
回から他の訳語に対して優先させることで、訳語の学習
を行わせるようにしたものが、特開昭58−19217
3号公報や特開昭61−260366号公報により提案
されている。しかし、この方式の場合、訳文中の他の訳
語との関係は考慮されていない。例えば英日翻訳で、I
ip+aythe piano”のII play I
Iの訳語として「弾く」をユーザが指定した場合、If
playIIの訳語とじてU弾く」に印が付けられ優先
される。よって、”play tennis’″ とい
う表現では「テニスを弾く」という結果になってしまう
。In this regard, conventionally, when a user corrects an inappropriate translated word translated by a translation device, the translated word is marked and given priority over other translated words from the next time, so that the translated word is learned. The one that made it possible to
This method has been proposed in Publication No. 3 and Japanese Unexamined Patent Publication No. 61-260366. However, in this method, relationships with other translated words in the translated text are not taken into account. For example, in English-Japanese translation, I
ip+aythe piano” II play I
If the user specifies "play" as a translation of I, If
The translation of "play II" is marked and given priority. Therefore, the expression "play tennis'" results in "playing tennis."
一方、訳語の組合せを原文中の語句の組合せに対応させ
て記憶することで、このような不都合を回避するように
したものも、特開昭61−150068号公報により提
案されている。即ち、上側の場合、(play、 pi
ano) の組に対しく弾く、ピアノ)という訳語の
組を対応させておき、次回に(play、 piano
) の組が原文中に出現した場合にはその訳語として
(弾く、ピアノ)を優先して選択するようにしたもので
ある。しかし、これでは従来の技術で説明した場合と同
様に、第一、二言話に跨る学習情報となり、その学習情
報の修正・管理は、一つの言語内の情報のそれに比べて
困難なものとなる。On the other hand, Japanese Unexamined Patent Publication No. 150068/1983 has proposed a system that avoids this inconvenience by storing combinations of translated words in correspondence with combinations of words in the original text. That is, in the upper case, (play, pi
Let's make the pair of translations ``ano'' correspond to the pair of translated words ``play, piano'', and next time we'll use ``(play, piano)''.
) appears in the original text, priority is given to selecting (play, piano) as the translated word. However, as with the conventional technology, this results in learning information that spans the first and second languages, and modifying and managing that learning information is more difficult than information within one language. Become.
本実施例は、このような点に鑑み、共起関係の自動抽出
については、ユーザによって正しいとされた訳文に対し
、既に得られている訳文の構造から訳語間の共起関係を
抽出することで、常に正しい共起関係のみを自動的に収
集させるようにした。In view of these points, this embodiment automatically extracts co-occurrence relations by extracting co-occurrence relations between translated words from the structure of the translated text that has already been obtained for the translated text that has been determined to be correct by the user. Therefore, only correct co-occurrence relationships are automatically collected.
また、学習については、第二言語内の情報である、ユー
ザが選択、修正した訳語間の共起関係を、翻訳時に得ら
れた訳文の構造から抽出して共起関係辞書6に記憶させ
ることで、訳語間の関係を考慮し、情報の修正・管理が
容易な訳語の学習を行い、効率的に共起関係を収集する
ようにしたものである。Regarding learning, co-occurrence relationships between translated words selected and modified by the user, which is information in the second language, are extracted from the structure of the translated sentence obtained during translation and stored in the co-occurrence relationship dictionary 6. The system takes into account the relationships between translated words, learns translated words whose information can be easily corrected and managed, and efficiently collects co-occurrence relationships.
具体的には、前記実施例の機械翻訳装置において、翻訳
する毎に、訳文に対して訳文の構造が得られるので、こ
のような訳文の構造から以下のようにして共起関係を抽
出し、共起関係辞書6に登録する。Specifically, in the machine translation device of the embodiment, the structure of the translated text is obtained every time it is translated, so the co-occurrence relationship is extracted from the structure of the translated text as follows, It is registered in the co-occurrence relationship dictionary 6.
a、ユーザが正しいと判断した訳文に対応する訳文の構
造から、全ての依存関係を抜き出す。ボI記実施例の具
体例を用いると、
(私は、閉じる)
(目を、閉じる)
(私の、目)
なる3つの依存関係が得られる。a. Extract all dependencies from the structure of the translated text that corresponds to the translated text that the user has judged to be correct. Using the specific example of the embodiment described in Section 1, three dependencies are obtained: (I close) (I close my eyes) (My eyes).
b、上記の依存関係について、共起関係辞書6中を検索
し、もし、登録されていなければ、各依存関係を共起関
係として、この共起関係辞i? 6 cj+ 4こ登録
する。b. Search the co-occurrence relationship dictionary 6 for the above dependency relationship, and if it is not registered, each dependency relationship is treated as a co-occurrence relationship and this co-occurrence relationship dictionary i? 6 cj+ Register 4.
ここで、正しくない訳文に対しても、ユーザがそれに対
して修正を加えて正しい訳文にした場合、その修正情報
を訳文の構造に反映させることで、そのような訳文に対
しても本実施例の処理a、 bを行わせることができ
る。Here, even if the translation is incorrect, if the user makes corrections to it to make it a correct translation, the correction information is reflected in the structure of the translation, so that this embodiment can also be used for such translations. Processes a and b can be performed.
発明の効果
本発明は、上述したように構成したので、請求項1記載
の発明によれば、訳語の選択が、第一第二言語間に跨る
情報でなく、共起関係辞書に記憶させた訳語間の共起関
係という第二言語内の情報を利用して行われるため、訳
語選択のための情報の収集、修正、管理を容易なものと
することができ、また、請求項2記戦の発明によれば、
訳語選択のための情報を、共起関係辞書中に、自動的か
つ効率的に収集することができる。Effects of the Invention Since the present invention is configured as described above, according to the invention described in claim 1, the selection of translation words is not information that spans between the first and second languages, but is stored in the co-occurrence relationship dictionary. Since this is done using information in the second language, such as the co-occurrence relationship between translated words, it is possible to easily collect, modify, and manage information for selecting translated words. According to the invention of
Information for selecting translation words can be automatically and efficiently collected in the co-occurrence relationship dictionary.
図面は、本発明の一実施例を示すもので、第1図はブロ
ック図、第2図は処理を示すフローチャート、第3図は
共起関係辞書の登録内容を示す説明図である。
2・・・解析部、3・・・単語辞書、4・・・訳文生成
部、6・・・共起関係辞書
出 願 人 株式会社 リ コ朝
一篤
7図
〜丑
395−The drawings show one embodiment of the present invention; FIG. 1 is a block diagram, FIG. 2 is a flowchart showing processing, and FIG. 3 is an explanatory diagram showing registered contents of a co-occurrence relationship dictionary. 2...Analysis section, 3...Word dictionary, 4...Translation generation section, 6...Co-occurrence relation dictionary Applicant: Rico Asaichi Atsushi, Ltd. Figure 7 - Ushi 395-
Claims (1)
て原文の構造を抽出し、この原文の構造と、単語辞書に
記憶された第一言語及び第二言語の単語に関する辞書情
報とを用いて訳文生成部により第二言語の訳文を生成す
るようにした機械翻訳装置において、訳語間の共起関係
を記憶し前記訳文生成部による訳語選択に供される共起
関係辞書を前記訳文生成部に接続して設けたことを特徴
とする機械翻訳装置。 2、共起関係辞書が、翻訳時に得られた訳文の構造から
抽出させた訳語間の共起関係を記憶したことを特徴とす
る請求項1記載の機械翻訳装置。[Claims] 1. The input original text in the first language is analyzed by the analysis unit to extract the structure of the original text, and the structure of the original text and the first language and second language stored in the word dictionary are extracted. In a machine translation device, a translation generation unit generates a translation in a second language using dictionary information regarding words in the translation unit, which stores a co-occurrence relationship between translation words and uses a co-occurrence relationship between the translation words to be used for selection of translation words by the translation generation unit. A machine translation device characterized in that an origin relation dictionary is connected to the translation generation unit. 2. The machine translation device according to claim 1, wherein the co-occurrence relationship dictionary stores co-occurrence relationships between translated words extracted from the structure of a translated sentence obtained during translation.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1298671A JPH03157764A (en) | 1989-11-16 | 1989-11-16 | Machine translation device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1298671A JPH03157764A (en) | 1989-11-16 | 1989-11-16 | Machine translation device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03157764A true JPH03157764A (en) | 1991-07-05 |
Family
ID=17862762
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1298671A Pending JPH03157764A (en) | 1989-11-16 | 1989-11-16 | Machine translation device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03157764A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06251057A (en) * | 1993-02-23 | 1994-09-09 | Ibm Japan Ltd | Method and device for machine translation |
-
1989
- 1989-11-16 JP JP1298671A patent/JPH03157764A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06251057A (en) * | 1993-02-23 | 1994-09-09 | Ibm Japan Ltd | Method and device for machine translation |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5895446A (en) | Pattern-based translation method and system | |
Pang et al. | Syntax-based alignment of multiple translations: Extracting paraphrases and generating new sentences | |
US6115683A (en) | Automatic essay scoring system using content-based techniques | |
Young et al. | VARBRUL analysis for second language acquisition research | |
US4942526A (en) | Method and system for generating lexicon of cooccurrence relations in natural language | |
KR101130444B1 (en) | System for identifying paraphrases using machine translation techniques | |
KR101031970B1 (en) | Statistical method for learning translation relationships between phrases | |
US7565281B2 (en) | Machine translation | |
US5640575A (en) | Method and apparatus of translation based on patterns | |
EP1349079A1 (en) | Machine translation | |
KR100530154B1 (en) | Method and Apparatus for developing a transfer dictionary used in transfer-based machine translation system | |
JPH05151260A (en) | Translation template learning method and translation template learning system | |
JP2005535007A (en) | Synthesizing method of self-learning system for knowledge extraction for document retrieval system | |
EP1497752A2 (en) | Machine translation | |
JP2013502643A (en) | Structured data translation apparatus, system and method | |
Wax | Automated grammar engineering for verbal morphology | |
Malema et al. | Complex Setswana parts of speech tagging | |
JPH03157764A (en) | Machine translation device | |
JP3326646B2 (en) | Dictionary / rule learning device for machine translation system | |
Menezes | Better contextual translation using machine learning | |
Mori et al. | Incremental parsing for interactive natural language interface | |
KR102464998B1 (en) | Commonsense question answer reasoning method and apparatus | |
Centrone et al. | Machine Translation: Early Criticisms Revisited | |
JP3933406B2 (en) | Pronoun rewriting device and method, and program used therefor | |
JPH11265381A (en) | Method and device for converting language and recording medium for programming and recording the method |