JPH0315686B2 - - Google Patents
Info
- Publication number
- JPH0315686B2 JPH0315686B2 JP57113451A JP11345182A JPH0315686B2 JP H0315686 B2 JPH0315686 B2 JP H0315686B2 JP 57113451 A JP57113451 A JP 57113451A JP 11345182 A JP11345182 A JP 11345182A JP H0315686 B2 JPH0315686 B2 JP H0315686B2
- Authority
- JP
- Japan
- Prior art keywords
- signal
- light
- interferogram
- sampling
- interferometer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/28—Investigating the spectrum
- G01J3/45—Interferometric spectrometry
- G01J3/453—Interferometric spectrometry by correlation of the amplitudes
Landscapes
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- General Physics & Mathematics (AREA)
- Instruments For Measurement Of Length By Optical Means (AREA)
- Spectrometry And Color Measurement (AREA)
Description
【発明の詳細な説明】
本発明はフーリエ変換型分光器の光路差ゼロ点
自動調節装置に関するものである。フーリエ変換
型分光器は干渉計で移動鏡を移動させて分割され
た2光束の光路差を変化させることによつて被測
定光のインターフエログラムを記録し、このイン
ターフエログラムをフーリエ変換して被測定光の
スペクトル分布を求めるものである。この種の分
光器においては被測定光のインターフエログラム
信号をサンプリングするためにHe−Neレーザー
光のような既知波長の単色光を干渉計に入射さ
せ、単色光のインターフエログラムを検出してこ
の検出信号を被測定光のインターフエログラム信
号のサンプリング信号とする構成が従来より用い
られている。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an automatic optical path difference zero point adjustment device for a Fourier transform spectrometer. A Fourier transform spectrometer records an interferogram of the light to be measured by moving a movable mirror using an interferometer to change the optical path difference between two divided beams, and then performs a Fourier transform on this interferogram. This is to find the spectral distribution of the light to be measured. In this type of spectrometer, in order to sample the interferogram signal of the light to be measured, monochromatic light of a known wavelength, such as He-Ne laser light, is incident on an interferometer, and the interferogram of the monochromatic light is detected. Conventionally, a configuration has been used in which this detection signal is used as a sampling signal of an interferogram signal of the light to be measured.
第1図はフーリエ変換型分光器の一例を示した
もので、M1は固定鏡、M2は移動鏡、BS1は
主ビームスプリツターで、これら3者によりマイ
ケルソン干渉計が構成されており、これは被測定
光を分光するための干渉計である。MCはコリメ
ータ鏡で被測定光の光源Sから出た光を平行光束
にして主ビームスプリツターBS1に入射させる。
MSは集光鏡で上記干渉計からの出射光を光検出
器L1上に集光させている。このような構成で移
動鏡M2を図矢印のように一方向に動かし、検出
器L1の出力レベルを縦軸に移動鏡M2の移動量
あるいはその2倍の2光束の光路差を横軸にとつ
て記録すると第2図aのようなインターフエログ
ラムI(x)が得られる。ビームスプリツターBS
1で分割された2光束の光路長が等しくなる移動
鏡M2の位置では2光束における被測定光の全て
の波長成分の光が全部同相で重なるから一つの最
高のピークPを現わす。また第1図において、M
3は補助固定鏡、BS2は補助ビームスプリツタ
ーで、これら2者と移動鏡M2とによつてもう一
つのマイケルソン干渉計が構成されており、これ
はサンプリング信号を得るための単色光用補助干
渉計である。単色光の平行光束Uが補助ビームス
プリツターBS2に入射するようになつている。
L2はこの単色光のインターフエログラムを測定
する検出器である。移動鏡M2を移動させたとき
の上記補助干渉計によインターフエログラムを第
2図bに示す。サンプリング信号はこの単色光の
インターフエログラム信号を波形整形して得られ
るパルス立上りまたは立下りを利用するものであ
るが、メインの干渉計の光路差0の点とこの立上
りまたは立下り時点とは装置の構造精度から通常
一致しないので、従来はマニユアル操作により補
助固定鏡M3の位置を微調整していた。しかしこ
の従来方法では第3図に示すように、サンプリン
グ時点を1〜nとすると被測定光のインターフエ
ログラムI(x)の最高ピークPの頂点位置すな
わち光路差がゼロの点に正確にサンプリング信号
を合わせることは困難であり、そのために生じる
位相誤差により測定精度が低下する。本発明はこ
れらの問題点を解消するために、被測定光のイン
ターフエログラムとサンプリング信号との光路差
ゼロ点調整を機構的に行う代りに電気回路的に行
い、かつ自動化することを目的とするものであ
る。 Figure 1 shows an example of a Fourier transform spectrometer. M1 is a fixed mirror, M2 is a moving mirror, and BS1 is a main beam splitter. These three components constitute a Michelson interferometer. is an interferometer for separating the light to be measured. MC uses a collimator mirror to convert the light to be measured emitted from the light source S into a parallel beam of light and input it into the main beam splitter BS1.
MS uses a condenser mirror to condense the light emitted from the interferometer onto the photodetector L1. With this configuration, the movable mirror M2 is moved in one direction as shown by the arrow in the figure, and the vertical axis is the output level of the detector L1, and the horizontal axis is the amount of movement of the movable mirror M2, or twice the optical path difference between the two beams. When recorded, an interferogram I(x) as shown in FIG. 2a is obtained. beam splitter BS
At the position of the movable mirror M2 where the optical path lengths of the two light beams divided by 1 are equal, all the wavelength components of the light to be measured in the two light beams overlap in the same phase, so that one highest peak P appears. Also, in Figure 1, M
3 is an auxiliary fixed mirror, BS2 is an auxiliary beam splitter, and these two and the movable mirror M2 constitute another Michelson interferometer, which is an auxiliary beam splitter for monochromatic light to obtain sampling signals. It is an interferometer. A parallel beam U of monochromatic light is made incident on the auxiliary beam splitter BS2.
L2 is a detector that measures the interferogram of this monochromatic light. FIG. 2b shows an interferogram obtained by the auxiliary interferometer when the movable mirror M2 is moved. The sampling signal uses the pulse rising or falling edge obtained by waveform shaping this monochromatic light interferogram signal, but what is the point at which the optical path difference of the main interferometer is 0 and this rising or falling point? Conventionally, the position of the auxiliary fixing mirror M3 was finely adjusted by manual operation, since they usually do not match due to the structural precision of the device. However, in this conventional method, as shown in Figure 3, if the sampling time is 1 to n, sampling is performed accurately at the apex position of the highest peak P of the interferogram I(x) of the measured light, that is, at the point where the optical path difference is zero. It is difficult to match the signals, and the resulting phase errors reduce measurement accuracy. In order to solve these problems, the present invention aims to automate the zero point adjustment of the optical path difference between the interferogram of the light to be measured and the sampling signal by using an electric circuit instead of mechanically. It is something to do.
第4図は本発明装置の一実施例を示したもの
で、干渉計に既知波長の単色光を入射させ、その
干渉計信号を検出して分光対象光のインターフエ
ログラム信号のサンプリング信号とする第1図の
ような構成において、第4図に示すように、サン
プリング信号を遅延させる手段として電圧制御可
変抵抗素子VVR、固定容量コンデンサCおよび
ワンシヨツトマルチバイブレータMVを設け、サ
ンプリングされたインターフエログラム信号の各
レベル値D1…Dn(第3図参照)を記憶する記憶
回路MEMと、記憶された各レベル値D1…Dnの
うち最大値Dmの前後にある2個のレベル値Dm
−1およびDm+1を選択して両レベル値を比較
し、その結果により遅延手段の時定数を増減させ
る等の制御動作を行うマイクロプロセツサCPU
およびD/AコンパータDAを設けたものであ
る。ADはサンプリング手段としてのA/Dコン
バータで、BUSはバスラインである。 Figure 4 shows an embodiment of the device of the present invention, in which monochromatic light of a known wavelength is made incident on an interferometer, and the interferometer signal is detected and used as a sampling signal of the interferogram signal of the light to be spectrally analyzed. In the configuration shown in FIG. 1, as shown in FIG. 4, a voltage-controlled variable resistance element VVR, a fixed capacitance capacitor C, and a one-shot multivibrator MV are provided as means for delaying the sampling signal, and the sampled interferogram is A storage circuit MEM that stores each level value D1...Dn (see FIG. 3) of the signal, and two level values Dm before and after the maximum value Dm among the stored level values D1...Dn.
Microprocessor CPU that selects -1 and Dm+1, compares both level values, and performs control operations such as increasing or decreasing the time constant of the delay means based on the result.
and a D/A converter DA. AD is an A/D converter as a sampling means, and BUS is a bus line.
第4図においてワンシヨツトマルチバイブレー
タMVで発生するサンプリング信号のパルス幅d
はVVRの抵抗値とコンデンサCの容量との積で
定まり、したがつて波形整形されたHe−Neフリ
ンジ信号がワンシヨツトマルチバイブレータMV
のトリガ端子に入力されると、第5図に示すよう
にHe−Neフリンジ信号の立上り時点からパルス
幅dのサンプリング信号が出力され、このサンプ
リング信号の立下りによつてA/Dコンバータの
サンプルホールドが行われ、サンプリングのタイ
ミングはワンシヨツトマルチバイブレータMVの
出力パルスの幅の制御によつて調整される。
EOCはA/D変換終了信号である。 In Fig. 4, the pulse width d of the sampling signal generated by the one-shot multivibrator MV
is determined by the product of the resistance value of VVR and the capacitance of capacitor C. Therefore, the waveform-shaped He-Ne fringe signal is the one-shot multivibrator MV.
When input to the trigger terminal of the He-Ne fringe signal, a sampling signal with a pulse width d is output from the rising edge of the He-Ne fringe signal as shown in Fig. 5, and the sampling signal of the A/D converter is A hold is performed, and the sampling timing is adjusted by controlling the width of the output pulse of the one-shot multivibrator MV.
EOC is an A/D conversion end signal.
第7図は本発明装置のフローチヤートの一例を
示したもので、まずイにおいてインターフエログ
ラム信号の各レベル値D1…Dnのサンプリング
を行い、これを第6図のメモリマツプに示すよう
に記憶回路MEMに格納する。つぎにロにおいて
最大値Dmの前後のデータDm−1およびDm+1
を求め、両データの差が許容誤差より大きい場合
にはハにおいてD/AコンバータDAへ出力する
データを単位量ずつ増減する。D/Aコンバータ
DAの出力電圧は電圧制御可変抵抗素子VVRに印
加されて同素子の抵抗を変化させ、この抵抗変化
によつてワンシヨツトマルチバイブレータMVの
出力パルスを変化させて、サンプリングのタイミ
ングを調節する。この動作をDm−1およびDm
+1の差が上記許容誤差以下になるまで繰返すの
である。いまHe−Neフリンジ間隔を300μs、
VVRを50KΩ/V、Cを0.01μFとすれば、VVR
の制御入力電圧を0〜1V変化させたとき遅れ時
間は0〜250μs変化させることができる。また
VVRはFETのVSG−R特性により実現できる。
インターフエログラムは光路差0の点を中心にし
て左右対象であるので、上述の動作によつて所要
精度でゼロ点調整が行われる。 FIG. 7 shows an example of a flowchart of the device of the present invention. First, in A, each level value D1...Dn of the interferogram signal is sampled, and this is stored in the memory circuit as shown in the memory map of FIG. Store in MEM. Next, in b, data Dm−1 and Dm+1 before and after the maximum value Dm
is calculated, and if the difference between both data is larger than the allowable error, the data output to the D/A converter DA is increased or decreased by a unit amount in c. D/A converter
The output voltage of the DA is applied to the voltage-controlled variable resistance element VVR to change the resistance of the element, and this resistance change changes the output pulse of the one-shot multivibrator MV to adjust the sampling timing. This operation is Dm−1 and Dm
This is repeated until the difference of +1 becomes less than the above tolerance. Now, the He−Ne fringe interval is 300μs,
If VVR is 50KΩ/V and C is 0.01μF, VVR
When the control input voltage is changed from 0 to 1V, the delay time can be changed from 0 to 250 μs. Also
VVR can be realized by the VSG-R characteristics of the FET.
Since the interferogram is symmetrical with respect to the point at which the optical path difference is 0, the zero point adjustment is performed with the required accuracy by the above-described operation.
本発明は上述のように構成されたもので、サン
プリング信号の光路差ゼロ点への調整が自動的に
行えるのでマニユアル操作の手間が省ける上に、
機械的な操作を伴なわないので調整が瞬時に完了
するという利点があり、また最大レベル値の前後
の2個のデータを用いるのでインターフエログラ
ム信号における最大ピークの両側の急峻な勾配を
利用することができ、したがつて精度がきわめて
高いという利点がある。なお本実施例に用いたプ
ログラムでは両データ値の差を一定の誤差範囲内
にするようにしたが、この差が最小になるように
プログラムすることもできる。また干渉計として
はマイケルソン干渉計を用いているが、本発明は
マイケルソン干渉計に限られるものではない。 The present invention is configured as described above, and since the sampling signal can be automatically adjusted to the zero point of optical path difference, the trouble of manual operation can be saved.
It has the advantage that adjustment can be completed instantly because it does not involve mechanical operations, and since it uses two pieces of data before and after the maximum level value, it utilizes the steep slope on both sides of the maximum peak in the interferogram signal. It has the advantage of being extremely accurate. Although the program used in this embodiment was designed to keep the difference between both data values within a certain error range, it is also possible to program it so that this difference is minimized. Furthermore, although a Michelson interferometer is used as the interferometer, the present invention is not limited to the Michelson interferometer.
第1図は本発明の一実施例装置の平面図、第2
図は同上で得られるインターフエログラム、第3
図は同上のサンプリング状態の説明図、第4図は
本発明装置の要部回路図、第5図は同上の各部波
形図、第6図は同上のメモリマツプ、第7図は同
上の動作を示すフローチヤートである。
BS1は主ビームスプリツター、BS2は補助ビ
ームスプリツター、M1は固定鏡、M2は移動
鏡、MCはコリメータ鏡、MSは集光鏡、Sは被
測定光の光源、L1,L2は光検出器、M3は補
助固定鏡、VVRは電圧制御可変抵抗素子、Cは
固定容量コンデンサ、MVはワンシヨツトマルチ
バイブレータ、DAはD/Aコンバータ、ADは
A/Dコンバータ、CPUはマイクロプロセツサ、
MEMは記憶回路、BUSはバスライン。
FIG. 1 is a plan view of an apparatus according to an embodiment of the present invention, and FIG.
The figure is the interferogram obtained in the same way, the third
The figure is an explanatory diagram of the sampling state as above, FIG. 4 is a circuit diagram of the main part of the device of the present invention, FIG. 5 is a waveform diagram of each part of the same as above, FIG. 6 is a memory map of same as above, and FIG. 7 is an operation of same as above. It is a flowchart. BS1 is the main beam splitter, BS2 is the auxiliary beam splitter, M1 is the fixed mirror, M2 is the movable mirror, MC is the collimator mirror, MS is the condensing mirror, S is the light source of the light to be measured, L1 and L2 are the photodetectors , M3 is an auxiliary fixed mirror, VVR is a voltage-controlled variable resistance element, C is a fixed capacitance capacitor, MV is a one-shot multivibrator, DA is a D/A converter, AD is an A/D converter, CPU is a microprocessor,
MEM is a memory circuit, BUS is a bus line.
Claims (1)
干渉信号のピークを検出して分光対象光のインタ
ーフエログラム信号のサンプリング信号とする構
成において、上記サンプリング信号を遅延させる
手段と、サンプリングされたインターフエログラ
ム信号の各レベル値を記憶する手段と、記憶され
た各レベル値のうら最大値の前後にサンプリング
された2個のレベル値を比較する手段と、該比較
出力により上記遅延手段の時定数を単位量ずつ増
減させる手段とを具え、上記両レベル値の差が充
分小さくなるまで上記サンプリングおよび上記時
定数の増減を繰り返すように構成して成ることを
特徴とするフーリエ変換型分光器の光路差ゼロ点
自動調節装置。1. In a configuration in which monochromatic light of a known wavelength is made incident on an interferometer and the peak of the interference signal is detected as a sampling signal of the interferogram signal of the light to be spectroscopy, a means for delaying the sampling signal, and a means for delaying the sampled signal. means for storing each level value of the interferogram signal; means for comparing two level values sampled before and after the maximum value of each stored level value; A Fourier transform spectrometer, comprising: means for increasing/decreasing the constant by a unit amount, and configured to repeat the sampling and the increase/decrease of the time constant until the difference between the two level values becomes sufficiently small. Optical path difference zero point automatic adjustment device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57113451A JPS593226A (en) | 1982-06-29 | 1982-06-29 | Optical path difference zero point automatic adjustment device for Fourier transform spectrometer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57113451A JPS593226A (en) | 1982-06-29 | 1982-06-29 | Optical path difference zero point automatic adjustment device for Fourier transform spectrometer |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS593226A JPS593226A (en) | 1984-01-09 |
JPH0315686B2 true JPH0315686B2 (en) | 1991-03-01 |
Family
ID=14612559
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57113451A Granted JPS593226A (en) | 1982-06-29 | 1982-06-29 | Optical path difference zero point automatic adjustment device for Fourier transform spectrometer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS593226A (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2649912B2 (en) * | 1986-06-23 | 1997-09-03 | 株式会社 アドバンテスト | Optical digital spectrum analyzer |
JP2018009909A (en) * | 2016-07-15 | 2018-01-18 | 三菱電機株式会社 | Fourier transform type spectrometer |
JP7006494B2 (en) * | 2018-05-02 | 2022-01-24 | 株式会社島津製作所 | Fourier transform spectrophotometer |
CN111398183B (en) * | 2020-03-10 | 2023-06-09 | 上海卫星工程研究所 | Zero offset adjustment method for satellite-borne Fourier transform spectrometer |
-
1982
- 1982-06-29 JP JP57113451A patent/JPS593226A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS593226A (en) | 1984-01-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5631736A (en) | Absolute interferometer measuring process and apparatus having a measuring interferometer, control interferometer and tunable laser | |
CN112567196B (en) | Interferometer moving mirror position measuring device and Fourier transform infrared spectrometer | |
CN111522018B (en) | Double-femtosecond laser frequency comb distance measuring device and method | |
EP2365306B1 (en) | Interferometer step scanning systems and methods | |
US5521704A (en) | Apparatus and method for measuring absolute measurements having two measuring interferometers and a tunable laser | |
JPS6132607B2 (en) | ||
EP2149778B1 (en) | Multiwavelength interferometric displacement measuring method and apparatus | |
JPH0315686B2 (en) | ||
CN115597696B (en) | Equivalent wavelength calibration device and method for ultrafast pulse laser interferometer system | |
JPH1090065A (en) | Data processing method and data processing apparatus for Fourier transform spectroscope | |
JP2002333371A (en) | Wavemeter | |
JP3003801B2 (en) | Interferometry | |
US5039222A (en) | Apparatus and method for producing fourier transform spectra for a test object in fourier transform spectrographs | |
JPH07119564B2 (en) | Two-beam interferometer | |
US5247342A (en) | Light wavelength measuring apparatus including an interference spectroscopic section having a movable portion | |
CA2033451C (en) | Interference spectrophotometer | |
JPH05231939A (en) | Step scan Fourier transform infrared spectrometer | |
JPS5940133A (en) | Fourier transform spectrophotometer | |
JP2858630B2 (en) | FTIR moving mirror controller | |
JP3795257B2 (en) | Length measuring device and length measuring correction device | |
SU1681171A1 (en) | Fourier-spectrometer | |
JP3914617B2 (en) | Coherence analysis method of semiconductor laser | |
SU1622775A1 (en) | Fourier-spectrometer | |
JPS61102526A (en) | Fourier transform infrared spectrophotometer | |
JPH063189A (en) | Method for correcting fluctuation in sampling optical path difference of fourier-transform spectrometer |