[go: up one dir, main page]

JPH03155640A - Manufacturing method of MOS type semiconductor device - Google Patents

Manufacturing method of MOS type semiconductor device

Info

Publication number
JPH03155640A
JPH03155640A JP1295519A JP29551989A JPH03155640A JP H03155640 A JPH03155640 A JP H03155640A JP 1295519 A JP1295519 A JP 1295519A JP 29551989 A JP29551989 A JP 29551989A JP H03155640 A JPH03155640 A JP H03155640A
Authority
JP
Japan
Prior art keywords
oxide film
film
silicon nitride
nitride film
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1295519A
Other languages
Japanese (ja)
Inventor
Yukio Morozumi
幸男 両角
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP1295519A priority Critical patent/JPH03155640A/en
Publication of JPH03155640A publication Critical patent/JPH03155640A/en
Pending legal-status Critical Current

Links

Landscapes

  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE:To improve yield, electrical characteristics and reliability by forming the sidewall spacer of the gate electrode, etc., of a MOS transistor in the laminated structure of a silicon nitride film and a silicon oxide film and preventing the over-etching of a field oxide film and a gate oxide film when the spacer is shaped. CONSTITUTION:A silicon nitride film 27 is grown in a gas atmosphere containing SiH4 and NH3, and a silicon oxide film 17 acquired by vapor-phase reacting SiH4 and O2 at approximately 400 deg.C is laminated. A spacer 18 is formed on the sidewall of a gate electrode 14 through anisotropic etch-back by a reactive dry etcher containing C2F6 and CHF3 gas. The emission spectrum 337nm of N from the foundation silicon nitride film 27 is received and desired over-etch is conducted for the time of the reception in the detection of an end point at the time of the anisotropic etch-back of the silicon oxide film 17 at that time, but etch-back is performed positively because the silicon nitride film 27 is shaped onto the whole foundation surface while a selection ratio is taken to the silicon nitride film 27, thus preventing the etching of a field oxide film 12 and a gate oxide film 13 on a source and a drain.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ゲート電極の側壁に異方性エッチバックによ
って形成された絶縁膜のスペーサーを有するMOS型半
導体装置の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of manufacturing a MOS type semiconductor device having an insulating film spacer formed on the side wall of a gate electrode by anisotropic etch-back.

〔従来の技術〕[Conventional technology]

MOS−LSI等の集積化、多機能化を図る為、多層配
線構造化やトランジスタの微細化が進められている。M
OSトランジスタの微細化に伴う耐ホツトキャリア特性
改善の為、LDD (LLght 1y−Doped−
Dra in)やDDD (Double−Diffu
sed−Drain)構造としドレインの電界緩和を図
る半導体装置が提案されており、これらの製造方法は第
2図の様に、例えばシリコン基板11にフィールド酸化
膜12を選択酸化で形成し、そのアクティブ領域に15
0〜200人のゲート酸化膜13を形成し、イオン注入
によりしきい値電圧を調整した後、5tH4を熱分解し
たPo1y−Stを約4000A気相成長し、フォトエ
ツチングによりゲート電極14や配線30を同時に形成
する。次にソース、ドレインの低濃度不純物層15.1
6にリン等を1〜5X10”cm−2程度イオン注入し
た後、SiH4と02を400℃程度で気10反応させ
たシリコン酸化膜17を約5000人させる(第3図(
a))、次に、CF4 、C2FbやCHF、等のガス
を含む反応性ドライエツチャーで異方性エッチバックし
て、ゲート電極の側壁にスペーサー18を形成する(第
3図(b))。次にソース、ドレイン等の高濃度不純物
層19.20にヒ素を1〜8X10”am−’位イオン
注入し、活性化後、第1の層間絶縁膜21として、Si
H,と02を気相反応させたシリコン酸化膜あるいはP
SG(リンガラス)膜を約6000A積層し、平坦化の
為塗布ガラス22をスピンコードし800℃程度の温度
でアニールする。次にコンタクトホールを開孔してから
、0.6μm程度の厚みでスパッタしたA1合金をパタ
ーニングし第1の金属配線23とする(第3図(C))
。次に、第2の層間絶縁膜24として気相成長シリコン
酸化膜を堆積し、更に平坦化の為塗布ガラス25をスピ
ンコードし400℃程度の温度でアニール後、スルーホ
ールを開孔し、0.8μm程度の厚みでスパッタしたA
1合金をパターニングし第2の金属配線26としく第3
図(d)) 、その後プラズマ成長させたシリコン窒化
膜等を保護膜として積層し、ポンディングパッドを開孔
している。
BACKGROUND ART In order to increase the integration and multifunctionality of MOS-LSIs and the like, advances are being made in multilayer wiring structures and miniaturization of transistors. M
In order to improve the hot carrier resistance characteristics associated with the miniaturization of OS transistors, LDD (LLight 1y-Doped-
Drain) and DDD (Double-Diffu
Semiconductor devices have been proposed that have a sed-drain (sed-drain) structure to alleviate the electric field at the drain.As shown in FIG. 15 in area
After forming a gate oxide film 13 of 0 to 200 people and adjusting the threshold voltage by ion implantation, about 4000A of Poly-St, which is thermally decomposed of 5tH4, is grown in a vapor phase, and the gate electrode 14 and wiring 30 are formed by photoetching. are formed at the same time. Next, source and drain low concentration impurity layers 15.1
After ion-implanting phosphorus or the like to about 1 to 5 x 10"cm-2 into 6, about 5000 people made a silicon oxide film 17 by reacting SiH4 and 02 at about 400°C (see Fig. 3).
a)) Next, anisotropic etching is performed using a reactive dry etcher containing a gas such as CF4, C2Fb or CHF to form a spacer 18 on the side wall of the gate electrode (FIG. 3(b)). . Next, arsenic is ion-implanted at a level of 1 to 8 x 10"am-' into the high concentration impurity layers 19 and 20 such as the source and drain, and after activation, Si is used as the first interlayer insulating film 21.
Silicon oxide film or P made by gas phase reaction of H, and 02
A SG (phosphor glass) film of about 6000A is laminated, and the coated glass 22 is spin-coded for planarization and annealed at a temperature of about 800°C. Next, after opening a contact hole, the sputtered A1 alloy is patterned to a thickness of about 0.6 μm to form the first metal wiring 23 (Fig. 3 (C)).
. Next, a vapor-grown silicon oxide film is deposited as a second interlayer insulating film 24, and the coated glass 25 is spin-coded for flattening and annealed at a temperature of about 400°C, followed by opening through holes. .A sputtered to a thickness of about 8 μm
1 alloy to form a second metal wiring 26 and a third metal wiring 26.
After that, a plasma-grown silicon nitride film or the like is laminated as a protective film, and a bonding pad is opened.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら従来技術に於いては、スペーサー18を形
成する異方性エッチバックの際、その終点は、ゲート電
極14や配線30のPo1y−Siが露出する時のプラ
ズマ発光を、特定波長の透過するフィルターを通し、例
えばSiF;(442nm)やF (685nm)の発
光スペクトル受光強度の変化より決定しようとしている
が、パターニングされたPo1y−Stの面積はフィー
ルド酸化膜に比べ圧倒的に少なく発光強度の変化を捕え
にくく終点判定が困難である。またパターニングされた
Po1y−8iスペースの底面でのシリコン酸化11i
17の膜厚は、気相成長によるカスピングで薄くなって
おり、Po1y−3L表面が露出する時にはスペーサー
と同じ材料でなるフィールド酸化膜12が大分オーバー
エツチングされてしまったり、アクティブ領域のソース
、ドレイン等の表面のゲート酸化膜も抜け、シリコン表
面が叩かれダメージが発生する。これは、固定した時間
エツチングでコントロールしようとしても、同様なこと
が言える。これらの結果、トランジスタのゲート膜破壊
、チャンネルリークの発生原因や、フィールド酸化膜1
2が2〜2500人も薄くなり層間容量の増大の他に、
フィールド酸化膜12上のPo1y−8t配線30脇の
役作寸法やアスペクト比が大きくなり、この上にクロス
する配線や層間膜の平坦性、カバレージに支障を期たし
、ボイド29等による信頼性不良が多発していた。しか
るに本発明は、かかる問題点を解決するもので、特にM
oSトランジスタのゲート電極等の側壁スペーサー形成
時のオーバーエッチを防ぐ事により、微細多機能半導体
装置の安定供給を図ると共に、信頼性に伴う品質の向上
を図ることを目的としたものである。
However, in the conventional technology, when the anisotropic etch-back is performed to form the spacer 18, the end point of the anisotropic etch-back is to filter the plasma emitted when the gate electrode 14 and the poly-Si of the wiring 30 are exposed through a filter that transmits a specific wavelength. For example, we are trying to determine the emission spectrum of SiF (442 nm) or F (685 nm) by determining the change in the received light intensity through the process, but the area of patterned Po1y-St is overwhelmingly smaller than the field oxide film, and the change in emission intensity is It is difficult to grasp and determine the end point. Also, the silicon oxide 11i at the bottom of the patterned Po1y-8i space
The film thickness of the field oxide film 17 is reduced by cusping during vapor phase growth, and when the Po1y-3L surface is exposed, the field oxide film 12 made of the same material as the spacer is largely overetched, and the source and drain regions of the active region are The gate oxide film on the surface of the silicon is also removed, and the silicon surface is hit and damaged. The same thing can be said even if we try to control it by fixed time etching. As a result, the causes of gate film breakdown and channel leakage of transistors, and field oxide film 1
2 becomes thinner by 2 to 2,500 people, and in addition to the increase in interlayer capacitance,
The feature size and aspect ratio of the side of the Po1y-8t wiring 30 on the field oxide film 12 become large, which impairs the flatness and coverage of wiring and interlayer films that cross over this, and reduces reliability due to voids 29, etc. There were many defects. However, the present invention solves such problems, and in particular, M
By preventing over-etching when forming sidewall spacers such as gate electrodes of oS transistors, the purpose is to ensure a stable supply of microscopic multifunctional semiconductor devices and to improve quality with reliability.

〔課題を解決するための手段〕[Means to solve the problem]

本発明のMO3半導体装置の製造方法は、少なくとも、
ゲート膜及びゲート電極を形成する工程、ソース、ドレ
イン等の低濃度不純物層を形成する工程、気相成長によ
るシリコン窒化膜とシリコン酸化膜を積層する工程、異
方性エッチバックによりゲート電極の側壁に該積層膜で
なるスペーサーを形成する工程、ソース、ドレイン等の
高濃度不純物層を形成する工程を具備したことを特徴と
する。
The method for manufacturing an MO3 semiconductor device of the present invention includes at least the following steps:
A process of forming a gate film and a gate electrode, a process of forming a low concentration impurity layer such as a source and a drain, a process of stacking a silicon nitride film and a silicon oxide film by vapor phase growth, and an anisotropic etchback process to form a sidewall of the gate electrode. The method is characterized by comprising a step of forming a spacer made of the laminated film, and a step of forming a high concentration impurity layer such as a source and a drain.

〔実 施 例〕〔Example〕

以下本発明による半導体装置の製造方法の一実施例を、
第1図を用いて詳細に説明する。
An embodiment of the method for manufacturing a semiconductor device according to the present invention will be described below.
This will be explained in detail using FIG.

サブミクロンルール多層配線構造のStアゲ−MO8−
LSIに適用した場合に於いて、例えばシリコン基板1
1にフィールド酸化膜12を選択酸化で約550OA形
成し、そのアクティブ領域に約180Aのゲート酸化膜
13を形成し、イオン注入によりしきい値電圧を調整し
た後、5tH4を熱分解したPo1y−8Lを約400
0A気相成長し、フォトエツチングによりゲート電極1
4や配線30を同時に形成した。次にゲート電極14や
フィールド酸化膜12をマスクにしてソ−ス、ドレイン
の低濃度不純物層15.16にリン等を約2X1013
cm−’程度イオン注入した。
Stage-MO8- with submicron rule multilayer wiring structure
When applied to LSI, for example, silicon substrate 1
1, a field oxide film 12 of approximately 550 OA was formed by selective oxidation, a gate oxide film 13 of approximately 180 Å was formed in the active region, and the threshold voltage was adjusted by ion implantation. about 400
Gate electrode 1 was formed by 0A vapor phase growth and photoetching.
4 and wiring 30 were formed at the same time. Next, using the gate electrode 14 and field oxide film 12 as a mask, apply approximately 2×10 13 phosphorus or the like to the low concentration impurity layers 15 and 16 of the source and drain.
Ions were implanted to the extent of cm-'.

次にSiH4とNH,を含むガス雰囲気中でシリコン窒
化1![27を800〜12ooA成長し、続けてSi
H4と02を約400℃気相反応させたシリコン酸化膜
17を5000A積層させた(第1図(a)) 。次に
C2F、とCHF、ガスを含む反応性ドライエツチャー
で異方性エッチバックしてゲート電極14の側壁にスペ
ーサー18を形成した(第3図(b))。この時、シリ
コン酸化817を異方性エッチバックする時の終点検出
は、下地シリコン窒化11!27からのNの発光スペク
トル337nmを受光し、この時間に所望のオーバーエ
ツチングを行なったが、下地全面にシリコン窒化膜27
が有ることによって確実に行なわれると共に、シリコン
窒化JII27に対して選択比が大きくとれる為、フィ
ールド酸化膜12やソース、ドレイン上のゲート酸化膜
13がエツチングされてしまうことがない。次に、16
0〜180℃のリン酸中に約15分浸漬して、シリコン
窒化膜27をウェットエツチングした(第1図(C))
Next, silicon nitride 1! in a gas atmosphere containing SiH4 and NH. [27 was grown to 800~12ooA, and then Si
A 5000A silicon oxide film 17 made by subjecting H4 and 02 to a gas phase reaction at about 400° C. was laminated (FIG. 1(a)). Next, spacers 18 were formed on the side walls of the gate electrode 14 by anisotropic etching back using a reactive dry etcher containing gases such as C2F and CHF (FIG. 3(b)). At this time, the end point of anisotropically etching back the silicon oxide 817 was detected by receiving the N emission spectrum of 337 nm from the underlying silicon nitride 11!27. silicon nitride film 27
Since etching is carried out reliably and a high selectivity can be achieved with respect to the silicon nitride JII 27, the field oxide film 12 and the gate oxide film 13 on the source and drain will not be etched. Next, 16
The silicon nitride film 27 was wet-etched by immersing it in phosphoric acid at 0 to 180° C. for about 15 minutes (Fig. 1 (C)).
.

続いてソース、ドレインの高濃度不純物層19.20に
ヒ素を約5X1015cm−2イオン注入し、950℃
のアニール後、第1の層間絶縁膜21として、SiH4
と02及びPH,を気相反応させたシリコン酸化膜及び
PSG膜を併せて約6000A積層し、平坦化の為塗布
ガラス22をスピンコードし800℃程度の温度でアニ
ールした。次にコンタクトホールを開孔し、0.6μm
の厚みでスパッタしたA1合金をパターニングし第1の
金属配線23とした(第1図(C))。次に、第2の層
間絶縁@24として5tH4と02を気相成長させたシ
リコン酸化膜を約6000人堆積し、更に平坦化の為塗
布ガラス25をスピンコードし400℃程度の温度でア
ニール後、スルーホールを開孔し、約0.8μmの厚み
でスパッタしたA1合金をバターニングし第2の金属配
線26としく第1図(d)) 、その後保護膜としてプ
ラズマ成長させたシリコン窒化膜を積層し、ポンディン
グパッドを開孔した。
Next, approximately 5×1015 cm-2 of arsenic was ion-implanted into the high-concentration impurity layers 19.20 of the source and drain, and the temperature was increased to 950°C.
After annealing, SiH4 is used as the first interlayer insulating film 21.
A silicon oxide film and a PSG film obtained by vapor-phase reaction of 02 and PH were laminated with a total thickness of about 6000 A, and the coated glass 22 was spin-coded for planarization and annealed at a temperature of about 800°C. Next, a contact hole is opened and the diameter is 0.6 μm.
The sputtered A1 alloy was patterned to a thickness of 1 to form the first metal wiring 23 (FIG. 1(C)). Next, approximately 6,000 silicon oxide films made of 5tH4 and 02 are deposited in a vapor phase as the second interlayer insulation@24, and coated glass 25 is spin-coded for planarization and annealed at a temperature of about 400°C. , a through hole was opened, and sputtered A1 alloy was buttered to a thickness of about 0.8 μm to form the second metal wiring 26 (FIG. 1(d)). After that, a silicon nitride film was plasma grown as a protective film. were laminated and a bonding pad was drilled.

この様にして製造された半導体装置に於いては、側壁ノ
スベーサ−18を形成する際に、フィールド酸化II!
112やソース、ドレイン上のゲート酸化膜13がエツ
チングされてしまうことがなく、MOS)ランジスタの
ダメージがなくなると共にデバイスの高速化を図ること
が出来た。又、フィールド酸化膜12上のPo1y−3
i配線30脇の役作寸法も抑えられ、手用性の改善がな
されると共に、層間絶縁膜21.24のボイドもなくな
った結果、歩留り、信頼性等の向上も図れた。
In the semiconductor device manufactured in this manner, field oxidation II!
112 and the gate oxide film 13 on the source and drain are not etched, thereby eliminating damage to the MOS transistor and increasing the speed of the device. In addition, Po1y-3 on the field oxide film 12
The working size of the side of the i-wire 30 is also suppressed, improving the ease of handling, and eliminating voids in the interlayer insulating films 21, 24, resulting in improvements in yield, reliability, etc.

他の実施例として、ゲート電極とソース、ドレイン等の
不純物層に、自己整合的に金属シリサイドを有する半導
体装置の製造にも適用したが、例えば第2図の如く、ゲ
ート電極14の側壁にシリコン窒化膜27、シリコン酸
化膜17のスペーサー18を形成後(第2図(a))、
ソース、ドレイン等の不純物層等19.20の表面に残
るゲート酸化膜13をHF水溶液で除去し、この上にチ
タン28をスパッタしく第2図(b)) 、その後ハロ
ゲンランプで約700℃、30秒の窒素アニールを行な
って、不純物層19.20やゲート電極14のシリコン
表面に接しているチタン28をモノシリサイド化させ、
フィールド酸化膜12やシリコン酸化膜でなるスペーサ
ー18上は窒化チタンとさせ、これを過酸化水素水とア
ンモニア水の2=1混合液に浸漬し窒化チタンのみ除去
させ、再び800℃のハロゲンランプで窒素アニールを
行ない残ったモノシリサイドをシート抵抗3Ω/口程度
のチタンダイシリサイド31とした(第2図(C))。
As another example, it was applied to the manufacture of a semiconductor device having metal silicide in self-alignment in impurity layers such as the gate electrode and the source and drain. For example, as shown in FIG. After forming the spacer 18 of the nitride film 27 and silicon oxide film 17 (FIG. 2(a)),
The gate oxide film 13 remaining on the surface of the impurity layers 19.20 such as the source and drain is removed with an HF aqueous solution, and titanium 28 is sputtered thereon (Fig. 2(b)). Thereafter, the film is heated at about 700°C using a halogen lamp. Nitrogen annealing is performed for 30 seconds to monosilicide the titanium 28 in contact with the impurity layer 19, 20 and the silicon surface of the gate electrode 14.
Titanium nitride was formed on the field oxide film 12 and the spacer 18 made of silicon oxide film, and this was immersed in a 2=1 mixture of hydrogen peroxide and ammonia water to remove only the titanium nitride, and then heated again with a halogen lamp at 800°C. After nitrogen annealing, the remaining monosilicide was made into titanium disilicide 31 having a sheet resistance of about 3 Ω/hole (FIG. 2(C)).

この時のHFエッチでスペーサー19もある程度除去さ
れてしまうが、シリコン窒化膜27が有る為、ゲート電
極14と不純物層1つ、20表面のシリサイド31の分
離が従来に比べ確実に行なわれる様になり、歩留りも飛
躍的に向上させることが出来た。
The spacer 19 is also removed to some extent by the HF etching at this time, but since the silicon nitride film 27 is present, the gate electrode 14, one impurity layer, and the silicide 31 on the surface of the 20 can be separated more reliably than before. As a result, we were able to dramatically improve yield.

又、第1及び第2の層間絶縁膜21.24どして、TE
OSと02のプラズマ反応やTEOSと03を熱反応さ
せた気相成長シリコン酸化膜をデバイス適用したが、カ
スピングがないことからSiH4と02を気相反応させ
たシリコン酸化膜を用いたものより平坦性を、より改善
させることが出来た。
In addition, the first and second interlayer insulating films 21 and 24 are
A vapor-phase grown silicon oxide film made by a plasma reaction of OS and 02 or a thermal reaction of TEOS and 03 was applied to the device, but because there is no cusp, it is flatter than a silicon oxide film made by a vapor-phase reaction of SiH4 and 02. I was able to improve my sexuality.

尚、実施例では、多層金属配線のNchMO3−LSI
について説明したが、単層金属配線や6MO3−LSI
にも適用でき、又、金属配線としては、純AIやこれに
Cu % S i%P t SCo等を含む合金単層に
限らず、更にバリアメタルやハレーション防止の為のキ
ャップメタルをA1合金配線の上、あるいは下に積層し
た構造にも応用可能である。
In addition, in the example, NchMO3-LSI with multilayer metal interconnection
However, single-layer metal wiring and 6MO3-LSI
In addition, the metal wiring is not limited to pure AI or an alloy single layer containing Cu%Si%PtSCo, etc., but also barrier metal and cap metal for preventing halation can be used as A1 alloy wiring. It can also be applied to a structure in which it is laminated above or below.

〔発明の効果〕〔Effect of the invention〕

以上の様に本発明によれば、MOSトランジスタのゲー
ト電極等の側壁スペーサーをシリコン窒化膜とシリコン
酸化膜の積層構造とし、スペーサー形成時にフィールド
酸化膜やゲート酸化膜のオーバーエッチを防ぐ事により
、歩留り、電気特性や信頼性の向上がなされ、より集積
化、多機能化された半導体装置の安定供給に寄与出来る
ものである。
As described above, according to the present invention, the sidewall spacer such as the gate electrode of a MOS transistor has a laminated structure of a silicon nitride film and a silicon oxide film, and by preventing overetching of the field oxide film and the gate oxide film when forming the spacer, This improves yield, electrical characteristics, and reliability, and contributes to the stable supply of more integrated and multifunctional semiconductor devices.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(d)、及び第2図(a)〜(d)は、
本発明による半導体装置の製造方法の実施例を示す概略
断面図である。 第3図(a)〜(d)は、従来の半導体装置の製造方法
に係わる概略断面図である。 11拳・−・シリコン基板 12・・・・フィールド酸化膜 13・・・・ゲート酸化膜 14拳・・番ゲート電極 15.16・低濃度不純物層 17・・・・シリコン酸化膜 18ΦΦ番拳スペーサー 19.20・高濃度不純物層 21・・φ・第1の層間絶縁膜 22.25・塗布ガラス 23・・・・第1の金属配線 24・・・・第2の層間絶縁膜 26・・争・第2の金属配線 27φ φ ・ 28・ 會 争 29・ ・ ・ 30・ 骨 ・ 31 ・ ・ ・ シリコン窒化膜 チタン ボイド 配線 シリサイド 以 上
Figures 1 (a) to (d) and Figures 2 (a) to (d) are
1 is a schematic cross-sectional view showing an embodiment of a method for manufacturing a semiconductor device according to the present invention. FIGS. 3(a) to 3(d) are schematic cross-sectional views relating to a conventional method of manufacturing a semiconductor device. 11th...Silicon substrate 12...Field oxide film 13...Gate oxide film 14th...Gate electrode 15.16.Low concentration impurity layer 17...Silicon oxide film 18ΦΦFist spacer 19.20・High concentration impurity layer 21・・φ・First interlayer insulating film 22.25・Coated glass 23・・First metal wiring 24・・Second interlayer insulating film 26・・War・Second metal wiring 27φ φ ・ 28・ Competition 29・ ・ ・ 30・ Bone ・ 31 ・ ・ ・ Silicon nitride film titanium void wiring silicide or more

Claims (1)

【特許請求の範囲】[Claims] 少なくとも、ゲート膜及びゲート電極を形成する工程、
ソース、ドレイン等の低濃度不純物層を形成する工程、
気相成長によるシリコン窒化膜とシリコン酸化膜を積層
する工程、異方性エッチバックによりゲート電極の側壁
に該積層膜でなるスペーサーを形成する工程、ソース、
ドレイン等の高濃度不純物層を形成する工程を具備した
ことを特徴とするMOS型半導体装置の製造方法。
At least a step of forming a gate film and a gate electrode,
A step of forming a low concentration impurity layer such as a source and a drain,
A step of laminating a silicon nitride film and a silicon oxide film by vapor phase growth, a step of forming a spacer made of the laminated film on the side wall of the gate electrode by anisotropic etchback, a source,
1. A method for manufacturing a MOS type semiconductor device, comprising a step of forming a high concentration impurity layer such as a drain.
JP1295519A 1989-11-14 1989-11-14 Manufacturing method of MOS type semiconductor device Pending JPH03155640A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1295519A JPH03155640A (en) 1989-11-14 1989-11-14 Manufacturing method of MOS type semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1295519A JPH03155640A (en) 1989-11-14 1989-11-14 Manufacturing method of MOS type semiconductor device

Publications (1)

Publication Number Publication Date
JPH03155640A true JPH03155640A (en) 1991-07-03

Family

ID=17821673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1295519A Pending JPH03155640A (en) 1989-11-14 1989-11-14 Manufacturing method of MOS type semiconductor device

Country Status (1)

Country Link
JP (1) JPH03155640A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100425478B1 (en) * 2002-04-04 2004-03-30 삼성전자주식회사 Method of fabricating semiconductor device including metal conduction layer
JP2007067425A (en) * 2006-10-05 2007-03-15 Toshiba Corp Manufacturing method of semiconductor device
JP2008028398A (en) * 2006-07-21 2008-02-07 Dongbu Hitek Co Ltd Semiconductor device and manufacturing method thereof
US7579231B2 (en) 1999-01-29 2009-08-25 Kabushiki Kaisha Toshiba Semiconductor device and method of manufacturing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7579231B2 (en) 1999-01-29 2009-08-25 Kabushiki Kaisha Toshiba Semiconductor device and method of manufacturing the same
KR100425478B1 (en) * 2002-04-04 2004-03-30 삼성전자주식회사 Method of fabricating semiconductor device including metal conduction layer
JP2008028398A (en) * 2006-07-21 2008-02-07 Dongbu Hitek Co Ltd Semiconductor device and manufacturing method thereof
JP2007067425A (en) * 2006-10-05 2007-03-15 Toshiba Corp Manufacturing method of semiconductor device

Similar Documents

Publication Publication Date Title
US5723893A (en) Method for fabricating double silicide gate electrode structures on CMOS-field effect transistors
US5385634A (en) Sealed self aligned contact process
US4432132A (en) Formation of sidewall oxide layers by reactive oxygen ion etching to define submicron features
JP2978748B2 (en) Method for manufacturing semiconductor device
US6693013B2 (en) Semiconductor transistor using L-shaped spacer and method of fabricating the same
US6294476B1 (en) Plasma surface treatment method for forming patterned TEOS based silicon oxide layer with reliable via and interconnection formed therethrough
US6960531B2 (en) Method of manufacturing electronic device
US5652172A (en) Method for controlling the etch profile of an aperture formed through a multi-layer insulator layer
US6362033B1 (en) Self-aligned LDD formation with one-step implantation for transistor formation
JPH08340109A (en) Method for manufacturing semiconductor device
JPH03155640A (en) Manufacturing method of MOS type semiconductor device
JP2000236090A (en) Manufacture of semiconductor device
JP3284415B2 (en) Method for manufacturing semiconductor device
JP2002094052A (en) Manufacturing method of semiconductor device
US7375027B2 (en) Method of providing contact via to a surface
JP2794594B2 (en) Semiconductor device manufacturing method
JP3376305B2 (en) Method for manufacturing semiconductor device
JPH03155641A (en) Manufacture of mos type semiconductor device
JP3435943B2 (en) Semiconductor device and manufacturing method thereof
KR100361572B1 (en) a manufacturing method of a contact structure of a semiconductor device
JPH10125623A (en) Method for manufacturing semiconductor device
US6191019B1 (en) Method for forming a polysilicon layer in a polycide process flow
KR100276123B1 (en) Semiconductor device and method for forming silicide thereof
JP2005517285A (en) Semiconductor device including thin oxide liner and method of manufacturing the same
KR100258001B1 (en) Semiconductor device and method for forming silicide of the same