JPH03154030A - Ferroelectric liquid crystal element - Google Patents
Ferroelectric liquid crystal elementInfo
- Publication number
- JPH03154030A JPH03154030A JP29225889A JP29225889A JPH03154030A JP H03154030 A JPH03154030 A JP H03154030A JP 29225889 A JP29225889 A JP 29225889A JP 29225889 A JP29225889 A JP 29225889A JP H03154030 A JPH03154030 A JP H03154030A
- Authority
- JP
- Japan
- Prior art keywords
- liquid crystal
- ferroelectric liquid
- electrode
- roughness
- pixels
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000005262 ferroelectric liquid crystals (FLCs) Substances 0.000 title claims abstract description 24
- 239000000758 substrate Substances 0.000 claims abstract description 34
- 230000003746 surface roughness Effects 0.000 claims abstract description 20
- 238000005530 etching Methods 0.000 claims abstract description 10
- 238000001312 dry etching Methods 0.000 claims description 5
- 239000000203 mixture Substances 0.000 claims description 5
- 229920002120 photoresistant polymer Polymers 0.000 claims description 4
- 238000000034 method Methods 0.000 abstract description 6
- 238000000059 patterning Methods 0.000 abstract description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 18
- 239000004990 Smectic liquid crystal Substances 0.000 description 9
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 6
- 230000007547 defect Effects 0.000 description 6
- 229920001721 polyimide Polymers 0.000 description 4
- 238000004544 sputter deposition Methods 0.000 description 4
- 230000005684 electric field Effects 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000005357 flat glass Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 230000005641 tunneling Effects 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 239000004962 Polyamide-imide Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 229910002370 SrTiO3 Inorganic materials 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 231100000989 no adverse effect Toxicity 0.000 description 1
- 229920003055 poly(ester-imide) Polymers 0.000 description 1
- 229920002312 polyamide-imide Polymers 0.000 description 1
- 229920006267 polyester film Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- IATRAKWUXMZMIY-UHFFFAOYSA-N strontium oxide Inorganic materials [O-2].[Sr+2] IATRAKWUXMZMIY-UHFFFAOYSA-N 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 235000012431 wafers Nutrition 0.000 description 1
Landscapes
- Liquid Crystal (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明はカイラルスメクチック液晶素子(強誘電液晶素
子)、特に見えに対する改善を行なった強誘電液晶素子
に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a chiral smectic liquid crystal element (ferroelectric liquid crystal element), and particularly to a ferroelectric liquid crystal element with improved visibility.
[従来技術]
液晶分子の屈折異方性を利用して偏光素子との組み合わ
せにより透過光線を制御する型の表示素子がクラーク(
C1ark)およびラガーウォル(Lagerwal
1)により提案されている(米国特許第4367934
号明細書、米国特許第4639089号公報等)。この
表示素子に用いられるカイラルスメクチック液晶は、一
般に特定の温度域において、カイラルスメクチックC相
(sm*c)またはH相(Sm*H)を有し、この状態
において、加えられる電界に応答して第1の光学的安定
状態と第2の光学的安定状態のいずれかをとり、かつ電
界の印加のないときはその状態を維持する性質、すなわ
ち双安定性を有し、また、電界の変化に対する応答も速
やかであり、高速ならびに記憶型の表示素子用としての
広い利用が期待されている。[Prior art] Clark (
C1ark) and Lagerwal (C1ark) and Lagerwal (C1ark)
1) (U.S. Pat. No. 4,367,934).
specification, US Pat. No. 4,639,089, etc.). The chiral smectic liquid crystal used in this display element generally has a chiral smectic C phase (sm*c) or H phase (Sm*H) in a specific temperature range, and in this state, it responds to an applied electric field. It has the property of taking either the first optically stable state or the second optically stable state and maintaining that state when no electric field is applied, that is, it has bistability, and also has bistability, and is resistant to changes in the electric field. It also has a quick response, and is expected to be widely used in high-speed and memory-type display devices.
この表示素子は、カイラルスメクチック液晶をマルチブ
レクシング駆動するための走査電極と信号電極とで構成
したマトリクス電極を備え、走査電極には順次走査信号
が印加され、該走査信号と同期して信号電極には情報信
号が印加される。This display element is equipped with a matrix electrode composed of a scanning electrode and a signal electrode for multiplexing driving a chiral smectic liquid crystal.A scanning signal is sequentially applied to the scanning electrode, and the signal electrode is An information signal is applied to.
[発明が解決しようとする課題]
しかしながら、このような従来技術においては、マルチ
ブレクシング駆動を印加カイラルスメクチック液晶に適
用する際、画素内の液晶のスイッチングは良いが、画素
間によってはある条件下でその画素間の液晶が駆動して
しまい(通常は駆動しない)、結果的に画素間が不揃に
なり、あるいはもともとばらばらに配向されている為に
、表示画面にざらつきを生じたり、あるパターンが残っ
てしまうという問題点があった。[Problems to be Solved by the Invention] However, in such conventional technology, when applying multiplexing drive to an applied chiral smectic liquid crystal, although the switching of the liquid crystal within a pixel is good, depending on the distance between pixels, under certain conditions This causes the liquid crystal between the pixels to be driven (normally not), resulting in irregularities between the pixels, or because they are originally oriented unevenly, the display screen may appear rough or have a certain pattern. There was a problem that .
本発明の目的は、このような従来技術の問題点を解決し
た液晶素子を提供することにある。An object of the present invention is to provide a liquid crystal element that solves the problems of the prior art.
[課題、を解決するための手段]
上記目的を達成するため本発明では、強誘電液晶、強誘
電液晶を間に配置して対向する一対の基板、および各電
極が交差して対向するするように一対の基板上に形成さ
れ強誘電液晶に電圧を印加して駆動するための対向する
2組の電極群を備え、各電極の交差部である画素部分の
電極の表面平均粗さが60Å以下である強読電液晶素子
において、電極のない画素間の基板部分の表面平均粗さ
が60〜200人であり、その粗さの平均ピッチが20
0〜5000人となるようにしてし)る。[Means for Solving the Problems] In order to achieve the above object, the present invention includes a ferroelectric liquid crystal, a pair of substrates facing each other with the ferroelectric liquid crystal disposed therebetween, and electrodes that intersect and face each other. The ferroelectric liquid crystal is formed on a pair of substrates and has two opposing electrode groups for applying voltage to drive the ferroelectric liquid crystal. In a strong current reading liquid crystal device, the average surface roughness of the substrate portion between pixels without electrodes is 60 to 200, and the average pitch of the roughness is 20.
0 to 5,000 people).
電極群は、通常、フォトレジストを用いたエツチングに
よって形成され、画素間の基板部分の粗さはそのエツチ
ングに用いたフォトレジストを残したまま画素間の基i
部分をドライエツチングすることによって形成される。The electrode group is usually formed by etching using a photoresist, and the roughness of the substrate portion between the pixels is determined by etching the substrate between the pixels while leaving the photoresist used for etching.
Formed by dry etching the part.
強誘電液晶としては、通常、カイラルスメクチック液晶
が用いられ、その膜厚はバルク状態下で固有するらせん
構造の形成を制御するのに十分薄く設定されているとと
もに、画素部はギャップ材等から対をなすヘアピン欠陥
部とライトニング欠陥部を発生する傾向を持つか、また
は該ヘアピン欠陥部がライトニング欠陥部を発生するも
のである。粗さのピッチは、第3図に示すように、粗さ
最小値間距離を意味している。Chiral smectic liquid crystal is usually used as the ferroelectric liquid crystal, and its film thickness is set to be thin enough to control the formation of the inherent helical structure in the bulk state. The hairpin defect tends to generate a hairpin defect and a lightning defect, or the hairpin defect generates a lightning defect. As shown in FIG. 3, the roughness pitch means the distance between minimum roughness values.
[作用]
画素間のばらつきは前述のごとく表示品位を署しく悪く
するのであるが、本発明においては、画素間を対向基板
の画素部(電極部分)よりも表面粗さを粗くし、非対称
としたため、画素間における液晶の配向の制御が好まし
く行なわれ、表示品位が向上する。このために本発明で
は、画素間は積極的に粗し対向基板はこれよりも粗れて
いない状態が必要となるので、対向基板側の透明電極の
表面粗さがある一定の粗さに抑えられたものであること
が前提とされている。この表面粗さの非対称性により画
素間部分の液晶が制御される理由は現在のところ明確で
はないが、画素間に対向する電極表面の粗さが60Å以
上のときには、画素間の表面粗さが製作可能な範囲にお
いて粗しても画素間の制御はできなかった。したがって
、前記−定の粗さは表面平均粗さで60Å以下としてい
る。[Function] As mentioned above, variations between pixels seriously deteriorate the display quality, but in the present invention, the surface roughness between the pixels is made rougher than that of the pixel portion (electrode portion) of the opposing substrate to prevent asymmetry. Therefore, the alignment of liquid crystal between pixels is preferably controlled, and display quality is improved. For this reason, in the present invention, it is necessary to aggressively roughen the area between pixels and keep the opposing substrate less rough than this, so the surface roughness of the transparent electrode on the opposing substrate side is kept to a certain level. It is assumed that the The reason why the liquid crystal in the area between pixels is controlled by this asymmetry in surface roughness is not clear at present, but when the roughness of the electrode surface facing between pixels is 60 Å or more, the surface roughness between pixels is Even if it was made as coarse as possible within the manufacturable range, it was not possible to control between pixels. Therefore, the above-mentioned roughness is set to be 60 Å or less in terms of surface average roughness.
上記画素開祖さを制御しながら工程的にも既知の簡単な
手段としてはドライエツチングがあるが、本発明では、
電極形成時に用いたレジストを残したまま画素間をエツ
チングするようにしているため、エツチングのためのパ
ターニング工程が省略されると同時にエツチング残留ガ
ス等による表面への悪影響もなく、したがって、表示品
位のよいパネル(液晶素子)が提供される。Dry etching is a known and simple method for controlling the pixel density, but in the present invention,
Since etching is performed between pixels while leaving the resist used when forming the electrodes, the patterning process for etching is omitted, and at the same time, there is no adverse effect on the surface due to etching residual gas, etc., and therefore the display quality is improved. A good panel (liquid crystal element) is provided.
[実施例] 以下、図面を用いて本発明の詳細な説明する。[Example] Hereinafter, the present invention will be explained in detail using the drawings.
第1図は本発明の一実施例に係る液晶素子で用いる基板
を表わす斜視図である。同図において、1はガラス等の
基板、2はITO等の透明電極、3はアルミニウム、ク
ロム、モリブデン、タンタル等の金属電極、4はドライ
エツチングした画素間である。透明電極2は500〜2
000人、好ましくは600〜1500人の膜厚を有し
、金属電極3は液晶の特性によって異なるが400〜3
000人の厚さで設けられている。FIG. 1 is a perspective view showing a substrate used in a liquid crystal element according to an embodiment of the present invention. In the figure, 1 is a substrate such as glass, 2 is a transparent electrode such as ITO, 3 is a metal electrode such as aluminum, chromium, molybdenum, tantalum, etc., and 4 is a space between dry etched pixels. Transparent electrode 2 is 500-2
The thickness of the metal electrode 3 is 400 to 3,000, preferably 600 to 1,500, although it varies depending on the characteristics of the liquid crystal.
000 people thick.
また、各電極の交差部である画素部分の電極の表面平均
粗さは60Å以下であり、電極のない画素間の基板部分
の表面平均粗さが60〜200人であり、その粗さの平
均ピッチは200〜5000人である。In addition, the average surface roughness of the electrodes in the pixel area, which is the intersection of each electrode, is 60 Å or less, and the average surface roughness of the substrate area between the pixels without electrodes is 60 to 200 Å. The pitch is 200-5000 people.
第2図は、このような基板間に液晶を注入して構成した
パネル(液晶素子)の一部の断面図である。同図におい
て、1〜4は上記基板1〜画素間4であり、5はパネル
の上下の電極間のショートを防止するための絶縁膜、6
は液晶を配向させるための配向膜、7はカイラルスメク
チック液晶である。FIG. 2 is a sectional view of a part of a panel (liquid crystal element) constructed by injecting liquid crystal between such substrates. In the figure, 1 to 4 are between the substrate 1 and the pixel 4, 5 is an insulating film for preventing short circuit between the upper and lower electrodes of the panel, and 6
7 is an alignment film for aligning liquid crystal, and 7 is a chiral smectic liquid crystal.
絶縁膜5は少なくとも一方の基板に設けられており、パ
ネルの特性と絶縁耐圧から500〜1500人の厚さを
有するのが好ましい。また、配向膜6は50〜200人
の厚さを有するのが好ましい。絶縁膜5としては、5i
Oz@、Ta2os膜、TiO2膜等を用いることがで
きる。また、SrTiO3、TiO2、およびSrOで
構成されるものを用いることもでき、その場合、S r
T i O3とTiO2の組成比を1.7〜1.8、T
iO2とSrOの組成比を6〜20とするのが好ましい
。The insulating film 5 is provided on at least one substrate, and preferably has a thickness of 500 to 1,500 wafers in view of panel characteristics and dielectric strength. Further, it is preferable that the alignment film 6 has a thickness of 50 to 200 layers. As the insulating film 5, 5i
Oz@, Ta2os film, TiO2 film, etc. can be used. Furthermore, a material composed of SrTiO3, TiO2, and SrO can also be used, in which case Sr
The composition ratio of T i O3 and TiO2 is 1.7 to 1.8, T
It is preferable that the composition ratio of iO2 and SrO is 6 to 20.
また、配向膜6としてはポリビニルアルコール膜、ポリ
イミド膜、ポリイミド膜、ポリエステル膜、ポリアミド
イミド膜、ポリエステルイミド膜等を用いることができ
る。Further, as the alignment film 6, a polyvinyl alcohol film, a polyimide film, a polyimide film, a polyester film, a polyamide-imide film, a polyester-imide film, etc. can be used.
以下、実際に製造した例について説明する。Hereinafter, an example actually manufactured will be explained.
夾五■ユ
基板1として1.1mm厚の青板ガラスを用い、その上
にITO膜をスパッタ法で1500人の厚さで形成して
からレジストを塗布してバターニングし、さらにレジス
トを残したままで2×1O−2torrの雰囲気までC
F、を導入した真空中で画素間をドライエツチングして
、画素部分の電極の表面平均粗さが60Å以下、画素間
の表面平均粗さが100人であり、その粗さの平均ピッ
チが2250人である透明電極2を形成した。A 1.1 mm thick blue plate glass was used as the substrate 1, an ITO film was formed on it to a thickness of 1,500 mm by sputtering, a resist was applied and buttered, and the resist was left on. C up to 2×1O-2torr atmosphere
By dry etching between pixels in a vacuum with F, the average surface roughness of the electrodes in the pixel part is 60 Å or less, the average surface roughness between pixels is 100, and the average pitch of the roughness is 2250. A transparent electrode 2 having a human shape was formed.
次に、この上に、絶縁膜5として5i02膜をスパッタ
法で500人の厚さで形成し、さらにこの上に、配向膜
6としてポリイミド膜をスピンナー法で100人の厚さ
で形成した。Next, on top of this, a 5i02 film was formed as an insulating film 5 by a sputtering method to a thickness of 500 ml, and further on this, a polyimide film was formed as an alignment film 6 to a thickness of 100 ml using a spinner method.
次に、このようにして電極等を形成した基板を2枚用い
、これらを液晶が一軸配向するようにラビング処理し、
走査電極(一方の透明電極2)と信号電極(他方の透明
電極2)がクロスするように2枚の基板を貼り合わせて
パネルを形成し、そしてこのパネルにカイラルスメクチ
ック液晶を注入して第2図にその断面を示すような液晶
表示素子を製作した。Next, using two substrates on which electrodes etc. were formed in this way, they were subjected to a rubbing treatment so that the liquid crystals were uniaxially aligned.
Two substrates are bonded together so that the scanning electrode (one transparent electrode 2) and the signal electrode (the other transparent electrode 2) cross to form a panel, and chiral smectic liquid crystal is injected into this panel to form a second A liquid crystal display element, the cross section of which is shown in the figure, was manufactured.
上記のごとく制作したパネルの画素間は配向が制御され
、通常使用される範囲内では乱れることもなく表示品位
のよいパネルであった。The alignment between the pixels of the panel produced as described above was controlled, and the panel had good display quality without being disturbed within the range of normal use.
K五里ユ
実施例1と同様に基板1として1.1mm厚の青板ガラ
スを用い、その上にITO膜を600人の厚さでスパッ
タ法で形成してからレジストを塗布してパターニングし
、これをlXl0−2torrの雰囲気までCF4およ
びH2を導入した真空中でドライエツチングして、画素
部分の電極の表面平均粗さが60Å以下であり、画素間
の表面平均粗さが75人でその粗さの平均ピッチが55
0人である透明電極2を形成した。次に、この上に、絶
mWA5としてTa205膜をスバッタ法で500人の
厚さで形成し、さらにこの上に、配向膜6としてポリイ
ミド膜をスピンナー法で50人の厚さで形成した。次に
、このようにして電極等を形成した基板を2枚用い、こ
れらを液晶が一軸配向するようにラビング処理してから
走査電極と信号電極がクロスするように2枚の基板を貼
り合わせてパネルを形成し、そしてこのパネルにカイラ
ルスメクチック液晶を注入して液晶表示素子を製作した
。As in Example 1, a 1.1 mm thick blue plate glass was used as the substrate 1, an ITO film was formed on it to a thickness of 600 mm by sputtering, and then a resist was applied and patterned. This was dry-etched in a vacuum with CF4 and H2 introduced to an atmosphere of lXl0-2 torr, and the average surface roughness of the electrode in the pixel area was 60 Å or less, and the average surface roughness between the pixels was determined by 75 people. The average pitch of Sa is 55
Transparent electrode 2 was formed using 0 people. Next, on top of this, a Ta205 film was formed to a thickness of 500 mm as an absolute mWA5 by a sputtering method, and further on this, a polyimide film was formed as an alignment film 6 to a thickness of 50 mm by a spinner method. Next, using two substrates with electrodes formed in this way, they are rubbed so that the liquid crystal is uniaxially aligned, and then the two substrates are bonded together so that the scanning electrode and signal electrode cross each other. A panel was formed, and chiral smectic liquid crystal was injected into the panel to produce a liquid crystal display element.
上記のごとく制作したパネルの画素間は配向が制御され
、通常使用される範囲内では乱れることもなく表示品位
のよいパネルであった。The alignment between the pixels of the panel produced as described above was controlled, and the panel had good display quality without being disturbed within the range of normal use.
本実施例では、表面粗さは走査型トンネル顕微鏡(ST
M、Nahoscope 11 、東陽テクニカ社販売
)により測定した。平均表面粗さは、標準偏差値に基い
て求めた。In this example, the surface roughness was measured using a scanning tunneling microscope (ST).
M, Nahoscope 11, sold by Toyo Technica Co., Ltd.). The average surface roughness was determined based on the standard deviation value.
[発明の効果]
以上説明したように本発明によれば、画素内の、電極の
表面平均粗さを60Å以下に設定し、画素間の基板部分
の表面平均粗さを60〜200人、粗さの平均ピッチを
200〜5000人に制御するようにしたため、画素間
の強誘電液晶の配向状態が制御され、画面のざらつき、
前表示パターンの残り等の欠陥をなくすことができ、表
示品位の良いパネル(液晶素子)を提供することができ
る。[Effects of the Invention] As explained above, according to the present invention, the average surface roughness of the electrode within the pixel is set to 60 Å or less, and the average surface roughness of the substrate portion between the pixels is set to 60 to 200 Å. By controlling the average pitch of 200 to 5,000 pixels, the alignment state of the ferroelectric liquid crystal between pixels is controlled, reducing screen roughness and
Defects such as the remains of previous display patterns can be eliminated, and a panel (liquid crystal element) with good display quality can be provided.
また、上記画素間の表面粗さを形成するために電極エツ
チング後もレジストを残してこれをマスクとして画素間
をドライエツチングすることにより、簡略な工程で画素
に悪影響を与えずにパネルを製作することができる。In addition, in order to form the surface roughness between the pixels, a resist is left after the electrode etching and this is used as a mask to perform dry etching between the pixels, thereby manufacturing the panel in a simple process without adversely affecting the pixels. be able to.
第1図は、本発明の一実施例に係る液晶素子で用いられ
る基板の一部を拡大した斜視図、第2図は、第1図に示
される基板を用いて構成したパネルの一部の断面図、そ
して
第3図は、画素間(相対向する電極をもっていない領域
で、いわゆる非画素部に相当する)におけるガラス基板
表面状態を走査型トンネル顕微鏡で測定した時の表面形
状図である。
1:透明基板、2:透明電極、3:金属電極、4:粗ら
された画素間、5:絶縁膜、6:配向膜、7:強誘電液
晶。FIG. 1 is an enlarged perspective view of a part of a substrate used in a liquid crystal device according to an embodiment of the present invention, and FIG. 2 is a part of a panel constructed using the substrate shown in FIG. The cross-sectional view and FIG. 3 are surface profile diagrams when the glass substrate surface condition between pixels (an area without opposing electrodes, corresponding to a so-called non-pixel area) was measured using a scanning tunneling microscope. 1: Transparent substrate, 2: Transparent electrode, 3: Metal electrode, 4: Roughened pixel space, 5: Insulating film, 6: Alignment film, 7: Ferroelectric liquid crystal.
Claims (3)
一対の基板、および各電極が交差して対向するするよう
に一対の基板上に形成され強誘電液晶に電圧を印加して
駆動するための対向する2組の電極群を備え、各電極の
交差部である画素部分の電極の表面平均粗さが60Å以
下である強誘電液晶素子において、電極のない画素間の
基板部分の表面平均粗さが60〜200Åであり、その
粗さの平均ピッチが200〜5000Åであることを特
徴とする強誘電液晶素子。(1) A ferroelectric liquid crystal, a pair of substrates facing each other with the ferroelectric liquid crystal placed between them, and a voltage applied to the ferroelectric liquid crystal formed on the pair of substrates so that each electrode crosses and faces each other. In a ferroelectric liquid crystal device that is equipped with two pairs of opposing electrode groups for driving, and in which the average surface roughness of the electrodes at the pixel portion where each electrode intersects is 60 Å or less, the surface roughness of the substrate portion between the pixels without electrodes is A ferroelectric liquid crystal element having an average surface roughness of 60 to 200 Å and an average pitch of the roughness of 200 to 5000 Å.
って形成され、画素間の基板部分の粗さはそのエッチン
グに用いたフォトレジストを残したまま画素間の基板部
分をドライエッチングすることによって形成される、請
求項1記載の強誘電液晶素子。(2) The electrode group is formed by etching using photoresist, and the roughness of the substrate part between pixels is formed by dry etching the part of the substrate between pixels while leaving the photoresist used for etching. A ferroelectric liquid crystal device according to claim 1.
膜の組成がSrTiO_3、TiO_2、およびSrO
を含み、SrTiO_3とTiO_2の組成比が1.7
〜1.8であり、TiO_2とSrOの組成比が6〜2
0である請求項1記載の強誘電液晶素子。(3) An insulating film is provided between the ferroelectric liquid crystal and the electrode group, and the composition of the insulating film is SrTiO_3, TiO_2, and SrO.
The composition ratio of SrTiO_3 and TiO_2 is 1.7.
~1.8, and the composition ratio of TiO_2 and SrO is 6 to 2.
2. The ferroelectric liquid crystal element according to claim 1, wherein the ferroelectric liquid crystal element is 0.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29225889A JPH03154030A (en) | 1989-11-13 | 1989-11-13 | Ferroelectric liquid crystal element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29225889A JPH03154030A (en) | 1989-11-13 | 1989-11-13 | Ferroelectric liquid crystal element |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03154030A true JPH03154030A (en) | 1991-07-02 |
Family
ID=17779467
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP29225889A Pending JPH03154030A (en) | 1989-11-13 | 1989-11-13 | Ferroelectric liquid crystal element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03154030A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5495352A (en) * | 1992-07-30 | 1996-02-27 | Canon Kabushiki Kaisha | Liquid crystal display device with stripe-shaped unevennesses on the electrodes |
US5668616A (en) * | 1993-09-30 | 1997-09-16 | Canon Kabushiki Kaisha | Ferroelectric liquid crystal device with alignment layers having surface unevenness different from each other |
-
1989
- 1989-11-13 JP JP29225889A patent/JPH03154030A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5495352A (en) * | 1992-07-30 | 1996-02-27 | Canon Kabushiki Kaisha | Liquid crystal display device with stripe-shaped unevennesses on the electrodes |
US5552914A (en) * | 1992-07-30 | 1996-09-03 | Canon Kabushiki Kaisha | Liquid crystal display having a fine particle-dispersion layer on at least one side of the liquid crystal layer |
US5604613A (en) * | 1992-07-30 | 1997-02-18 | Canon Kabushiki Kaisha | Liquid crystal display device with pixels having stripe-shaped projections with equal heights |
US5644372A (en) * | 1992-07-30 | 1997-07-01 | Canon Kabushiki Kaisha | Liquid crystal display device having protrusions on the electrodes |
US5668616A (en) * | 1993-09-30 | 1997-09-16 | Canon Kabushiki Kaisha | Ferroelectric liquid crystal device with alignment layers having surface unevenness different from each other |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7397454B2 (en) | Liquid crystal display panel development method | |
US5161043A (en) | Method of forming liquid crystal display device with molybdenum shading layer over ITO electrodes | |
JP2673739B2 (en) | Liquid crystal element | |
US5847793A (en) | Liquid crystal display apparatus and fabrication process thereof | |
JPH0836169A (en) | Liquid crystal display device and its production | |
JPH03154030A (en) | Ferroelectric liquid crystal element | |
JP3291396B2 (en) | Liquid crystal display | |
JP2622033B2 (en) | Liquid crystal display | |
JP3363731B2 (en) | Display device capable of gradation display | |
JPS62160424A (en) | Ferroelectric liquid crystal element | |
JP2756147B2 (en) | Liquid crystal display | |
JPS63225224A (en) | electro-optical device | |
JP2654661B2 (en) | Electro-optical display | |
JP2000029000A (en) | Method for driving antiferroelectric liquid crystal display device | |
JPH07218916A (en) | Liquid crystal display panel, manufacture and driving method for same | |
JPH07168208A (en) | Active matrix system liquid crystal display | |
JP2002268093A (en) | Liquid crystal display device and manufacturing method thereof | |
JPH05232517A (en) | Substrate for liquid crystal display device and its production | |
JPH05181150A (en) | Ferroelectric liquid crystal display element | |
JPH06273804A (en) | Liquid crystal display device and its production | |
JPS6311911A (en) | Liquid-crystal element | |
JPH10206898A (en) | Switching element | |
JP2003050403A (en) | Liquid crystal display device and its manufacturing method | |
JPH04263223A (en) | Production of liquid crystal display device | |
JPH0385516A (en) | Liquid crystal element |