[go: up one dir, main page]

JPH03152881A - Rectangular type lithium secondary battery - Google Patents

Rectangular type lithium secondary battery

Info

Publication number
JPH03152881A
JPH03152881A JP1290184A JP29018489A JPH03152881A JP H03152881 A JPH03152881 A JP H03152881A JP 1290184 A JP1290184 A JP 1290184A JP 29018489 A JP29018489 A JP 29018489A JP H03152881 A JPH03152881 A JP H03152881A
Authority
JP
Japan
Prior art keywords
battery
electrode
positive
negative
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1290184A
Other languages
Japanese (ja)
Inventor
Teruyoshi Morita
守田 彰克
Junichi Yamaura
純一 山浦
Yukio Nishikawa
幸雄 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1290184A priority Critical patent/JPH03152881A/en
Publication of JPH03152881A publication Critical patent/JPH03152881A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To realize an excellent charge and discharge cycle property by making a strip type cathode area larger than a strip type anode area, and placing the cathode peripheral part outer than the anode peripheral part on the opposite side. CONSTITUTION:Strip type positive plates 1 and negative plates 3 are placed face to face through separaters 2 to form a rectangular type of battery. The negative plate 3 area is made larger than the positive plate 1 area while the negative plate 3 peripheral part is placed outer than the positive plate 1 peripheral part on the opposite side. Further preferably it is desirable that the outmost parts have cathodes, which necessitates more cathode sheets by one in number than anode sheets. This prevents dendrite from being produced to improve a charge and discharge property. The anode active materials are expected to be manganese dioxide, etc., chemically stable and reversibly excellent.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はポータプル電子機器の駆動用電源としての有機
電解質リチウム二次電池、特に角形リチウム二次電池の
構成に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to the structure of an organic electrolyte lithium secondary battery, particularly a prismatic lithium secondary battery, as a power source for driving portable electronic equipment.

従来の技術 エネルギー密度が大きく、保存性、自己放電特性、耐漏
液性にすぐれるなどの特長を持つリチウム−次電池はす
でに、フッ化黒鉛/リチウム電池、二酸化マンガン/リ
チウム電池、塩化チオニル/リチウム電池などが実用化
されている。
Conventional technology Lithium secondary batteries with features such as high energy density, excellent storage stability, self-discharge characteristics, and leakage resistance are already available in the form of graphite fluoride/lithium batteries, manganese dioxide/lithium batteries, thionyl chloride/lithium batteries, etc. Batteries are being put into practical use.

一方、最近の電子機器の小形化、ポータプル化に伴い、
それに使用する電源としての電池にも小形化、軽量化が
要求される反面、在来の二次電池では電気容量が十分に
確保されないということから、上記のリチウム電池の特
長を生かし、かつ充電しさえすれば、何回でもくり返し
使用できるというリチウム二次電池への期待が高まって
きている。
On the other hand, with the recent miniaturization and portability of electronic devices,
Batteries used as a power source are required to be smaller and lighter, but on the other hand, conventional secondary batteries do not have sufficient electrical capacity. Expectations are growing for lithium secondary batteries, which can be used over and over again as long as they are used properly.

リチウム二次電池としては、既に正極活物質に二硫化モ
リブデンを用いた電池が実用化されており、その他二酸
化マンガンあるいはセレン化ニオビウム等を用いた電池
も実用化に向けての研究がおこなわれている。
As for lithium secondary batteries, batteries that use molybdenum disulfide as the positive electrode active material have already been put into practical use, and other batteries that use manganese dioxide, niobium selenide, etc. are also being researched for practical use. There is.

リチウム二次電池の実用化にとって最も大きな問題は充
電時に負極上に樹脂状リチウム(デンドライト)が生成
し、これが負極の不活性化につながる、あるいはセパレ
ータを貫通して正極と接触し短絡するなど電池の充放電
に悪影響を与え、サイクル寿命が伸びないということで
ある。
The biggest problem for the practical application of lithium secondary batteries is the formation of resinous lithium (dendrites) on the negative electrode during charging, which may lead to inactivation of the negative electrode, or may penetrate the separator and come into contact with the positive electrode, causing a short circuit. This has a negative effect on the charging and discharging of the battery, and its cycle life is not extended.

デンドライト生成の原因として、1.有機電解質の種類
により生成の度合が異なる、2.充電電流密度が一定値
以上になると生成する、3.遊離の電解質が存在すると
生成しやすい、4.充電時に負極リチウムへの電流分布
が異なると生成しやすいなどが挙げられる。
The causes of dendrite formation are: 1. 2. The degree of generation varies depending on the type of organic electrolyte. Generated when the charging current density exceeds a certain value; 3. 4. Easily generated when free electrolytes are present. For example, this is likely to occur if the current distribution to the negative electrode lithium differs during charging.

有機電解質については最適と考えられる溶媒、溶質の組
合せである程度満足すべき物が得られている。充電電流
密度についてもエネルギー密度は下がるものの、電極面
積を犬とすることで解決できる。また遊離の電解質につ
いても電池構成の精度を上げる、液量を規制するなどで
対応し得る。
As for the organic electrolyte, a somewhat satisfactory result has been obtained using the combination of solvent and solute that is considered to be optimal. Regarding the charging current density, although the energy density decreases, it can be solved by making the electrode area narrower. Free electrolytes can also be dealt with by increasing the accuracy of battery construction, regulating the amount of liquid, etc.

問題は負極リチウムの充電時の電流分布をいかに一定に
するかである。
The problem is how to keep the current distribution constant during charging of the negative electrode lithium.

厳密な意味での電流分布は負極の表面状態が一定である
か、正極ときちんと相対しているか、セパレータときっ
ちりと密着しているかなどによって左右される。その意
味からも円筒形電池では薄形・大面積の正・負極板をき
っちりと重ね合せ、緊迫度を上げて巻回できるため実用
化もしくは実用化に近いリチウム二次電池はすべて円筒
形構造を採用している。
Current distribution in the strict sense depends on whether the surface condition of the negative electrode is constant, whether it faces the positive electrode properly, and whether it is in tight contact with the separator. In this sense, cylindrical batteries allow thin, large-area positive and negative electrode plates to be tightly stacked and wound with increased tension, so all lithium secondary batteries that have been put into practical use or are close to being put into practical use have a cylindrical structure. We are hiring.

発明が解決しようとする課題 一方、電池を使用する機器製作側の要望として、機器の
形状に合せた電池形状の要望がある。即ち機器が薄形化
、小形化するにつれ電池も薄形化、小形化が要求される
。一般的に機器の形状は角形であり、機器の空間部分を
有効に利用するためには、電池の形状も角形が望まれる
Problems to be Solved by the Invention On the other hand, as a request from manufacturers of devices that use batteries, there is a desire for a battery shape that matches the shape of the device. That is, as devices become thinner and smaller, batteries are also required to be thinner and smaller. Devices are generally rectangular in shape, and in order to effectively utilize the space in the device, it is desirable that the battery also have a rectangular shape.

角形形状、即ち直方体の電池ケースを使用する場合、正
・負極をきちんと相対するための極板構造としてどのよ
うな構造が考えられるがというと、1、円筒形電池に使
用するような長尺の正極板、負極板をセパレータを介し
て巻回し、横面を圧迫しながら電池ケースに挿入する、
2.同じくセパレータを介して重ねあわせた極板群を屏
風状に折り曲げて電池ケースに挿入する、3.短冊状に
切り出した正・負極のいずれか一方あるいは両方をセパ
レータで包み、それぞれ交互に重ね合せて電池ケースに
挿入するなどが考えられる。しかし、1の巻回した極板
群をケースに挿入した場合、ケースの縦、横で電極の圧
迫度合が異なり、極板の電解質の吸液状態が異なること
、また電池ケース内の空隙部分に液が溜ることなどから
デンドライトが発生しやすく良好な充放電サイクル特性
が期待できない。また2の屏風状の極板を電池ケースに
挿入した場合も電極の折れ曲げた部分が均一にならず、
液が溜る、あるいは電流密度が他の部分と異なりデンド
ライトが発生しやすいなどから、同じく良好な充放電サ
イクル特性が期待できない。
When using a square-shaped battery case, that is, a rectangular parallelepiped battery case, what kind of structure can be considered for the electrode plate structure to ensure that the positive and negative electrodes face each other properly?1. Wrap the positive electrode plate and negative electrode plate through the separator, and insert them into the battery case while pressing the sides.
2. 3. Fold the group of electrode plates stacked one on top of the other with a separator in between into a folding screen shape and insert into the battery case; 3. One possible method is to cut out one or both of the positive and negative electrodes into strips, wrap them in a separator, stack them alternately, and insert them into the battery case. However, when the wound electrode group 1 is inserted into the case, the degree of compression of the electrodes differs in the vertical and horizontal directions of the case, and the electrolyte absorption state of the electrode plates differs. Dendrites are likely to occur due to liquid accumulation, and good charge/discharge cycle characteristics cannot be expected. Also, when inserting the folding screen-shaped electrode plate in step 2 into the battery case, the bent part of the electrode will not be even.
Similarly good charge/discharge cycle characteristics cannot be expected because liquid accumulates or dendrites are likely to occur because the current density is different from other parts.

従って、角形リチウム二次電池の電極構成としては必然
的に短冊状の電極を重ね合せた構造で、電極群の緊迫度
を上げた状態の構成をとらざるを得6 \ ないと言える。緊迫度が大きな状態あるいは電極構成が
きちんとした状態は技術的に可能であるが、その場合に
も課題が1つ存在する。即ち、上記したように、充電時
に負極リチウム上で電流分布が異なるとデンドライトが
生成しやすいが、正極と負極がきちんと相対している部
分では電流分布は一定であると考えてよい。従って電流
分布の異なりやすいのは、電極の端部、即ち周縁部であ
ると言える。円筒形電池では長尺電極であり周縁部は比
較的一定であり、その部分も限られているが、角形電池
で短冊状電極を用いる場合、電極自体が小さくて数も多
いため周縁部も多い。その結果、よりデンドライトが発
生しやすく電池の充放電サイクル特性が低下する恐れが
ある。
Therefore, it can be said that the electrode structure of a prismatic lithium secondary battery has no choice but to have a structure in which strip-shaped electrodes are stacked one on top of the other, increasing the tension of the electrode group. Although a state of high stress or a state of proper electrode configuration is technically possible, there is still one problem. That is, as described above, if the current distribution differs on the negative electrode lithium during charging, dendrites are likely to be generated, but it can be considered that the current distribution is constant in the part where the positive electrode and negative electrode are properly opposed. Therefore, it can be said that the current distribution tends to vary at the ends of the electrodes, that is, at the periphery. In a cylindrical battery, the electrode is long and the peripheral edge is relatively constant, and its area is limited, but when a rectangular battery uses strip-shaped electrodes, the electrodes themselves are small and there are many, so the peripheral area is large. . As a result, dendrites are more likely to occur and the charge/discharge cycle characteristics of the battery may deteriorate.

課題を解決するための手段 本発明はこのような課題を解決するものであり、角形の
電池ケースに交互に挿入された、相対する複数枚の正極
とリチウム負極と有機電解質とからなる電池において各
々の負極の面積は、相対する正極の面積より犬であり、
負極の周縁部が相対する正極の周縁部より必ず外側にあ
ることを特徴とする角形リチウム二次電池を提供するも
のである。
Means for Solving the Problems The present invention solves the problems described above, and consists of a plurality of facing positive electrodes, a lithium negative electrode, and an organic electrolyte, each of which is inserted alternately into a rectangular battery case. The area of the negative electrode is more than the area of the opposing positive electrode,
The present invention provides a prismatic lithium secondary battery characterized in that the peripheral edge of the negative electrode is always located outside the peripheral edge of the opposing positive electrode.

作用 リチウム二次電池において良好な充放電サイクル特性を
得るためには、電池の充電の際デンドライトをできるだ
け発生させないことである。しかるに、上記した如く短
冊状の電極を用いる場合、リチウム負極の周縁部にデン
ドライトを生成させやすい。即ち、短冊状の正負極をセ
パレータを介して対抗させた場合、負極の中央部ではど
の部分を取り上げても対抗する正極からの距離は一定で
あり、従って充電時の電流密度も一定となる。−方、負
極の端部では、同じ大きさの小さな短冊状の正、負極を
数枚も重ね合せているため、ずれが生じ、正極の端部が
負極の端部より外側にでている部分も存在する可能性が
犬となる。この時、負極の端部は相対する正極部分との
反応と共に、外側にはみ出した正極部分とも距離的に近
いため優先的に反応し電流密度が犬となり、デンドライ
トの生成する可能性も大となり、充放電サイクル寿命が
短くなる結果となる。
In order to obtain good charge-discharge cycle characteristics in a functional lithium secondary battery, it is important to prevent dendrites from being generated as much as possible during battery charging. However, when a strip-shaped electrode is used as described above, dendrites are likely to be formed on the periphery of the lithium negative electrode. That is, when strip-shaped positive and negative electrodes are opposed to each other via a separator, the distance from the opposing positive electrode is constant no matter which part of the central part of the negative electrode is picked up, and therefore the current density during charging is also constant. - On the other hand, at the end of the negative electrode, several small strip-shaped positive and negative electrodes of the same size are stacked on top of each other, so there is a misalignment, and the end of the positive electrode protrudes outside the end of the negative electrode. There is also a possibility that there will be dogs. At this time, the end of the negative electrode not only reacts with the opposing positive electrode part, but also preferentially reacts with the positive electrode part protruding outside because it is close in distance, resulting in a high current density and a high possibility of dendrite formation. This results in a shortened charge/discharge cycle life.

本発明ではこの事を勘案し、あらかじめ負極の面積を相
対する正極より犬として製作し、正、負極の重ね合せの
ずれが生じないよう、また、たとえ、ずれが生じても決
して正極が負極の外側に出ることのないようすることに
よシ、デンドライトの生成を抑止し、良好な充放電サイ
クル特性を有する角形リチウム二次電池を提供しようと
いうものである。これは負極の反応が距離的に最も近い
正極部分と優先的に反応するという事に着目したもので
、またその意味から複数枚の正、負極を積み重ね、最外
側に正極を置いた場合、正極はある厚みまでは厚みが増
加するのに比例して、反応量が増加するため、その内側
の負極の対抗する面の反応の電流密度を上げないために
は、最外側の正極の厚みは内側にある正極の厚みの1/
2以下に押えなければならず、そのコントロール、およ
び同じ電池の中に厚みの異なる正極を用いることは工程
上問題があり、リチウム負極の場合、逆に電流密度が下
がることは問題ではないので、角形リチウム二次電池で
短冊形電極を重ね合せて用いる場合は、最外側には負極
がくることが望ましいと言える。以下その詳細は実施例
で説明する。
In the present invention, in consideration of this, the area of the negative electrode is made in advance to be smaller than the opposing positive electrode, so that there will be no misalignment in the overlapping of the positive and negative electrodes, and even if misalignment occurs, the positive electrode will never overlap the negative electrode. By preventing dendrites from coming out, the purpose is to suppress the formation of dendrites and provide a prismatic lithium secondary battery with good charge-discharge cycle characteristics. This is based on the fact that the reaction of the negative electrode preferentially reacts with the part of the positive electrode that is closest to it, and from this point of view, if multiple positive and negative electrodes are stacked and the positive electrode is placed on the outermost side, the positive electrode The amount of reaction increases in proportion to the increase in thickness up to a certain thickness, so in order to not increase the current density of the reaction on the opposing surface of the inner negative electrode, the thickness of the outermost positive electrode must be increased. 1/ of the thickness of the positive electrode in
However, in the case of lithium negative electrodes, the current density decrease is not a problem, so When using stacked rectangular electrodes in a prismatic lithium secondary battery, it is desirable that the negative electrode be placed on the outermost side. The details will be explained below in Examples.

実施例 第1図は本発明の実施例における電池の構造図である。Example FIG. 1 is a structural diagram of a battery in an embodiment of the present invention.

第1図において1は正極板であり、正極活物質である二
酸化マンガンと導電材のカーボン粉末と結着剤のポリ4
フフ化エチレンの水性ディスバージョンを重量比で10
0ニアニアの割合でペースト状に混練したものを、厚さ
30μmのアルミニウム箔の両面に塗着、乾燥、圧延し
、所定の寸法に切断した。これらの材料のうち、ポリ4
7ソ化エチレンの重量割合はディスバージョン中の固形
分として計算している。また電極の大きさは12.5X
4811ffで厚さ0.3朋である。正極1枚の理論充
填電気量は二酸化マンガンが1価の反応をおこなうとし
て120mAhである。2はセパレータで多孔性のポリ
プロピレン製フィルムヲ用いている。3はリチウム負極
で、太きさは14×501RMで厚さは0.18MMで
ある。負極1枚の理論1 o 、 充填電気量は26omAhである。正、負極の電極構成
は正極が6枚、負極が6枚であるので、電池全体として
は正極が600mAh、負極が1500mAhとなるが
、最外側のリチウムは片面のみ反応するとして、12e
iOmAhとなる。
In Fig. 1, 1 is a positive electrode plate, which includes manganese dioxide as a positive electrode active material, carbon powder as a conductive material, and poly 4 as a binder.
Aqueous dispersion of fluorinated ethylene at a weight ratio of 10
The mixture was kneaded into a paste at a ratio of 0 to 0.0 nia, applied to both sides of an aluminum foil with a thickness of 30 μm, dried, rolled, and cut into a predetermined size. Among these materials, poly 4
The weight percentage of 7-isoethylene is calculated as the solid content in the dispersion. Also, the size of the electrode is 12.5X
It has a thickness of 4811 ff and a thickness of 0.3 mm. The theoretical amount of electricity charged in one positive electrode is 120 mAh assuming that manganese dioxide performs a monovalent reaction. 2 uses a porous polypropylene film as a separator. 3 is a lithium negative electrode, which has a thickness of 14×501 RM and a thickness of 0.18 MM. Theoretically, the amount of electricity charged in one negative electrode is 26 ohm. The positive and negative electrode configurations are 6 positive electrodes and 6 negative electrodes, so the overall battery capacity is 600 mAh for the positive electrode and 1500 mAh for the negative electrode, but assuming that the outermost lithium reacts only on one side, it is 12e.
It becomes iOmAh.

また正極も実際充放電がおこなわれるのは0.4価程度
である。これらの電極群を底部にポリプロピレン製の絶
縁板10を敷いた鉄ニッケルメッキ製の電池ケース8に
挿入した後、各正極から取出し束ねたチタン製のり一ド
4をステンレススチール製の封口板5にガラスシール6
を介して埋めこんだハーメチック端子7にスポット溶接
する。また各負極から取出したニッケル製の負11J−
ドは、束ねてケース8にスポット溶接する。これらの操
作の後、六フッカリン酸リチウム(LiPF6)をプロ
ピレンカーボネート中に1モル/lの割合に溶かした電
解質を注入し、封口枚6をケース8にはめ込んで周囲を
レーザー溶接して完成電池とする。この電池の出来上が
り寸法は正極端子部を除いて4X16X60ffである
。この電池を電池ム11  ヘ とする。
Further, the positive electrode is actually charged and discharged at a valence of about 0.4. After inserting these electrode groups into an iron-nickel plated battery case 8 with a polypropylene insulating plate 10 laid on the bottom, the titanium glue 4 taken out from each positive electrode and bundled is placed on a stainless steel sealing plate 5. glass seal 6
Spot welding is performed to the embedded hermetic terminal 7 via the . In addition, nickel negative 11J- was taken out from each negative electrode.
The cables are bundled and spot welded to the case 8. After these operations, an electrolyte containing lithium hexafluorophosphate (LiPF6) dissolved in propylene carbonate at a ratio of 1 mol/l is injected, the sealing plate 6 is fitted into the case 8, and the surrounding area is laser welded to form a completed battery. do. The finished dimensions of this battery are 4x16x60ff excluding the positive terminal. This battery will be referred to as battery 11.

第2図に示しているのは材料、電池構成、製作方法は電
池人と全く同じであるが、正極板の大きさのみ14X5
0ffl11と負極と同じ大きさにしたものである。厚
みは電池人と同様o、3mtttである。従って正極の
理論充填電気量は電池人より犬となり、1価の反応とし
て、電池全体で670mAhとなる。この電池を電池B
とする。
The material, battery configuration, and manufacturing method shown in Figure 2 are exactly the same as the battery manufacturer, but only the size of the positive electrode plate is 14 x 5.
It has the same size as 0ffl11 and the negative electrode. The thickness is 3mttt, same as the battery man. Therefore, the theoretical amount of electricity charged in the positive electrode is much higher than that of the battery, and as a monovalent reaction, the total amount of electricity in the battery is 670 mAh. This battery is battery B
shall be.

第3図に示しているのは、正、負極の電極の大きさは電
池Bと全く同じであるが、その構成を電池人もしくはB
と逆にしたものである。即ち、第3図に見られるように
、正極が極板群の外側にきており、その結果正極は6枚
で、負極は6枚となっている。理論充填電気量は正極が
800mAh、負極が1250mAhとなる。但し、最
外側の2枚の正極が片面のみしか働かないとすると、正
極の充填電気量は670mAhとなる。この電池を電池
Cとする。これら電池を20℃で充電電流20mAで3
.8vまで、放電電流eomAで2.OVまでの電圧範
囲で充放電を繰り返した。その時の放電容量とサイクル
数との関係を第4図に示す。
What is shown in Figure 3 is that the size of the positive and negative electrodes is exactly the same as that of battery B, but the configuration is different from that of battery B.
This is the reverse. That is, as seen in FIG. 3, the positive electrode is located on the outside of the electrode plate group, and as a result, there are six positive electrodes and six negative electrodes. The theoretical charging amount of electricity is 800 mAh for the positive electrode and 1250 mAh for the negative electrode. However, assuming that the two outermost positive electrodes work only on one side, the amount of electricity charged in the positive electrodes will be 670 mAh. This battery will be referred to as battery C. These batteries were charged at 20°C with a charging current of 20mA.
.. 2. up to 8V with a discharge current of eomA. Charge and discharge were repeated in the voltage range up to OV. FIG. 4 shows the relationship between the discharge capacity and the number of cycles at that time.

第4図から明らかなように1本発明電池人は秀れた充放
電特性を示す事が判る。一方、電池Bおよび電池Cは電
池人と比べ大きな放電容量を示すが、電池Bでは8oプ
サイル前後、電池Cでは50サイクル前後で放電容量の
バラツキがみられ、以降充放電が不可能となる。これら
の電池を分解し、観察したところ電池B、Oいずれも負
極リチウムの周縁部のところどころにデンドライトの発
生がみられ、これにより電池が短絡したことが判った。
As is clear from FIG. 4, the battery according to the present invention exhibits excellent charge-discharge characteristics. On the other hand, batteries B and C exhibit a larger discharge capacity than the battery, but variations in discharge capacity are observed in battery B at around 8o psi and in battery C at around 50 cycles, after which charging and discharging becomes impossible. When these batteries were disassembled and observed, it was found that in both batteries B and O, dendrites were generated in some places around the periphery of the negative electrode lithium, which caused a short circuit in the batteries.

また電池Cではこの現象は特に最も外側の負極リチウム
で顕著であった。これらに対し電池人では電池を分解し
ても殆どデンドライトは観察されなかった。従って、電
池Aが二百数士サイクルで容量が低下したのは電池の短
絡ではなく、負極リチウムの充放電効率がこの系では、
はぼ98係程度であるためと考えられる。
Moreover, in Battery C, this phenomenon was particularly remarkable in the outermost negative electrode lithium. In contrast, almost no dendrites were observed even when the battery was disassembled in the battery man. Therefore, the reason why the capacity of battery A decreased after 200 cycles was not due to a short circuit in the battery, but because the charging and discharging efficiency of the negative electrode lithium was
This is thought to be because it is about 98%.

発明の効果 以上のことから明らかなように、本発明によれば角形リ
チウム二次電池においては、短冊形の電13 ・ 極を用い、且つ負FMIJチウムの周縁部が相対する正
極より必ず外側に出ているように正、負極を構成するこ
とにより、電池の充電時に正極と相対する負極リチウム
上の充電電流を一定に、さらに正極より外側に出ている
リチウム上の電流をそれ以下にすることにより、負極リ
チウムでのデンドライトの発生を押え、良好な充放電サ
イクル特性を有する角形リチウム二次電池を現出し得る
という効果が得られるものである。なお、この良好な特
性は正極と負極の構成によるものであり、負極リチウム
と組み合せる正極により規制されるものではないが、当
然のことながら正極活物質としては、化学的に安定であ
り、可逆性に秀れた物が望ましく、その意味から、二酸
化マンガン、酸化バナジウム、二硫化チタン、硫化モリ
ブデン、LiCoO2、LiMn2O4などが適してい
ると言える。
Effects of the Invention As is clear from the above, in the prismatic lithium secondary battery according to the present invention, a rectangular electrode is used, and the peripheral edge of the negative FMIJ lithium is always located outside of the opposing positive electrode. By configuring the positive and negative electrodes as shown, when charging the battery, the charging current on the negative electrode lithium facing the positive electrode can be kept constant, and the current on the lithium outside the positive electrode can be kept below that level. This has the effect of suppressing the generation of dendrites in the negative lithium electrode and producing a prismatic lithium secondary battery with good charge-discharge cycle characteristics. Note that this good property is due to the composition of the positive electrode and negative electrode, and is not restricted by the positive electrode combined with negative electrode lithium, but it goes without saying that as a positive electrode active material, it is chemically stable and reversible. A material with excellent properties is desirable, and in this sense, manganese dioxide, vanadium oxide, titanium disulfide, molybdenum sulfide, LiCoO2, LiMn2O4, etc. are suitable.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例における電池の構造を示す断面
図、第2図、第3図は比較のだめの電池の断面図、第4
図は放電容量とサイクル数との関 4 係を示す図である。 1・・・・・・正極板、2・・・・・・セパレータ、3
・・・・・・負極板、4・・・・・・正1i 1J−ド
、5・・・・・・封口板、6・・・・・・ガラスシール
 7・・・・・・正極端子、8・・・・・電池ケース、
9・・・・・・負極リード、1o・・・・・・絶縁板。
FIG. 1 is a cross-sectional view showing the structure of a battery according to an embodiment of the present invention, FIGS. 2 and 3 are cross-sectional views of comparative batteries, and FIG.
The figure is a diagram showing the relationship between discharge capacity and cycle number. 1...Positive electrode plate, 2...Separator, 3
...Negative electrode plate, 4...Positive 1i 1J-de, 5... Sealing plate, 6... Glass seal 7... Positive electrode terminal , 8...Battery case,
9...Negative electrode lead, 1o...Insulating plate.

Claims (3)

【特許請求の範囲】[Claims] (1)角形の電池ケース内に交互に挿入された、相対す
る複数枚の正極とリチウム負極と有機電解質とからなる
電池において、各々の負極の面積は相対する正極の面積
より大であり、負極の周縁部が相対する正極の周縁部よ
りも外側にあることを特徴とする角形リチウム二次電池
(1) In a battery consisting of a plurality of opposing positive electrodes, a lithium negative electrode, and an organic electrolyte that are inserted alternately into a rectangular battery case, the area of each negative electrode is larger than the area of the opposing positive electrode, and the negative electrode A prismatic lithium secondary battery characterized in that the periphery of the electrode is located outside the periphery of the opposing positive electrode.
(2)負極の枚数が正極の枚数より1枚多い、特許請求
の範囲第1項記載の角形リチウム二次電池。
(2) The prismatic lithium secondary battery according to claim 1, wherein the number of negative electrodes is one more than the number of positive electrodes.
(3)正極の活物質が二酸化マンガン、酸化バナジウム
、二硫化チタン、硫化モリブデン、 LiCoO_2、LiMn_2O_4の群より選ばれた
1つである特許請求の範囲第1項または第2項に記載の
角形リチウム二次電池。
(3) The prismatic lithium according to claim 1 or 2, wherein the active material of the positive electrode is one selected from the group of manganese dioxide, vanadium oxide, titanium disulfide, molybdenum sulfide, LiCoO_2, and LiMn_2O_4. Secondary battery.
JP1290184A 1989-11-08 1989-11-08 Rectangular type lithium secondary battery Pending JPH03152881A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1290184A JPH03152881A (en) 1989-11-08 1989-11-08 Rectangular type lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1290184A JPH03152881A (en) 1989-11-08 1989-11-08 Rectangular type lithium secondary battery

Publications (1)

Publication Number Publication Date
JPH03152881A true JPH03152881A (en) 1991-06-28

Family

ID=17752839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1290184A Pending JPH03152881A (en) 1989-11-08 1989-11-08 Rectangular type lithium secondary battery

Country Status (1)

Country Link
JP (1) JPH03152881A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0559747U (en) * 1992-01-17 1993-08-06 株式会社ユアサコーポレーション Lithium secondary battery
EP0690520A1 (en) * 1994-05-30 1996-01-03 Canon Kabushiki Kaisha Rechargeable batteries
US6547229B1 (en) 2000-11-22 2003-04-15 3M Innovative Properties Company Stacking apparatus and method for laminated products and packaging
US6585846B1 (en) 2000-11-22 2003-07-01 3M Innovative Properties Company Rotary converting apparatus and method for laminated products and packaging
US6830846B2 (en) 2001-11-29 2004-12-14 3M Innovative Properties Company Discontinuous cathode sheet halfcell web
EP1150371A3 (en) * 2000-04-28 2007-03-14 Matsushita Electric Industrial Co., Ltd. Electrode plate unit and battery
JP2014232647A (en) * 2013-05-29 2014-12-11 株式会社豊田自動織機 Power storage device
JP2015513190A (en) * 2012-04-20 2015-04-30 エルジー・ケム・リミテッド Electrode assembly, battery cell and device including the same
US9236631B2 (en) 2012-11-22 2016-01-12 Lg Chem, Ltd. Electrode assembly including electrode units having the same width and different lengths, and battery cell and device including the electrode assembly
CN110024204A (en) * 2016-12-07 2019-07-16 日本碍子株式会社 Electrode/partition laminated body and has the electrode/partition laminated body nickel-zinc cell

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0559747U (en) * 1992-01-17 1993-08-06 株式会社ユアサコーポレーション Lithium secondary battery
US6596432B2 (en) 1994-05-30 2003-07-22 Canon Kabushiki Kaisha Rechargeable batteries
EP0690520A1 (en) * 1994-05-30 1996-01-03 Canon Kabushiki Kaisha Rechargeable batteries
US7390592B2 (en) 2000-04-28 2008-06-24 Matsushita Electric Industrial Co., Ltd. Electrode plate unit and battery
EP1150371A3 (en) * 2000-04-28 2007-03-14 Matsushita Electric Industrial Co., Ltd. Electrode plate unit and battery
US7255964B2 (en) 2000-04-28 2007-08-14 Matsushita Electric Industrial Co., Ltd. Electrode plate unit and battery
US6585846B1 (en) 2000-11-22 2003-07-01 3M Innovative Properties Company Rotary converting apparatus and method for laminated products and packaging
US6547229B1 (en) 2000-11-22 2003-04-15 3M Innovative Properties Company Stacking apparatus and method for laminated products and packaging
US6830846B2 (en) 2001-11-29 2004-12-14 3M Innovative Properties Company Discontinuous cathode sheet halfcell web
JP2015513190A (en) * 2012-04-20 2015-04-30 エルジー・ケム・リミテッド Electrode assembly, battery cell and device including the same
US9263760B2 (en) 2012-04-20 2016-02-16 Lg Chem, Ltd. Stepped electrode assembly having predetermined a reversible capacitance ratio in the interface between electrode units, battery cell and device comprising the same
US9431674B2 (en) 2012-04-20 2016-08-30 Lg Chem, Ltd. Balanced stepped electrode assembly, and battery cell and device comprising the same
US9627708B2 (en) 2012-04-20 2017-04-18 Lg Chem, Ltd. Stepped electrode assembly having predetermined a thickness ratio in the interface between electrode units, battery cell and device comprising the same
US9236631B2 (en) 2012-11-22 2016-01-12 Lg Chem, Ltd. Electrode assembly including electrode units having the same width and different lengths, and battery cell and device including the electrode assembly
JP2014232647A (en) * 2013-05-29 2014-12-11 株式会社豊田自動織機 Power storage device
CN110024204A (en) * 2016-12-07 2019-07-16 日本碍子株式会社 Electrode/partition laminated body and has the electrode/partition laminated body nickel-zinc cell

Similar Documents

Publication Publication Date Title
KR100624953B1 (en) Lithium secondary battery
CN101286572A (en) Coin-shaped non-aqueous electrolyte secondary battery
KR20040068803A (en) Stacked type lithium secondary battery and its fabrication
JP3331649B2 (en) Non-aqueous electrolyte secondary battery
KR101017305B1 (en) Non-aqueous electrolyte cell
JPH08171917A (en) Cell
JP2006310033A (en) Storage battery
JPWO2018193771A1 (en) Battery and manufacturing method thereof, battery pack, and electronic device
JP2003331825A (en) Non-aqueous secondary battery
JPH09266012A (en) Non-aqueous electrolyte secondary battery and battery pack
JPH03152881A (en) Rectangular type lithium secondary battery
JP4453882B2 (en) Flat non-aqueous electrolyte secondary battery
JP2006012703A (en) Secondary battery
JPH04109551A (en) Tubular cell
JP2010225394A (en) Nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery charging method
JP2005071640A (en) Flat nonaqueous electrolyte secondary battery
JP5072123B2 (en) Flat non-aqueous electrolyte secondary battery
JP2001143763A (en) Flat non-aqueous electrolyte secondary battery
JP2002324584A (en) Flat non-aqueous electrolyte secondary battery with lead terminals
JP2002042744A (en) Flat type nonaqueous electrolyte secondary battery
JP2730641B2 (en) Lithium secondary battery
JP2000277160A (en) Nonaqueous electrolyte secondary battery
JP2002289259A (en) Flat non-aqueous electrolyte secondary battery
JP3139174B2 (en) Manufacturing method of thin non-aqueous electrolyte battery
JP2000294202A (en) Thin battery