[go: up one dir, main page]

JPH0315257B2 - - Google Patents

Info

Publication number
JPH0315257B2
JPH0315257B2 JP19656882A JP19656882A JPH0315257B2 JP H0315257 B2 JPH0315257 B2 JP H0315257B2 JP 19656882 A JP19656882 A JP 19656882A JP 19656882 A JP19656882 A JP 19656882A JP H0315257 B2 JPH0315257 B2 JP H0315257B2
Authority
JP
Japan
Prior art keywords
radiation
fatty acid
parts
acid
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP19656882A
Other languages
Japanese (ja)
Other versions
JPS5984345A (en
Inventor
Juichi Kubota
Masaharu Nishimatsu
Osamu Shinora
Shigeru Shimada
Kazunori Tamasaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP19656882A priority Critical patent/JPS5984345A/en
Publication of JPS5984345A publication Critical patent/JPS5984345A/en
Publication of JPH0315257B2 publication Critical patent/JPH0315257B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/68Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent
    • G11B5/70Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer
    • G11B5/71Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the lubricant

Landscapes

  • Paints Or Removers (AREA)
  • Magnetic Record Carriers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は磁気記録媒体に関し、一層詳細には
放射線によつて架橋及び重合するバインダーに一
定の肥肪酸等を加えることによつて耐摩耗性と滑
性の優れた磁気記録媒体に関するものである。 従来、ビデオテープ、コンピユーターテープ、
オーデイオテープ、フロツピーデイスク等の磁気
記録媒体は磁性粉処理物をテープに固定するた
め、一般に熱硬化性バインダーを用い、多価イソ
シアネート基含有化合物に代表される架橋剤と、
バインダー中の水酸基、アミノ基等に代表される
反応性官能基との化学反応でバインダー間に三次
元網目構造を形成させ、それに滑剤を添加させる
ことにり、磁気記録媒体の耐久性、走行性、環境
信頼性の向上を計つている。 この磁気記録媒体には、潤滑剤として例えばシ
リコーンオイル、脂肪酸、脂肪酸エステル、二硫
化モリブデン、グラフアイト等が知られている。
出願人は特公昭51−39081号公報において、炭素
原子数10〜16なるRCO基(但しR=CnH2o+1)を
有する脂肪酸エステルおよび融点44〜70℃の脂肪
酸を含有せしめ相乗効果をもたせることにより、
使用温度0〜40℃の広範囲の温度条件で極めて優
れた耐摩耗性と滑性が得られることを開示し、現
に従来の熱硬化性バインダーに広く用いている。 しかるに熱硬化性バインダーに対し、放射線に
よつて架橋および重合する、いわゆる放射線硬化
性バインダーが開発された。 熱硬化性バインダーは、塗布、乾燥工程を経て
カレンダー処理がなされテープが巻き取られた時
点では熱硬化が始まつていないため、塗膜が強固
でなく、塗膜中の添加剤のブルーミングがあり、
また熱硬化によつてブロツキング、巻き締まりが
あるため添加剤種に制約がある。 これに対し、放射線硬化性バインダーを用いた
場合は、カレンダー処理の後、テープが巻き取ら
れる前に放射線照射によつて樹脂を硬化させるた
めに塗膜が強固となり、テープが巻き取られたと
き、塗膜中の添加剤のブロツキングがなく、熱硬
化性バインダーの場合より幅広く添加剤が使用で
きる。 発明者らは磁気記録媒体の耐久性、走行性およ
び例えばビデオテープが多湿で0〜60℃の広範囲
の温度条件下で、静止画像が長時間安定でかつ浸
み出しがないなどの環境信頼性の向上を得るため
に上記のように放射線硬化性バインダーの場合、
幅広い添加剤が使用できることに着目して鋭意研
究を重ねた結果、以下に述べる脂肪酸等の混合物
がその目的に適合しうることを見い出し、この知
見に基づいてこの発明をなすに至つた。 すなわち、この発明は、放射線によつて架橋及
び重合するバインダーに、炭素原子数10以上の
RCO基を有する脂肪酸エステルと融点32〜81℃
の脂肪酸のうちの少なくとも一方、および重合性
不飽和二重結合1個以上を有する融点16〜81℃の
脂肪酸を含有する磁気記録媒体を提供するにあ
る。 本発明で用いる放射線感応樹脂とは、放射線照
射によりラジカルを発生し、架橋あるいは重合す
ることにより硬化するような、分子鎖中に不飽和
二重結合を1個以上含む樹脂である。高分子物質
には、放射線照射により崩壊するものと分子間に
架橋を起こすものが知られているが、後者の例と
しては、ポリエチレン、ポリプロピレン、ポリス
チノン、ポリアクリル酸エステル、ポリアクリル
アミド、ポリ塩化ビニル、ポリエステル、ポリビ
ニルピロリドンゴム、ポリビニルアルコール、ポ
リアクロレイン等が挙げられ、このような架橋型
ポリマーがそのまま磁性層に用いられている。 更に、本発明で用いる放射線感応樹脂は熱可塑
性樹脂を放射線感応変性することによつても調製
され、この方が硬化速度等の面から好ましい。放
射線感応変性の具体例としては、ラジカル重合性
を有する不飽和二重結合を示すアクリル酸、メタ
クリル酸あるいはそれらのエステル化合物のよう
なアクリル系二重結合、ジアリルフタレートのよ
うなアリル型二重結合、マレイン酸、マレイン酸
誘導体等の不飽和結合等の放射線照射による架橋
あるいは重合乾燥する基を分子中に導入すること
である。その他放射線照射により架橋重合する不
飽和二重結合であれば用いることができる。 具体例で示すと、 () 塩化ビニル系共重合体 塩化ビニル−酢酸ビニル−ビニルアルコール共
重合体、塩化ビニル−ビニルアルコール共重合
体、塩化ビニル−ビニルアルコール−プロピオン
酸ビニル共重合体、塩化ビニル−酢酸ビニル−マ
レイン酸共重合体、塩化ビニル−酢酸ビニル−末
端OH側鎖アルキル基共重合体、商品名として
は、例えばUCC社VROH,VYNC,VYEGX等
またUCC社製VERR等が挙げられる。 上記共重合体は、後に述べる手法により、アク
リル系二重結合、マレイン酸系二重結合、アリル
系二重結合を導入することにより放射線感応変性
が行われる。 () 飽和ポリエステル樹脂 フタル酸、イソフタル残、テレフタル酸、マレ
イン酸、マレイン酸誘導体、コハク酸、アジピン
酸、セバシン酸のような飽和多塩基酸とエチレン
グリコール、ジエチレングリコール、グリセリ
ン、トリメチロールプロパン、1,2プロピレン
グリコール、1,3ブタンジオール、ジプロピレ
ングリコール、1,4ブタンジオール、1,6ヘ
キサンジオール、ペンタエリスリツト、ソルビト
ール、グリセリン、ネオペンチルグリコール、
1,4シクロヘキサンジメタノールのような多価
アルコールとのエステル結合により得られる飽和
ポリエステル樹脂又はこれらのポリエステル樹脂
をSO3Na等で変性した樹脂(バイロン53S)。 これらも後に述べる手法により放射線感応変性
が行なわれる。 () 不飽和ポリエステル樹脂 分子鎖中に放射線硬化性不飽和二重結合を含有
するポリエステル化合物。例えば第()項の熱
可塑性樹脂として記載の多塩基酸と多価アルコー
ルのエステル結合から成る飽和ポリエステル樹脂
で多塩基酸の一部をマレイン酸とした放射線硬化
性不飽和二重結合を含有する不飽和ポリエステル
樹脂、プレポリマー、オリゴマーを挙げることが
できる。 飽和ポリエステル樹脂の多塩基酸および多価ア
ルコール成分は第()項に記載した各化合物を
挙げることができ、放射線硬化性不飽和二重結合
としてはマイレン酸、フマル酸等を挙げることが
できる。 放射線硬化性不飽和ポリエステル樹脂の製法
は、多塩基酸成分1種以上と多価アルコール成分
1種以上にマレイン酸、フマル酸等を加え常法、
すなわち触媒存在下180〜200℃窒素雰囲気下脱水
あるいは脱アルコール反応の後、240〜280℃まで
昇温し、0.5〜1mmHgの減圧下縮合反応によりポ
リエステル樹脂を得ることができる。マレイン酸
やフマル酸等の含有量は、製造時の架橋、放射線
硬化性等から酸成分中1〜40モル%で好ましくは
10〜30モル%である。 () ポリビニルアルコール系樹脂 ポリビニルアルコール、ブテラール樹脂、アセ
タール樹脂、ホルマール樹脂及びこれらの成分の
共重合体。 これら樹脂もそこに含まれる水酸基を後に述べ
る手法により放射線感応化変性される。 () エポキシ系樹脂、フエノキシ樹脂 ビスフエノールAとエピクロルヒドリン、メチ
ルエピクロルヒドリンの反応によるエポキシ樹脂
−シエル化学製(エピコート152,154,828,
1001,1004,1007)ダウケミカル製(DEN431,
DER732,DER511,DER331)大日本インキ製
(エピクロン400、エピクロン−800)、更に上記エ
ポキシの高重合度樹脂であるUCC社製フエノキ
シ樹脂(PKHA,PKHC,PKHH)臭素化ビス
フエノールAとエピクロルヒドリンとの共重合
体、大日本インキ化学工業製(エピクロン145,
152,153,1120)等。 これら樹脂も、そこに含まれるエポキシ基を利
用して、放射線感応変性が行われる。 () 繊維素誘導体 各種分子量の繊維素系誘導体も、また熱可塑性
プラスチツク成分として効果的である。その中で
も、特に効果的なものは硝化綿、セルローズアセ
トブチレート、エチルセルローズ、ブチルセルロ
ーズ、アセチルセルローズ等が好適である。 これらも、樹脂中の水酸基を活用して後に述べ
る手法により放射線感応変性が行われる。 その他、放射線感応変性に用いることのできる
樹脂としては、多官能ポリエステル樹脂、ポリエ
ーテルエステル樹脂、ポリビニルピロリドン樹脂
及び誘導体(PVPオレフイン共重合体)ポリア
ミド樹脂、ポリイミド樹脂、フエノール樹脂、ス
ピロアセタール樹脂、水酸基を含有するアクリル
エステル及びメタクリルエステルを少なくとも1
種以上重合成分として含むアクリル系樹脂等も有
効である。 その他、使用可能なバインダー成分としては、
単量体としてアクリル酸、メタクリル酸、アクリ
ルアミド、メタクリルアミド等がある。二重結合
のあるバインダーとしては種々のポリエステル、
ポリオール、ポリウレタン等をアクリル系二重結
合を有する化合物で変性することができる。必要
に応じて多価アルコールと多価カルボン酸とを配
合することによつて種々の分子量のものもでき
る。 放射線感応樹脂としては上記内容は一部を記し
たにすぎない。 更に、上記放射線感応変性熱可塑性樹脂に熱可
塑性エラストマー又はプレポリマーをブレンドす
ることにより一層強靭な塗膜とすることができ
る。加えて、これらエラストマーあるいはプレポ
リマーが同様に放射線感応性に変性された場合に
はより一層効果的である。上記放射線感応変性熱
可塑性樹脂と組合せることのできるエラストマー
あるいはプレポリマーの例を挙げる。 () ポリウレタンエラストマー及びプレポリ
マー及びテロマー ポリウレタンエラストマーは、耐摩耗性、
PETフイルムへの接着性の点で特に有効である。 このようなウレタン化合物の例としては、イソ
シアネートとして、2,4トルエンジイソシアネ
ート、2,6トルエンジイソシアネート、1,3
キシレンジイソシアネート、1,4キシレンジイ
ソシアネート、1,5ナフタレンジイソシアネー
ト、m−フエニレンジイソシアネート、p−フエ
ニレンジイソシアネート、3,3′ジメチル−4,
4′ジフエニルメタンジイソシアネート、4,4′ジ
フエニルメタンジイソシアネート、3,3′ジメチ
ルビフエニレンジイソシアネート、4,4′ビフニ
レンジイソシアネート、ヘキサメチレンジイソシ
アネート、イソフオロンジイソシアネート、ジシ
クロヘキシルメタンジイソシアネート、デスモジ
ユールL、デスモジユールN等の各種多価イソシ
アネートと、線状飽和ポリエステル(エチレング
リコール、ジエチレングリコール、グリセリン、
トリメチロールプロパン、1,4ブタンジオー
ル、1,6ヘキサンジオール、ペンタエリスリツ
ト、ソルビトール、ネオペンチルグリコール、
1,4シクロヘキサンジメタノールのような多価
アルコールと、フタル酸、イソフタル酸、テレフ
タル酸、マレイン酸、コハク酸、アジピン酸、セ
バシン酸のような飽和多塩基酸との縮重合による
もの)線状飽和ポリエーテル(ポリエチレングリ
コール、ポリプロピレングリコール、ポリテトラ
エチレングリコール)やカプロラクタム、ヒドロ
キシシ含有アクリル酸エステル、ヒドロキシ含有
メタアクリル酸エステル等の各種ポリエステル類
の縮重合物より成るポリウレタンエラストマー、
プレポリマー、テロマーが有効である。 これらのエラストマーを放射線感応変性の各種
熱可塑性プラスチツクスとそのまま組合せても良
いが、更にウレタンエラストマーの末端のイソシ
アネート基又は水酸基と反応するアクリル系二重
結合又はアリル系二重結合等を有する単量体と反
応させることにより、放射線感応性に変性するこ
とは非常に効果的である。 () アクリルニトリル−ブタジエン共重合エ
ラストマー シンクレアペトロケミカル社製ポリBDリクイ
ツドレジンとして市販されている末端水酸基のあ
るアクリルニトリルブタジエン共重合体プレポリ
マー、あるいは日本ゼオン社製ハイカー1432J等
のエラストマーは、特にブタジエン中の二重結合
が放射線によりラジカルを生じ架橋及び重合させ
るエラストマー成分として適する。 () ポリブタジエンエラストマー シンクレアペトロケミカル社製ポリBDリクイ
ツドレジンR−15等の低分子量末端水酸基を有す
るプレポリマーが特に熱可塑性プラスチツクとの
相溶性の点で好適である。R−15プレポリマーに
おいては分子末端が水酸基となつているため分子
末端をアクリル系不飽和二重結合を付加すること
により放射線感応性を高めることが可能であり、
結合剤として更に有利となる。 また、ポリブタジエンの環化物日本合成ゴム製
CBR−M901も熱可塑性プラスチツクとの組合せ
によりすぐれた性能を発揮する。特に、環化され
たポリブタジエンは、ポリブタジエン本来の有す
る不飽和結合のラジカルによる放射線による架橋
重合の効率が良く、結合剤として優れた性質を有
している。 その他熱可塑性エラストマー及びそのプレポリ
マーの系で好適なものとしては、スチレン−ブタ
ジエンゴム、塩化ゴム、アクリルゴム、イソプレ
ンゴム及びその環化物(日本合成ゴム製
CIR701)、エポキシ変性ゴム、内物可塑化飽和線
状ポリエステル(東洋紡バイロン#300)等のエ
ラストマーも下記に述べる放射線感応変性処理を
ほどこすことにより有効に利用できる。 本発明は溶剤を使用する場合には、アセトン、
メチルエチルケトン、メチルイソブチルケトン、
シクロヘキサノン等のケトン類、メタノール、エ
タノール、イソプロパノール、ブタノール等のイ
ソシアネート系熱硬化型バインダーでは使用でき
なかつたアルコール類、テトラヒドロフラン、ジ
オキサン等のエーテル結合を有するものジメチル
フオルムアミド、ビニルピロリドン、ニトロプロ
パン等の溶剤、トルエン、キシレン等の芳香族炭
化水素の希釈剤ないしは溶剤を用いる。 コーテイングに使用する基体としては、現在磁
気記録媒体用基材として広く活用されているポリ
エチレンテレフタレート系フイルム及び更に耐熱
性を要求される用途としては、ポリイミドフイル
ム、ポリアミドイミドフイルム等が活用され、特
にポリエステル系フイルムにおいては薄物ベース
では1軸延伸、2軸延伸処理をほどこして利用す
るケースも多い。 本発明に活用される磁性体微粉末はγ−
Fe2O3,Fe3O4,Coドープγ−Fe2O3、Coドープ
γ−Fe2O3−Fe3O4固溶体、CrO2,Co系化合物被
着型γ−Fe2O3,Co系化合物被着型Fe3O4(γ−
Fe2O3との中間酸化状態も含む。又ここで言うCo
系化合物とは、酸化コバルト、水酸化コバルト、
コバルトフエライト、コバルトイオン吸着物等コ
バルトの磁気異方性を保磁力向上に活用する場合
を示す)、又Co,Fe−Co,Fe−Co−Ni,Co−
Ni等の強磁性金属元素を主成分とする。その製
法はNaBH4等の還元剤による湿式還元法や、酸
化鉄表面をSi化合物で処理後H2ガス等により乾
式還元法によつて、あるいは低圧アルゴンガス気
流中で真空蒸発させることによつて得られる手法
等が挙げられる。又単結晶バリウムフエライト微
粉も使用できる。 以上の磁性体微粒子は針状あるいは粒状形態の
ものを使用し、磁気記録媒体として用いる用途に
よつて選択される。 本発明に係わる放射線硬化型磁気記録媒体用バ
インダーに関しても当該用途にて通常使用される
各種帯電防止剤、分散剤、研磨剤等を用途に合わ
せて本発明添加剤以外に添加させ活用することも
有効である。 本発明の磁性塗膜の架橋に使用する活性エネル
ギー線としては、電子線加速器を線源とした電子
線が下記に述べる理由で特に有利である。しかし
その他にもCo60を線源としたγ線、Sr90を線源と
したβ−線、X線発生器を線源としたX−線等も
使用する。 照射線源としては吸収線量の制御、製造工程ラ
インへの導入のために電離放射線の自己遮蔽、工
程ライン諸設備とのシーケンス制御との接続のし
やすさ等の点で電子線加速器の利用が有利であ
る。電子線加速器は従来コツククロフト型、バン
デグラフ型、共換変圧器型、鉄心絶縁変圧器型、
リニアアクセレレーター型等、主として高電圧を
得る方式の差により各種の加速器が実用化されて
いる。しかし磁気記録媒体は汎用用途に使用され
る場合、10ミクロン以下の薄い磁性膜厚のものが
ほとんどであり上記加速器で通常使用される
1000KV以上の高加速電圧は不必要であり、
300KV以下の低加速電圧の電子線加速器で十分
である。低加速電圧加速器においてはシステム自
体のコストも低下するが、更にその上電離放射線
の遮蔽設備費力の点で更に有利である。 次に遮蔽設備コストの有利さについてを表−1
に示す。
The present invention relates to a magnetic recording medium, and more particularly to a magnetic recording medium that has excellent wear resistance and lubricity by adding a certain amount of fatty acid to a binder that is crosslinked and polymerized by radiation. . Traditionally, videotape, computer tape,
Magnetic recording media such as audio tapes and floppy disks generally use a thermosetting binder to fix magnetic powder processed materials to the tape, and a crosslinking agent typified by a polyvalent isocyanate group-containing compound.
A three-dimensional network structure is formed between the binders through a chemical reaction with reactive functional groups such as hydroxyl groups and amino groups in the binder, and by adding a lubricant to this, the durability and runnability of magnetic recording media are improved. , aiming to improve environmental reliability. For this magnetic recording medium, known lubricants include silicone oil, fatty acids, fatty acid esters, molybdenum disulfide, and graphite.
In Japanese Patent Publication No. 51-39081, the applicant proposed that a fatty acid ester having an RCO group having 10 to 16 carbon atoms (where R=CnH 2o+1 ) and a fatty acid with a melting point of 44 to 70°C be contained to have a synergistic effect. According to
It has been disclosed that extremely excellent wear resistance and lubricity can be obtained under a wide range of operating temperature conditions of 0 to 40°C, and it is currently widely used in conventional thermosetting binders. However, in contrast to thermosetting binders, so-called radiation-curable binders, which are crosslinked and polymerized by radiation, have been developed. Thermosetting binders have not yet begun to thermoset when the tape is rolled up after being calendered through the coating and drying process, so the coating film is not strong and the additives in the coating film may bloom. ,
In addition, there are restrictions on the types of additives because blocking and tightness occur due to thermal curing. On the other hand, when a radiation-curable binder is used, the resin is hardened by radiation irradiation after calendering and before the tape is wound up, so the coating film becomes strong and when the tape is wound up, , there is no blocking of additives in the coating film, and a wider range of additives can be used than in the case of thermosetting binders. The inventors have focused on the durability and runnability of magnetic recording media, as well as their environmental reliability, such as the fact that still images remain stable for long periods of time and do not bleed, even under humid conditions and a wide range of temperatures from 0 to 60 degrees Celsius. For radiation curable binders as above to obtain an improvement in
As a result of intensive research focusing on the fact that a wide range of additives can be used, the inventors discovered that the mixture of fatty acids described below can be suitable for the purpose, and based on this knowledge, the present invention was made. That is, the present invention provides a binder that is crosslinked and polymerized by radiation, and that has 10 or more carbon atoms.
Fatty acid ester with RCO group and melting point 32-81℃
The present invention provides a magnetic recording medium containing at least one of the above fatty acids and a fatty acid having one or more polymerizable unsaturated double bonds and having a melting point of 16 to 81°C. The radiation-sensitive resin used in the present invention is a resin containing one or more unsaturated double bonds in its molecular chain, which generates radicals when exposed to radiation and is cured by crosslinking or polymerization. It is known that some polymeric substances disintegrate when exposed to radiation and others that cause cross-linking between molecules. Examples of the latter include polyethylene, polypropylene, polystinone, polyacrylic acid ester, polyacrylamide, and polyvinyl chloride. , polyester, polyvinylpyrrolidone rubber, polyvinyl alcohol, polyacrolein, etc., and such crosslinked polymers are used as they are in the magnetic layer. Furthermore, the radiation-sensitive resin used in the present invention can also be prepared by radiation-sensitizing a thermoplastic resin, which is preferable from the viewpoint of curing speed and the like. Specific examples of radiation-sensitive modification include acrylic double bonds such as those in acrylic acid, methacrylic acid, or their ester compounds, which exhibit radically polymerizable unsaturated double bonds, and allylic double bonds such as diallyl phthalate. , maleic acid, maleic acid derivatives, etc., which are crosslinked or polymerized and dried by radiation irradiation, such as unsaturated bonds, are introduced into the molecule. Other unsaturated double bonds that can be crosslinked and polymerized by radiation irradiation can be used. Specific examples include: () Vinyl chloride copolymer Vinyl chloride-vinyl acetate-vinyl alcohol copolymer, vinyl chloride-vinyl alcohol copolymer, vinyl chloride-vinyl alcohol-vinyl propionate copolymer, vinyl chloride -Vinyl acetate-maleic acid copolymer, vinyl chloride-vinyl acetate-terminal OH side chain alkyl group copolymer, and trade names include, for example, VROH, VYNC, VYEGX made by UCC, and VERR made by UCC. The above-mentioned copolymer is subjected to radiation sensitivity modification by introducing an acrylic double bond, a maleic acid double bond, and an allylic double bond by a method described later. () Saturated polyester resin Phthalic acid, isophthalic residue, terephthalic acid, maleic acid, maleic acid derivatives, saturated polybasic acids such as succinic acid, adipic acid, sebacic acid and ethylene glycol, diethylene glycol, glycerin, trimethylolpropane, 1, 2-propylene glycol, 1,3-butanediol, dipropylene glycol, 1,4-butanediol, 1,6-hexanediol, pentaerythritol, sorbitol, glycerin, neopentyl glycol,
Saturated polyester resins obtained by ester bonding with polyhydric alcohols such as 1,4 cyclohexanedimethanol, or resins obtained by modifying these polyester resins with SO 3 Na, etc. (Vylon 53S). These are also subjected to radiation sensitivity modification using the method described later. () Unsaturated polyester resin A polyester compound containing radiation-curable unsaturated double bonds in its molecular chain. For example, a saturated polyester resin consisting of an ester bond of a polybasic acid and a polyhydric alcohol described as a thermoplastic resin in item (), containing a radiation-curable unsaturated double bond in which part of the polybasic acid is maleic acid. Mention may be made of unsaturated polyester resins, prepolymers, and oligomers. Examples of the polybasic acid and polyhydric alcohol components of the saturated polyester resin include the compounds listed in item (), and examples of the radiation-curable unsaturated double bond include maleic acid and fumaric acid. The radiation-curable unsaturated polyester resin is produced by adding maleic acid, fumaric acid, etc. to one or more polybasic acid components and one or more polyhydric alcohol components, and
That is, after dehydration or dealcoholization in the presence of a catalyst at 180 to 200° C. in a nitrogen atmosphere, the temperature is raised to 240 to 280° C., and a polyester resin can be obtained by condensation reaction under reduced pressure of 0.5 to 1 mmHg. The content of maleic acid, fumaric acid, etc. is preferably 1 to 40 mol% in the acid component due to crosslinking during manufacturing, radiation curability, etc.
It is 10 to 30 mol%. () Polyvinyl alcohol resin Polyvinyl alcohol, buteral resin, acetal resin, formal resin, and copolymers of these components. These resins are also subjected to radiation sensitization modification of the hydroxyl groups contained therein by the method described later. () Epoxy resin, phenoxy resin Epoxy resin produced by the reaction of bisphenol A, epichlorohydrin, and methyl epichlorohydrin - manufactured by Ciel Chemical (Epicote 152, 154, 828,
1001, 1004, 1007) Made by Dow Chemical (DEN431,
DER732, DER511, DER331) made by Dainippon Ink (Epiclon 400, Epiclon-800), and phenoxy resins made by UCC (PKHA, PKHC, PKHH), which are high polymerization resins of the above epoxy, and brominated bisphenol A and epichlorohydrin. Copolymer, manufactured by Dainippon Ink and Chemicals (Epicron 145,
152, 153, 1120) etc. These resins are also subjected to radiation sensitivity modification using the epoxy groups contained therein. () Cellulose Derivatives Cellulose derivatives of various molecular weights are also effective as thermoplastic components. Among them, particularly effective ones include nitrified cotton, cellulose acetobutyrate, ethyl cellulose, butyl cellulose, and acetyl cellulose. These are also subjected to radiation sensitivity modification using the hydroxyl groups in the resin by a method described later. Other resins that can be used for radiation-sensitive modification include polyfunctional polyester resins, polyether ester resins, polyvinylpyrrolidone resins and derivatives (PVP olefin copolymers), polyamide resins, polyimide resins, phenol resins, spiroacetal resins, and hydroxyl resins. at least one acrylic ester and methacrylic ester containing
Acrylic resins containing more than one species as a polymerization component are also effective. Other binder components that can be used include:
Examples of monomers include acrylic acid, methacrylic acid, acrylamide, and methacrylamide. Binders with double bonds include various polyesters,
Polyols, polyurethanes, etc. can be modified with compounds having acrylic double bonds. By blending a polyhydric alcohol and a polyhydric carboxylic acid as necessary, products with various molecular weights can be produced. The above information is only a partial list of the radiation sensitive resins. Further, by blending a thermoplastic elastomer or a prepolymer with the radiation-sensitive modified thermoplastic resin, an even tougher coating film can be obtained. In addition, it is even more effective if these elastomers or prepolymers are similarly modified to be radiation sensitive. Examples of elastomers or prepolymers that can be combined with the radiation-sensitive modified thermoplastic resin are listed below. () Polyurethane elastomers, prepolymers and telomers Polyurethane elastomers have abrasion resistance,
It is particularly effective in adhesion to PET film. Examples of such urethane compounds include 2,4 toluene diisocyanate, 2,6 toluene diisocyanate, and 1,3 toluene diisocyanate.
xylene diisocyanate, 1,4 xylene diisocyanate, 1,5 naphthalene diisocyanate, m-phenylene diisocyanate, p-phenylene diisocyanate, 3,3' dimethyl-4,
4' diphenylmethane diisocyanate, 4,4' diphenylmethane diisocyanate, 3,3' dimethylbiphenylene diisocyanate, 4,4' biphnylene diisocyanate, hexamethylene diisocyanate, isophorone diisocyanate, dicyclohexylmethane diisocyanate, Desmodyur L, Desmodyur Various polyvalent isocyanates such as N and linear saturated polyesters (ethylene glycol, diethylene glycol, glycerin,
Trimethylolpropane, 1,4 butanediol, 1,6 hexanediol, pentaerythritol, sorbitol, neopentyl glycol,
Linear (by condensation polymerization of a polyhydric alcohol such as 1,4 cyclohexanedimethanol with a saturated polybasic acid such as phthalic acid, isophthalic acid, terephthalic acid, maleic acid, succinic acid, adipic acid, and sebacic acid) Polyurethane elastomers made of condensation products of various polyesters such as saturated polyethers (polyethylene glycol, polypropylene glycol, polytetraethylene glycol), caprolactam, hydroxyl-containing acrylic esters, hydroxyl-containing methacrylic esters, etc.
Prepolymers and telomers are effective. These elastomers may be combined as they are with various radiation-sensitive thermoplastics, but monomers having an acrylic double bond or allylic double bond that reacts with the terminal isocyanate group or hydroxyl group of the urethane elastomer may also be used. It is very effective to make it radiosensitive by reacting with the body. () Acrylonitrile-butadiene copolymer elastomer Elastomers such as an acrylonitrile-butadiene copolymer prepolymer with a terminal hydroxyl group, commercially available as PolyBD Liquid Resin manufactured by Sinclair Petrochemical Co., Ltd., or Hiker 1432J manufactured by Nippon Zeon Co., Ltd., are particularly suitable for butadiene. It is suitable as an elastomer component whose double bond is crosslinked and polymerized by generating radicals by radiation. () Polybutadiene elastomer A prepolymer having a low molecular weight terminal hydroxyl group, such as PolyBD Liquid Resin R-15 manufactured by Sinclair Petrochemical Co., is particularly suitable from the viewpoint of compatibility with thermoplastic plastics. Since the R-15 prepolymer has a hydroxyl group at the end of the molecule, it is possible to increase radiation sensitivity by adding an acrylic unsaturated double bond to the end of the molecule.
It is further advantageous as a binder. In addition, polybutadiene cyclized products manufactured by Japan Synthetic Rubber
CBR-M901 also exhibits excellent performance when combined with thermoplastics. In particular, cyclized polybutadiene has excellent properties as a binder, as it is highly efficient in crosslinking polymerization by radiation using radicals of unsaturated bonds inherent in polybutadiene. Other suitable thermoplastic elastomer and prepolymer systems include styrene-butadiene rubber, chlorinated rubber, acrylic rubber, isoprene rubber, and its cyclized products (manufactured by Japan Synthetic Rubber Co., Ltd.).
CIR701), epoxy-modified rubber, internally plasticized saturated linear polyester (Toyobo Vylon #300), and other elastomers can also be effectively used by applying the radiation-sensitive modification treatment described below. When the present invention uses a solvent, acetone,
Methyl ethyl ketone, methyl isobutyl ketone,
Ketones such as cyclohexanone, alcohols that cannot be used with isocyanate-based thermosetting binders such as methanol, ethanol, isopropanol, butanol, and those with ether bonds such as tetrahydrofuran and dioxane, dimethylformamide, vinylpyrrolidone, nitropropane, etc. A solvent, an aromatic hydrocarbon diluent or solvent such as toluene or xylene is used. The substrate used for coating is polyethylene terephthalate film, which is currently widely used as a substrate for magnetic recording media, and for applications that require further heat resistance, polyimide film, polyamide-imide film, etc. are used, especially polyester In the case of thin film, uniaxial or biaxial stretching is often applied to the film. The magnetic fine powder utilized in the present invention is γ-
Fe 2 O 3 , Fe 3 O 4 , Co-doped γ-Fe 2 O 3 , Co-doped γ-Fe 2 O 3 -Fe 3 O 4 solid solution, CrO 2 , Co-based compound-coated γ-Fe 2 O 3 , Co-based compound coated Fe 3 O 4 (γ-
Also includes intermediate oxidation states with Fe 2 O 3 . Also, Co here
The system compounds include cobalt oxide, cobalt hydroxide,
Co, Fe-Co, Fe-Co-Ni, Co-
The main component is a ferromagnetic metal element such as Ni. The manufacturing method is a wet reduction method using a reducing agent such as NaBH4 , a dry reduction method using H2 gas after treating the iron oxide surface with a Si compound, or a vacuum evaporation method in a low-pressure argon gas stream. Examples include methods for obtaining such information. Furthermore, single crystal barium ferrite fine powder can also be used. The above-mentioned magnetic particles are in the form of needles or particles, and are selected depending on the intended use as a magnetic recording medium. Regarding the binder for radiation-curable magnetic recording media according to the present invention, various antistatic agents, dispersants, abrasives, etc. that are commonly used in the application may be added in addition to the additives of the present invention depending on the application. It is valid. As the active energy ray used for crosslinking the magnetic coating film of the present invention, an electron beam using an electron beam accelerator as a ray source is particularly advantageous for the reasons described below. However, in addition to these, γ-rays using Co 60 as a source, β-rays using Sr 90 as a source, and X-rays using an X-ray generator as a source are also used. As an irradiation source, it is recommended to use an electron beam accelerator from the viewpoints of controlling the absorbed dose, self-shielding ionizing radiation for introduction into the manufacturing process line, and ease of connection with sequence control with various process line equipment. It's advantageous. Conventional electron beam accelerators are Kotscroft type, Van de Graaff type, commutative transformer type, iron core isolation transformer type,
Various types of accelerators, such as linear accelerator types, have been put into practical use, mainly due to differences in the methods of obtaining high voltage. However, when magnetic recording media are used for general purposes, most of them have a thin magnetic film thickness of 10 microns or less, and are usually used in the above accelerators.
High accelerating voltage over 1000KV is unnecessary,
An electron beam accelerator with a low accelerating voltage of 300KV or less is sufficient. In a low accelerating voltage accelerator, the cost of the system itself is reduced, but it is further advantageous in terms of equipment costs for shielding ionizing radiation. Next, Table 1 shows the advantages of shielding equipment costs.
Shown below.

【表】 表−1に示すように300KV以下の電子線加速
器においては、遮蔽材として鉛板を(最大3cm)
用いて電子線被照射部を包む加速管全体を被うこ
とで漏X線を十分遮断することができる。このた
めに高額な電子線照射室を別にもうける必要もな
くシステム自体も磁気記録媒体製造ラインの1シ
ステムとして組込むことが可能となり、例えば磁
気テープ、磁気シートの電子線による乾繰、硬化
をオンラインですることが可能となる。 このような具体的システムとしては米国エナー
ジーサイエンス(ESI)社にて製造されている低
電圧タイプの電子線加速器(エレクトロカーテン
システム)、RPC社電子線加速器(ブロードビー
ムシステム)、西独ポリマーフイジツクス社の自
己遮蔽型スキヤニング型低電圧タイプ電子線加速
器が好適である。150〜300KVの低電圧加速器を
使用し、前述のバインダー塗膜を硬化した場合、
高温高湿走行耐久性において、吸収線量が
5Mradを越えると、オーデイオ、メモリー用で
はヘツドの磁性膜脱落の付着、ビデオ用途では回
転シリンダーへ同様の付着が増して好ましくな
い。他方0.5〜5Mradの吸収線量では電子線によ
る重合、架橋密度が適当であるため、磁性塗膜が
適度な柔軟性と剛直性のバランスを有し磁性層ヘ
ツド間の耐摩耗性も向上し、ヘツド付着、シリン
ダー付着もなく優れた磁気記録媒体となる。 また放射線架橋に際しては、N2ガスHeガス等
の不活性ガス気流中で放射線を記録媒体に照射す
ることが重要であり磁性塗膜のように非常に磁性
顔料充填度の高い塗膜は非常に多孔質となつてい
るために、空気中で放射線を照射することはバイ
ンダー成分の架橋に際し放射線照射により生じた
O3等の影響でポリマー中に生じたラジカルが有
効に架橋反応に働くことを阻害する。 その影響は磁性層表面は当然として多孔質のた
め塗膜内部までバインダー架橋阻害の影響を受け
る。 従つて活性エネルギー線を照射する部分の雰囲
気は特に酸素濃度が最大で1%望ましくは
3000ppm以下のN2,He,CO2等の不活性ガス雰
囲気に保つことが重要となる。 分散機としてはボールミル等で十分に混練分散
される。ボールミル以外にも、サウンドグライン
ドミル、ロールミル、高速インペラー分散機、ホ
モジナイザー、超音波分散機等各種の装置が使用
されうる。 本発明に使用される重合性不飽和二重結合を1
個以上有するものとしては、脂肪酸に−CH=
CH2,−CH2−CH=CH2,−CONH−CH=CH2
等が望ましい。 次に本発明を実施例に基づいて説明する。 実施例 1 コバルト被着針状γ−Fe2O3(長軸0.4μ、短軸
0.05μ,HC 600Oe) 120重量部 カーボンブラツク(帯電防止用、三菱カーボンブ
ラツクMA−600) 5重量部 α−Al2O3粉末(0.5μ粉末) 2重量部 分散剤(大豆油精製レシチン) 3重量部 溶剤(メチルエチルケトン/トルエン,50/50)
100重量部 上記組成分をボールミル中にて3時間混合し、
針状磁性酸化鉄を分散剤により良く湿潤させる。 次に、 塩化ビニールビニルアルコール共重合体 (重合度 約300) 15重量部 アクリル二重結合導入ポリエーテル ウレタンエラストマー(固型分換算)15重量部 溶剤(メチルエチルケトン/トルエン、50/50)
200重量部 脂肪酸ビニル(x) 2重量部 脂肪酸(y) 1重量部 の混合物を良く混合溶解させる。これを先の磁性
粉処理を行なつたボールミル中に投入し再び42時
間混合分散させる。 このようにして得られた磁性塗料を15μのポリ
エステルフイルム上に塗布し、永久磁石(1600ガ
ウス)上で配向させ、赤外線ランプ又は熱風によ
り溶剤を乾燥させた後表面平滑化処理後、ESI社
エレクトロカーテンタイプ電子線加速装置を使用
して加速電圧150KV、電極電流10mA、全照射量
0.5Mradから8Mradの条件でN2雰囲気下残O2
度500ppm前後にて電子線照射し磁性塗膜の重合
乾燥及び硬化反応を行なつた。 得られたテープを1/2インチ幅に切断しビデオ
テープを得た。 脂肪酸ビニル種をx、脂肪酸種をyとし実験し
たところ融点16〜81℃の脂肪酸を重合性不飽和二
重結合としたものおよび融点32〜81℃の脂肪酸を
含有せしめた広範囲組合わせで、0〜60℃の温度
範囲において浸み出しがなく、静止画像が安定し
たものが得られたので説明する。 10℃の環境下で静止画像の再生実験を行なつつ
た。60℃80%高温高湿下で取り出し後、浸み出し
現象による走行性試験を行なつた。 まず脂肪酸エステル、脂肪酸単独作用の試験を
行なつたところ、脂肪酸エステルのみでは60℃80
%の高温走行ですぐに走行ストツプとなり、脂肪
酸のみでは10℃での静止画像再生時間で15分以下
であつた。 そこで各種x,yについて、
[Table] As shown in Table 1, in electron beam accelerators of 300 KV or less, lead plates (maximum 3 cm) are used as shielding materials.
By using this to cover the entire accelerating tube surrounding the electron beam irradiated area, leakage of X-rays can be sufficiently blocked. This eliminates the need for a separate, expensive electron beam irradiation room, and the system itself can be integrated into a magnetic recording media manufacturing line.For example, magnetic tapes and magnetic sheets can be dried and cured using electron beams online. It becomes possible to do so. Specific examples of such systems include the low-voltage electron beam accelerator (Electro Curtain System) manufactured by Energy Sciences (ESI) in the United States, the RPC electron beam accelerator (Broad Beam System), and the West German Polymer Physics. A self-shielding scanning type low-voltage electron beam accelerator manufactured by Co., Ltd. is suitable. When the aforementioned binder coating is cured using a 150-300KV low voltage accelerator,
In terms of high-temperature, high-humidity running durability, the absorbed dose
If it exceeds 5 Mrad, it is undesirable because the magnetic film may fall off from the head in audio and memory applications, and similar adhesion to the rotating cylinder increases in video applications. On the other hand, at an absorbed dose of 0.5 to 5 Mrad, the electron beam polymerization and crosslinking density are appropriate, so the magnetic coating has an appropriate balance of flexibility and rigidity, and the abrasion resistance between the magnetic layer heads is improved. It becomes an excellent magnetic recording medium with no adhesion or cylinder adhesion. In addition, during radiation crosslinking, it is important to irradiate the recording medium with radiation in an inert gas stream such as N 2 gas or He gas, and coatings with a high degree of magnetic pigment filling such as magnetic coatings are extremely Due to its porous nature, irradiation with radiation in the air may occur due to radiation irradiation during crosslinking of the binder component.
Radicals generated in the polymer due to the influence of O 3 etc. are inhibited from effectively working on the crosslinking reaction. Since the surface of the magnetic layer is naturally porous, the inside of the coating film is also affected by the binder's crosslinking inhibition. Therefore, the atmosphere in the area where active energy rays are irradiated should preferably have a maximum oxygen concentration of 1%.
It is important to maintain an atmosphere of inert gases such as N 2 , He, and CO 2 at 3000 ppm or less. As a dispersing machine, a ball mill or the like is used for sufficient kneading and dispersion. In addition to ball mills, various devices such as sound grind mills, roll mills, high-speed impeller dispersers, homogenizers, and ultrasonic dispersers can be used. The polymerizable unsaturated double bond used in the present invention is 1
If the fatty acid has -CH=
CH 2 , −CH 2 −CH=CH 2 , −CONH−CH=CH 2
etc. is desirable. Next, the present invention will be explained based on examples. Example 1 Cobalt-coated acicular γ-Fe 2 O 3 (long axis 0.4μ, short axis
0.05μ, HC 600Oe) 120 parts by weight Carbon Black (for antistatic use, Mitsubishi Carbon Black MA-600) 5 parts by weight α-Al 2 O 3 powder (0.5μ powder) 2 parts by weight Dispersant (refined lecithin in soybean oil) 3 parts by weight Partial solvent (methyl ethyl ketone/toluene, 50/50)
100 parts by weight The above ingredients were mixed in a ball mill for 3 hours,
The acicular magnetic iron oxide is better wetted by the dispersant. Next, 15 parts by weight of vinyl chloride vinyl alcohol copolymer (degree of polymerization: approx. 300) 15 parts by weight of acrylic double bond-introduced polyether urethane elastomer (calculated as solid content) Solvent (methyl ethyl ketone/toluene, 50/50)
A mixture of 200 parts by weight of vinyl fatty acid (x), 2 parts by weight of fatty acid (y) and 1 part by weight is thoroughly mixed and dissolved. This was placed in the ball mill that had been treated with the magnetic powder above and mixed and dispersed again for 42 hours. The magnetic paint obtained in this way was applied onto a 15μ polyester film, oriented on a permanent magnet (1600 Gauss), dried the solvent with an infrared lamp or hot air, and then subjected to surface smoothing treatment. Acceleration voltage 150KV, electrode current 10mA, total irradiation dose using curtain type electron beam accelerator
Polymerization drying and curing reactions of the magnetic coating were carried out by electron beam irradiation under conditions of 0.5 Mrad to 8 Mrad under N 2 atmosphere and residual O 2 concentration of around 500 ppm. The obtained tape was cut into 1/2 inch width to obtain a videotape. An experiment was carried out with the fatty acid vinyl type x and the fatty acid type y, and a wide range of combinations containing fatty acids with a melting point of 16 to 81 °C with polymerizable unsaturated double bonds and fatty acids with a melting point of 32 to 81 °C were found to be 0. This will be explained because a stable still image was obtained with no oozing in the temperature range of ~60°C. We were conducting a still image reproduction experiment in an environment of 10℃. After being taken out at 60°C and 80% high temperature and high humidity, a runnability test was conducted based on the oozing phenomenon. First, we conducted tests on the effects of fatty acid esters and fatty acids alone, and found that fatty acid esters alone were
%, the running stopped immediately, and with fatty acids alone, the still image playback time at 10°C was less than 15 minutes. So, regarding various x and y,

【表】 xは上記脂肪酸からなる脂肪酸ビニル、yは対
応する脂肪酸として実験した結果を第1図に示
す。 第1図より各種組合わせで、脂肪酸ビニルでは
融点−3.4℃からなるものでは保存サンプルで初
期より全く走行せず、脂肪酸では融点17℃のもの
で同様の結果を示した。これらのサンプルを調べ
たら、走行しないサンプルは塗膜の粘着があるこ
とがわかつた。 第1図は60℃80%40時間の環境下に保存後のテ
ープを取り出し常温で、EIAJ一規格オープンリ
ールVTR(松下電器製NV−3120)にて走行さ
せ、ヘツドドラムとピンチローラー間に日本自動
制御製テンシヨンアナライザーIVA−500型をセ
ツトし、走行時間に対して調べたものである。 実施例 2 実施例1にて 脂肪酸ビニル(x) 脂肪酸エステル(y) 2重量部 1重量部として 同様の実験をしたところ、 炭素原子数10以上なるRCO基を有する脂肪酸エ
ステルおよび融点16〜81℃の脂肪酸を重合性不飽
和二重結合1個以上有するものとしたものを含有
した組合わせが良好であることがわかつた。 これらの結果を第2図に示す。以下の熱硬化型
と比べると、熱硬化型より優れていることがわか
る。 比較例 コバルト被着針状γ−Fe2O3 120部 (長軸0.4μ短軸0.05μHc600 Oe) カーボンブラツク 5部 (帯電防止用三菱カーボンブラツクMA−600) α−Al2O3粉末(0.5μ粒状) 2部 分散剤(大豆油精製レシチン) 3部 溶剤(メチルエチルケトン/トルエン、50/50)
100部 上記組成物をボールミル中にて3時間混合し、
針状磁性酸化鉄を分散剤により良く湿潤させる。 次に、 塩化ビニル酢酸ビニル共重合体 15部 (ユニオンカーバイト社製VAGH) 日本ポリウレタン社製熱可塑性ウレタン樹脂ニツ
ポラン3022 15部 溶剤(メチルエチルケトン/トルエン、50/50)
200部 脂肪酸エステル(x) 2部 脂肪酸 1部 の混合物を良く混合溶解させる。これを先の磁性
粉処理を行なつた、ボールミル中に投入し、再び
42時間分散させる。 分散後、磁性塗料中のバインダーの水酸基を主
体とした官能基と反応し架橋結合し得るイソシア
ネート化合物(バイエル社製デスモジユールL)
を5部(固形分換算)上記ボールミル仕込塗料に
20分混合を行なつた。 磁性塗料を15μのポリエステルフイルム上に塗
布し、永久磁石(1600ガウス)上で配向させ、赤
外線ランプまたは熱風により溶剤を乾燥させた
後、表面平滑化処理後、80℃に保持したオーブン
中にロールを48時間保持し、イソシアネートによ
る架橋反応を促進させた。 得られたテープを1/2インチ幅に切断しビデオ
テープを得た。 実施例 3 実施例1において(x)を脂肪酸エステルとし
たものと比べると、第3図に示すとおりであつ
て、重合性不飽和二重結合が放射線により重合
し、より広い範囲まで適用できるようになり、添
加剤の選択範囲が広くなつた。 本発明で使用する滑剤は、放射線によりバイン
ダーと化学的に結合した滑剤のため、滑性膜が効
率よく形成される。内部に存するバインダー等と
反応し、塗膜に複雑な架橋構造を与える。そのた
め、くり返し走行でも摩擦の変化が少なく、その
経時変化も少ない。 実施例 4 Fe合金針状磁性粉(長軸0.3μ、短軸0.04μ,Hc
1100 Oe) 120重量部 分散剤(オレイン酸) 2重量部 溶剤(メチルエチルケトン/トルエン、50/
50) 100重量部 上記組成物を強力ミキサーにて3時間混合し、
磁性合金微粉末を分散剤により良く湿潤させる。 次に、 ポリビニルブチラール樹脂(積水化学工業製
BL3) (アセチル基5モル%、ブチラール基40モル%、
ホルマール基20モル%、水酸基35モル% 重合度
約300)(固型分換算) 18重量部 アクリル二重結合導入ウレタンエラストマー(固
型分換算) 12重量部 溶剤(メチルエチルケトン/トルエン、50/50)
200重量部 オレイン酸アリル 3重量部 カプリン酸 2重量部 の混合物を良く混合溶解させる。これを先の磁性
粉処理物と高速ミキサーにより1時間十分混合
し、サンドグラインドミルを用いて4時間混合分
散を行なつた。 このようにして得られた磁性塗料を15μポリエ
ステルフイルム上に塗布し、磁場配向、溶剤乾
燥、表面平滑化処理後エレクトロカーテンタイプ
電子線加速装置を使用して、加速電圧150KeV、
電極電流10mA、吸収線量5Mradの条件でN2
ス雰囲気下にて電子線を照射し塗膜を硬化させ
た。 得られたテープを1/2インチ幅に切断しビデオ
テープを得た。 これを実施例1と同様の方法で評価したところ
問題はなかつた。 実施例 5 Fe合金針状磁性粉 120重量部 (長軸0.3μ、短軸0.4μ,Hc1100 Oe) カーボンブラツク(三菱カーボンブラツクMA−
600) 5重量部 α−Al2O3(0.5μ粒状) 2重量部 分散剤(オレイン酸) 2重量部 溶剤(メチルエチルケトン/トルエン、50/50)
100重量部 上記組成物を3時間混合し、磁性合金微粉末を
分散剤によりよく湿潤させる。 次に 飽和ポリエステル樹脂 15重量部 (ダイナミートノーベル社製L−411) アクリル二重結合導入ポリカプロラクタムウレタ
ンプレポリマー 15重量部 溶剤(メチルエチルケトン/トルエン、50/50)
200重量部 パルミチン酸ビニル 1.5重量部 ミリスチン酸 0.5重量部 の混合物を先の磁性粉処理物と高速ミキサーによ
り、1時間10分混合しサンドミルを用いて4時間
分散を行なつた。 これを実施例1と同様にビデオテープを得た。
このテープを評価したところ問題なかつた。 以上のように放射線に架橋及び重合するインタ
ーに、 (a) 炭素原子数10以上なるRCO基を有する脂肪
酸エステルおよび融点16〜81℃の脂肪酸を重合
性不飽和二重結合1個以上有するものとしたも
のを含有 (b) 融点16〜81℃の脂肪酸を重合性不飽和二重結
合1個以上有するものおよび融点32〜81℃の脂
肪酸を含有 (a)の場合、くり返し走行による摩擦変化は少な
いが摩擦は初期より高い値を示す。摩擦変化が少
ないので問題はないが、これに融点32〜81℃の脂
肪酸を含有させることにより、初期より摩擦が低
く、摩擦変化が少ない。(a)でも実用上問題がない
が、脂肪酸を添加した方がさらに好ましい。 以上記述したように本発明になる磁気記録媒体
は放射線硬化型バインダーにおいて、 (a) 炭素原子数10以上なるRCO基を有する脂肪
酸エステルおよび融点16〜81℃の脂肪酸を重合
性不飽和二重結合1個以上有するものとしたも
のを含有 (b) 融点16〜81℃の脂肪酸を重合性不飽和二重結
合1個以上有するものおよび融点32〜81℃の脂
肪酸を含有 (c) (a)および(b)を含有 (a),(b),(c)いずれかからなるものを含有せしめた
ことを特徴とする磁気記録媒体である。 摩擦変化を示すと、
[Table] Figure 1 shows the results of an experiment where x is a fatty acid vinyl composed of the above fatty acids and y is the corresponding fatty acid. As can be seen from Figure 1, among various combinations of fatty acid vinyls with a melting point of -3.4°C, the stored samples did not run at all from the initial stage, and fatty acids with a melting point of 17°C showed similar results. When these samples were examined, it was found that the non-running samples had a sticky coating. Figure 1 shows the tape after being stored at 60°C, 80% for 40 hours, and then run on an EIAJ standard open reel VTR (NV-3120 manufactured by Matsushita Electric) at room temperature. A tension analyzer model IVA-500 made by Kansai was set up and the running time was investigated. Example 2 A similar experiment was carried out in Example 1 using 2 parts by weight of fatty acid vinyl (x) and fatty acid ester (y) and 1 part by weight, and a fatty acid ester having an RCO group having 10 or more carbon atoms and a melting point of 16 to 81°C were obtained. It was found that a combination containing a fatty acid having one or more polymerizable unsaturated double bonds is good. These results are shown in FIG. When compared with the thermosetting type below, it can be seen that it is superior to the thermosetting type. Comparative example Cobalt-coated acicular γ-Fe 2 O 3 120 parts (major axis 0.4μ short axis 0.05μHc600 Oe) Carbon black 5 parts (Mitsubishi Carbon Black MA-600 for antistatic use) α-Al 2 O 3 powder (0.5 μ granules) 2 parts powder (soybean oil refined lecithin) 3 parts solvent (methyl ethyl ketone/toluene, 50/50)
100 parts The above composition was mixed in a ball mill for 3 hours,
The acicular magnetic iron oxide is better wetted by the dispersant. Next, 15 parts of vinyl chloride vinyl acetate copolymer (VAGH manufactured by Union Carbide Co.) 15 parts of thermoplastic urethane resin Nitsuporan 3022 manufactured by Nippon Polyurethane Co. Solvent (methyl ethyl ketone/toluene, 50/50)
Mix and dissolve a mixture of 200 parts fatty acid ester (x), 2 parts fatty acid, and 1 part. This was put into the ball mill that had undergone the magnetic powder treatment earlier, and then
Disperse for 42 hours. After dispersion, an isocyanate compound that can react with and crosslink with the functional groups, mainly hydroxyl groups, of the binder in the magnetic paint (Desmodyur L manufactured by Bayer AG)
Add 5 parts (solid content equivalent) to the above ball mill preparation paint.
Mixing was performed for 20 minutes. The magnetic paint was applied onto a 15μ polyester film, oriented on a permanent magnet (1600 gauss), the solvent was dried using an infrared lamp or hot air, the surface was smoothed, and the film was rolled in an oven maintained at 80℃. was maintained for 48 hours to promote the crosslinking reaction by isocyanate. The obtained tape was cut into 1/2 inch width to obtain a videotape. Example 3 Compared to Example 1, in which (x) was a fatty acid ester, as shown in Figure 3, the polymerizable unsaturated double bond was polymerized by radiation, making it applicable to a wider range. The selection range of additives has become wider. Since the lubricant used in the present invention is chemically bonded to the binder by radiation, a lubricant film is efficiently formed. It reacts with the binder etc. inside, giving the coating a complex crosslinked structure. Therefore, there is little change in friction even with repeated running, and its change over time is also small. Example 4 Fe alloy acicular magnetic powder (long axis 0.3μ, short axis 0.04μ, Hc
1100 Oe) 120 parts by weight Dispersant (oleic acid) 2 parts by weight Solvent (methyl ethyl ketone/toluene, 50 parts by weight)
50) 100 parts by weight The above composition was mixed for 3 hours with a powerful mixer,
Wet the magnetic alloy fine powder well with the dispersant. Next, polyvinyl butyral resin (manufactured by Sekisui Chemical Co., Ltd.)
BL3) (acetyl group 5 mol%, butyral group 40 mol%,
20 mol% formal groups, 35 mol% hydroxyl groups, degree of polymerization approx. 300) (solid content equivalent) 18 parts by weight Acrylic double bond-introduced urethane elastomer (solid content equivalent) 12 parts by weight Solvent (methyl ethyl ketone/toluene, 50/50)
A mixture of 200 parts by weight of allyl oleate, 3 parts by weight of capric acid, and 2 parts by weight is thoroughly mixed and dissolved. This was sufficiently mixed with the previously treated magnetic powder using a high-speed mixer for 1 hour, and mixed and dispersed using a sand grind mill for 4 hours. The magnetic paint thus obtained was applied onto a 15μ polyester film, subjected to magnetic field orientation, solvent drying, and surface smoothing treatment.
The coating film was cured by irradiation with an electron beam in an N 2 gas atmosphere under the conditions of an electrode current of 10 mA and an absorbed dose of 5 Mrad. The obtained tape was cut into 1/2 inch width to obtain a videotape. When this was evaluated in the same manner as in Example 1, no problems were found. Example 5 Fe alloy acicular magnetic powder 120 parts by weight (long axis 0.3μ, short axis 0.4μ, Hc1100 Oe) Carbon black (Mitsubishi Carbon Black MA-
600) 5 parts by weight α-Al 2 O 3 (0.5μ granules) 2 parts by weight Dispersant (oleic acid) 2 parts by weight Solvent (methyl ethyl ketone/toluene, 50/50)
100 parts by weight The above composition is mixed for 3 hours to thoroughly wet the magnetic alloy fine powder with the dispersant. Next, 15 parts by weight of saturated polyester resin (L-411 manufactured by Dynamite Nobel) 15 parts by weight of polycaprolactam urethane prepolymer with acrylic double bond introduced Solvent (methyl ethyl ketone/toluene, 50/50)
A mixture of 200 parts by weight of vinyl palmitate, 1.5 parts by weight, and 0.5 parts by weight of myristic acid was mixed with the previously treated magnetic powder for 1 hour and 10 minutes using a high-speed mixer, and then dispersed for 4 hours using a sand mill. A videotape was obtained from this in the same manner as in Example 1.
When this tape was evaluated, no problems were found. As mentioned above, in the interface that crosslinks and polymerizes upon radiation, (a) a fatty acid ester having an RCO group having 10 or more carbon atoms and a fatty acid having a melting point of 16 to 81°C and having one or more polymerizable unsaturated double bonds; (b) Contains a fatty acid with a melting point of 16-81°C and one or more polymerizable unsaturated double bonds, and (a) contains a fatty acid with a melting point of 32-81°C, there is little change in friction due to repeated running. However, the friction shows a higher value than the initial value. There is no problem because the frictional change is small, but by incorporating fatty acids with a melting point of 32 to 81°C, the friction is lower than the initial value and the frictional change is small. Although (a) has no practical problems, it is more preferable to add a fatty acid. As described above, in the magnetic recording medium of the present invention, (a) a fatty acid ester having an RCO group having 10 or more carbon atoms and a fatty acid having a melting point of 16 to 81°C are combined with a polymerizable unsaturated double bond in a radiation-curable binder; Contains one or more fatty acids with a melting point of 16 to 81°C (b) Contains fatty acids with one or more polymerizable unsaturated double bonds and a fatty acid with a melting point of 32 to 81°C (c) (a) and Contains (b) A magnetic recording medium characterized by containing one of (a), (b), and (c). To show the change in friction,

【表】 以上本発明につき好適な実施例を挙げて種々説
明したが、本発明はこの実施例に限定されるもの
ではなく、発明の精神を逸脱しない範囲内で多く
の改変を施し得るのはもちろんのことである。
[Table] Although the present invention has been variously explained above using preferred embodiments, the present invention is not limited to these embodiments, and many modifications can be made without departing from the spirit of the invention. Of course.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は各種脂肪酸ビニルを用いた場合の走行
試験の結果を示すグラフ、第2図、第3図は各種
脂肪酸と各種脂肪酸エステルの混合と走行試験の
結果との関係を示すグラフである。
FIG. 1 is a graph showing the results of a running test using various fatty acid vinyls, and FIGS. 2 and 3 are graphs showing the relationship between the mixture of various fatty acids and various fatty acid esters and the results of the running test.

Claims (1)

【特許請求の範囲】 1 放射線によつて架橋及び重合するバインダー
に、炭素原子数10以上のRCO基を有する脂肪酸
エステルと融点32〜81℃の脂肪酸のうちの少なく
とも一方、および重合性不飽和二重結合1個以上
を有する融点16〜81℃の脂肪酸を含有する磁気記
録媒体。 2 放射線の照射を不活性ガス気流中で行う特許
請求の範囲第1項記載の磁気記録媒体。
[Claims] 1. A binder that is crosslinked and polymerized by radiation, at least one of a fatty acid ester having an RCO group having 10 or more carbon atoms and a fatty acid with a melting point of 32 to 81°C, and a polymerizable unsaturated A magnetic recording medium containing a fatty acid having one or more double bonds and a melting point of 16 to 81°C. 2. The magnetic recording medium according to claim 1, wherein the radiation irradiation is performed in an inert gas stream.
JP19656882A 1982-11-08 1982-11-08 Magnetic recording medium Granted JPS5984345A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19656882A JPS5984345A (en) 1982-11-08 1982-11-08 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19656882A JPS5984345A (en) 1982-11-08 1982-11-08 Magnetic recording medium

Publications (2)

Publication Number Publication Date
JPS5984345A JPS5984345A (en) 1984-05-16
JPH0315257B2 true JPH0315257B2 (en) 1991-02-28

Family

ID=16359897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19656882A Granted JPS5984345A (en) 1982-11-08 1982-11-08 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS5984345A (en)

Also Published As

Publication number Publication date
JPS5984345A (en) 1984-05-16

Similar Documents

Publication Publication Date Title
US4415630A (en) Process of making magnetic recording medium
JPS6357857B2 (en)
US4699847A (en) Magnetic recording medium
US4560617A (en) Magnetic recording medium
JPH0612564B2 (en) Magnetic recording medium
JPS6043224A (en) Magnetic recording medium
US4618535A (en) Magnetic recording medium
US4591528A (en) Magnetic recording medium
US4559265A (en) Magnetic recording medium
JPH0219529B2 (en)
US4601947A (en) Magnetic recording medium
US4678708A (en) Magnetic recording medium
JPH0315257B2 (en)
US4603081A (en) Magnetic recording medium
JPS62137718A (en) Magnetic recording medium and its production
JPH0533447B2 (en)
GB2130121A (en) Magnetic recording medium and method for producing the same
JPH0546016B2 (en)
US4946729A (en) Resin composition and magnetic recording medium employing the composition
JPH0673172B2 (en) Magnetic recording medium
JPH0778867B2 (en) Magnetic recording medium
GB2081277A (en) Magnetic Recording Layers
JPH057763B2 (en)
JPS6059527A (en) Magnetic recording medium
GB2146269A (en) Magnetic recording disc and process for its production