[go: up one dir, main page]

JPH03151258A - Manufacture method for anisotropic electrically conductive ceramic composite - Google Patents

Manufacture method for anisotropic electrically conductive ceramic composite

Info

Publication number
JPH03151258A
JPH03151258A JP29164589A JP29164589A JPH03151258A JP H03151258 A JPH03151258 A JP H03151258A JP 29164589 A JP29164589 A JP 29164589A JP 29164589 A JP29164589 A JP 29164589A JP H03151258 A JPH03151258 A JP H03151258A
Authority
JP
Japan
Prior art keywords
sintering
ceramic composite
conductive
fabric
green
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29164589A
Other languages
Japanese (ja)
Inventor
Yasuhiro Goto
後藤 康広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP29164589A priority Critical patent/JPH03151258A/en
Publication of JPH03151258A publication Critical patent/JPH03151258A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electronic Switches (AREA)

Abstract

PURPOSE:To make it possible to obtain an anisotropic electrically conductive ceramic composite easily by a method wherein after laminating a plurality of green sheets of which main component is a ceramic powdery having insulating properties and a plurality of fabrics which have electrical conductivity only in a designated direction after sintering, they are pressed and sintered under an air atmosphere. CONSTITUTION:A green sheet 1 is a forming body before sintering, which consists of a ceramic powder, organic bonding medium and a plasticizer, etc., it necessary. A fabric 2 has electrical conductivity only in a designated direction after sintering, and is constituted by weaving a fiber 2a which extends in A direction and a fiber 2b which extends in B direction which is rectangular to the direction A. After laminating the green sheets 1 and the fabrics 2 by an optional quantity, they are pressed, and the fabrics 2 are buried in the green sheets 1, and a laminated body 3 with a designated thickness is obtained. Then, the laminated body 3 is heated in a heating oven, and is degreased under an air atmosphere and sintered to obtain an anisotropic electrically conductive ceramic composite. By this method, an anisotropic electrically conductive ceramic composite can be easily obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は。絶縁性′(−ラミックス中に導電体又は抵抗
体が高密度に配設された。所定方向にのみ導電性を有す
る異方導電セラミックス複合体を製造する方法に関する
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention is... Insulating (-A conductor or resistor is arranged at high density in a laminate.)Relates to a method for manufacturing an anisotropically conductive ceramic composite having conductivity only in a predetermined direction.

(従来の技術) 電気絶縁性のセラミックスと導電性材料とを複合化した
ものとしては、「セラミックス201986)。
(Prior Art) "Ceramics 201986" is a composite of electrically insulating ceramics and conductive materials.

No、7,603頁」に、化学蒸着法(CVD法)で合
成したβ−3i、N、/TiN複合体が記載されている
。該複合体は、非結晶質窒化珪素(Si、N4)中にC
VD法で窒化チタン(TiN )を復合化したものであ
り。直径約5nmのTiNが一方向に配向している。従
って。
No. 7, page 603'' describes a β-3i, N, /TiN composite synthesized by a chemical vapor deposition method (CVD method). The composite contains C in amorphous silicon nitride (Si, N4).
It is made by decomposing titanium nitride (TiN) using the VD method. TiN with a diameter of about 5 nm is oriented in one direction. Therefore.

該複合体は1面方向においては導電性を示さないという
異方導電性を有しているのである。
The composite has anisotropic conductivity in that it exhibits no conductivity in one direction.

また、特開昭62−101454号公報、特開昭63−
99955号公報。特開昭63−99956号公報及び
特開昭63−99957号公報には6セラミツクスグリ
ーンシート等の基体上に、感光性樹脂よりなる所定形状
のパターンを形成し、この後このパターンが形成された
セラミックスグリーンシートと他のセラミックスグリー
ンシートとを積層して得た櫂層体を焼結することにより
、上記感光性樹脂を熱分解により消失させて所定形状の
空孔を有するセラミックス焼結体を得る方法が開示され
ている。そして、この方法の応用として、上記空孔の形
成後に、該空孔に溶融金属を注入することにより、異方
導電性セラミックス複合体を得ることかできる。
Also, JP-A-62-101454, JP-A-63-
Publication No. 99955. JP-A-63-99956 and JP-A-63-99957 disclose that a pattern of a predetermined shape made of a photosensitive resin is formed on a substrate such as a ceramic green sheet, and then this pattern is formed. By sintering a paddle layered body obtained by laminating a ceramic green sheet and another ceramic green sheet, the photosensitive resin is disappeared by thermal decomposition, and a ceramic sintered body having pores of a predetermined shape is obtained. A method is disclosed. As an application of this method, an anisotropically conductive ceramic composite can be obtained by injecting molten metal into the pores after the pores are formed.

(発明が解決しようとする課題) 上記文献に開示されたセラミックス複合体は。(Problem to be solved by the invention) The ceramic composite disclosed in the above document is.

CVD法で作成されているために、導電体が複合体の途
中で切れていたり、他の導電体で接触j−でいるもので
あって、該複合体の面方向で導電性を示すことがある。
Because it is created using the CVD method, the conductor may be cut in the middle of the composite, or it may be in contact with another conductor, and it may not exhibit conductivity in the plane direction of the composite. be.

またCVD法では、R大2 mm程度の厚さの複合体(
2か作成するこLができないため。
In addition, with the CVD method, a composite material with a thickness of about 2 mm (R)
Because I can't create 2 or L.

得られるセラミックス複合体は実用性に乏j〜いもので
あった。
The resulting ceramic composite was of poor practical use.

また。上記公報に開示された製造方法では、グリーンシ
ート上にドライフィルノ・レジストを形成する工程が複
雑であり、また溶融金属を圧入するための高温のプロセ
スを避けるCとができない。
Also. In the manufacturing method disclosed in the above-mentioned publication, the step of forming a dry fill resist on a green sheet is complicated, and a high temperature process for press-fitting molten metal cannot be avoided.

本発明は」−記従来の問題点を解決するものであり、そ
の目的とするところは、所望の厚さのセラミックス中に
導電体又は抵抗体が高密度に配設されてなる異方導電性
セラミックス複合体を簡便に製造する方法を提供するこ
とにある。
The present invention solves the problems of the conventional art, and its purpose is to provide an anisotropically conductive material in which a conductor or a resistor is densely arranged in a ceramic having a desired thickness. An object of the present invention is to provide a method for easily manufacturing a ceramic composite.

(課題を解決するだめの手段) 本発明の異方導電性セラミックスの製造方法は。(Failure to solve the problem) The method for producing anisotropically conductive ceramics of the present invention is as follows.

絶縁性セラミックス粉末を主成分とするグリーンシート
と8焼結後に所定方向にのみ導電性を有する織物とを複
数枚積層1−た後に圧着り、空気雰囲気中で焼結を行う
ことを特徴とする第1の方法。
The method is characterized in that a plurality of green sheets containing insulating ceramic powder as a main component and a fabric that is conductive only in a predetermined direction after sintering are laminated and then pressed together and sintered in an air atmosphere. First method.

焼結後に所定方向にのみ導電性を有する織物を空隙部を
有する型内に1枚以上積層し、その後に型の空隙部に絶
縁性セラミックス粉末を主成分とするスラリーを充填(
−で該織物を含むグリーン体を作り、該グリーン体を1
個以上積層、圧着し、空気雰囲気中で焼結を行うことを
特徴とする第2の方法及び絶縁性セラミックス粉末を主
成分とするスラリー中に、焼結後に所定方向にのみ導電
性を有する織物を1枚以」−理没し、該織物を含むグリ
ーン体を作り、該グリーン体を1個以上積層、圧着し、
空気雰囲気中で焼結を行うことを特徴とする第3の方法
を包含し、そのことにより上記目的が達成される。
After sintering, one or more fabrics that are conductive only in a predetermined direction are laminated in a mold with voids, and then the voids of the mold are filled with a slurry mainly composed of insulating ceramic powder (
- make a green body including the fabric, and make the green body 1
A second method characterized in that two or more pieces are laminated, crimped, and sintered in an air atmosphere, and a fabric that has conductivity only in a predetermined direction after sintering is placed in a slurry containing insulating ceramic powder as a main component. - one or more sheets of the fabric, a green body containing the fabric is made, one or more of the green bodies are laminated and crimped,
A third method is included, characterized in that the sintering is carried out in an air atmosphere, whereby the above object is achieved.

手段の説明は2図面を参照しながら方法1,2゜3の順
序で行うことにする。
The means will be explained in the order of methods 1, 2 and 3 with reference to two drawings.

まず製造方法1の説明を行う。First, manufacturing method 1 will be explained.

本発明で使用されている第1図に示すグリーンシート1
は、セラミックス粉末、有機結合剤、必要とあれば可塑
剤等からなる焼結前の成形体である。
Green sheet 1 shown in FIG. 1 used in the present invention
is a pre-sintered compact made of ceramic powder, an organic binder, a plasticizer if necessary, and the like.

上記セラミックス粉末は9例えばアルミナ、ジルコニア
、マグネシア、セイアロン9 スピネル。
Examples of the ceramic powders mentioned above include alumina, zirconia, magnesia, and spinel.

ムライト、結晶化ガラス等又はBan−31o2−B*
Oa−[:an系、 Mg[]−5i02−Can系、
 B2[335102系、 Ph1l B2L Sin
系、 Can−3iO2Can−3iO2−系、 Pb
O5iO2BJ3−4:aO系等のガラスフリットを主
成分とするものであり。
Mullite, crystallized glass, etc. or Ban-31o2-B*
Oa-[:an system, Mg[]-5i02-Can system,
B2 [335102 series, Ph1l B2L Sin
system, Can-3iO2Can-3iO2- system, Pb
O5iO2BJ3-4: The main component is glass frit such as aO type.

単独もしくは2種類以上併用してもよい。They may be used alone or in combination of two or more.

、h記有機結合剤2fシては。例えば、不飽和ポリエス
テル2 ボリウレクン。ポリビニルブチラール。
, and the organic binder 2f described in h. For example, unsaturated polyester 2 polyurekne. Polyvinyl butyral.

ポリビニルアルコール9 ポリメタアクリレート。Polyvinyl alcohol 9 polymethacrylate.

セルロース、デキストリンポリエチレン、ワックス7で
んぷん。カゼイン等の高分子材料があげられる。上記可
塑剤としては、ジオクチルフタレート、ジブチルフタレ
ート、ボリエヂl/ングリコールなどがあげられる。
Cellulose, dextrin polyethylene, wax 7 starch. Examples include polymeric materials such as casein. Examples of the plasticizer include dioctyl phthalate, dibutyl phthalate, and polyethylene glycol.

グリーンシートの製造方法は任意の方法が採用されてよ
く1例えばグリーンシートは上記セラミックス粉末。有
機結合剤、可塑剤、溶剤を混合し。
Any method may be used to produce the green sheet. For example, the green sheet may be made of the above-mentioned ceramic powder. Mix organic binder, plasticizer, and solvent.

得られた混合物を射出成形9押出成形、圧縮成形。The resulting mixture was injection molded, extrusion molded, and compression molded.

流延成形等の成形法で成形されるのが好ましいが。Preferably, it is molded by a molding method such as casting.

特に、ポリエステルフィルム9ガラス板等の基材上にス
ラリー状にした混合物をドクターブレ−ド法部って塗布
lまた後乾燥する。いわゆるドクターブレード法によっ
て成形されるのが好ましい。
In particular, a slurry-like mixture is applied onto a substrate such as a polyester film or glass plate using a doctor blade method, and then dried. Preferably, the molding is performed by a so-called doctor blade method.

上記溶剤としては9例えばメタノール、エタノ−ル、ブ
タノール、プロパツール6 ア七トン、酢酸エチル、ベ
ンゼン、トルエン、キシレン、水等があげられる。
Examples of the above-mentioned solvents include methanol, ethanol, butanol, propatool, ethyl acetate, benzene, toluene, xylene, water, and the like.

有機結合剤及び溶剤の添加量はグリーンシートの製造条
件等により適宜決定されればよいが、好ましくはセラミ
ックス粉末100重量部に対し、有機結合剤は5〜30
重値部9溶剤は20−100重量部惑加されろ。
The amount of the organic binder and solvent to be added may be determined as appropriate depending on the manufacturing conditions of the green sheet, etc., but preferably the amount of the organic binder is 5 to 30 parts by weight per 100 parts by weight of the ceramic powder.
Add 20-100 parts by weight of Part 9 solvent.

本発明で使用される第1図に示す織物2は、焼結後に所
定方向にのみ導電性を有するものである。
The fabric 2 shown in FIG. 1 used in the present invention has conductivity only in a predetermined direction after sintering.

この織物2は入方向に延びる織物2aと、該入方向と直
交するB方向に延びる繊維2bとを織り込むことによっ
て構成されている。入方向の繊維2aは各繊維独立(7
導電性を有する。
This fabric 2 is constructed by weaving together a fabric 2a extending in the entry direction and fibers 2b extending in the direction B orthogonal to the entry direction. The fibers 2a in the incoming direction are each fiber independent (7
Has electrical conductivity.

第1図に示す織物2の入方向の導電性横維2a。Conductive transverse fibers 2a in the entrance direction of the fabric 2 shown in FIG.

2aの間に焼結後に非導電性を示す繊維、または焼結後
消失する繊維を織り込んでもよい。焼結後に導電性を有
する繊維と(−では9例えばニッケル9インコネル系合
金9モリブデン等の繊維があげられる。焼結後に非導電
性を有する繊維としては。
Fibers that exhibit non-conductivity after sintering or fibers that disappear after sintering may be woven between 2a. Examples of fibers that are electrically conductive after sintering and fibers that are electrically non-conductive after sintering include fibers such as those made of nickel, nine inconel alloys, and molybdenum.

例えば、 5iC−TiC系。Al2O3系及びガラス
系等の繊維があげられる。焼結後、消失する繊維として
は、カーボン繊維またはナイロン系、ポリエステル系、
ビニロン系、アクリル系等の有機合成繊維等があげられ
、これらの線維は焼結時に炭酸ガスとなって空気中へ放
出されるものである。
For example, 5iC-TiC system. Examples include Al2O3-based fibers and glass-based fibers. Fibers that disappear after sintering include carbon fiber, nylon type, polyester type,
Examples include organic synthetic fibers such as vinylon type and acrylic type fibers, and these fibers become carbon dioxide gas and are released into the air when sintered.

第1図のB方向の繊維2bとしては上記の焼結後に非導
電性を示す繊維9または焼結後に消失1−る繊維が使用
できる。上記の入方向の繊維2aとB方向の繊維2bは
使用焼結温度等により適宜決定すればよい。
As the fibers 2b in direction B in FIG. 1, the above-mentioned fibers 9 that exhibit non-conductivity after sintering or fibers that disappear after sintering can be used. The fibers 2a in the input direction and the fibers 2b in the B direction may be appropriately determined depending on the sintering temperature used and the like.

上記の方法を用いて得られた。グリーンシート1と焼結
後に入方向にのみ導電性の有する織物2を、任意の枚数
積層した後、圧着し織物2をグリーンシート1の中に埋
没させ7所定厚みのある積層体3とする。
Obtained using the method described above. A desired number of green sheets 1 and woven fabrics 2, which are conductive only in the inward direction after sintering, are laminated and then pressed together to bury the woven fabrics 2 in the green sheets 1 to form a laminate 3 having a predetermined thickness.

グリーンシート1および織物2の積層枚数は。The number of stacked green sheets 1 and fabric 2 is as follows.

目的とするセラミックス複合体の大きざによって適宜決
定されればよいが、あまり厚くなると圧着しにくくなる
ので、グリーンシート1及び織物2の厚さが10〜= 
100朋オーダーの場合には10・〜・1000枚程度
程度ましい。より厚いものを得たい場合には、−度積層
圧着した積層体を再び複数積層して圧着すればよい。圧
着の条件は、適宜決定されればよい。好ましくは30〜
120℃で1〜100kg/emの圧力で1〜10分加
圧するのが適当である。この工程により、焼結前のセラ
ミックス複合体3を得ることができる。次いで、上記積
層体3を加熱炉で加熱j7て空気雰囲気中で脱脂、焼結
し、第2図に示すような異方導電性セラミックス複合体
が得られる。焼結温度は、使用するセラミックス粉末。
It may be determined as appropriate depending on the size of the desired ceramic composite, but if it is too thick, it will be difficult to pressure bond, so the thickness of the green sheet 1 and the fabric 2 should be 10~=
In the case of an order of 100 tomo, approximately 10 to 1000 pieces is recommended. If it is desired to obtain a thicker layer, a plurality of laminates that have been laminated and crimped together may be laminated again and crimped. The conditions for crimping may be determined as appropriate. Preferably 30~
It is appropriate to apply pressure at 120° C. and a pressure of 1 to 100 kg/em for 1 to 10 minutes. Through this step, a ceramic composite 3 before sintering can be obtained. Next, the laminate 3 is heated in a heating furnace, degreased and sintered in an air atmosphere to obtain an anisotropically conductive ceramic composite as shown in FIG. The sintering temperature depends on the ceramic powder used.

繊維の種類によって適宜決定すればよい。好ましくは1
〜b 返しながら400〜600℃まで昇温することにより。
It may be determined as appropriate depending on the type of fiber. Preferably 1
~b By heating up to 400-600°C while turning.

積層体3を脱脂し、しかる後再度昇温しで700〜16
50℃で1〜24時間焼結する。
The laminate 3 is degreased and then heated again to 700-16
Sinter at 50°C for 1-24 hours.

第2の方法 第2の方法について説明する。Second method The second method will be explained.

所定方向にのみ導電性を有する織物としては。As a textile that is conductive only in a certain direction.

第1の方法で使用したものが使用できる。The one used in the first method can be used.

まず該織物4−1空隙部を有する型の中に複数枚積層す
るが。導電性を有する織物同士が接触する、ことを防ぐ
ことを1的とi〜で、焼結後に全面非導電性となる織物
を導電性を有する織物の間にはざみ込んでもよい。その
後、型の空隙部に絶縁性セラミックス粉末を主成分とす
るグリーンのスラリーを充填j〜。該織物を内包するグ
リーン体を形成する。その形成方法としては。加圧成形
、減圧下での注入成形等があげられる。必要とあれば、
型の空隙部にグリーン体を形成した後に型の一部を外し
、成形体中の溶剤等を飛散させてもよい。
First, a plurality of fabrics 4-1 are laminated in a mold having a void. In order to prevent the conductive fabrics from coming into contact with each other, a fabric that becomes entirely non-conductive after sintering may be sandwiched between the conductive fabrics. After that, the cavity of the mold is filled with a green slurry whose main component is insulating ceramic powder. A green body containing the fabric is formed. As for its formation method. Examples include pressure molding and injection molding under reduced pressure. If necessary,
After the green body is formed in the cavity of the mold, a part of the mold may be removed to scatter the solvent, etc. in the molded body.

該方法で使用されているグリーン体を形成するグリーン
のスラリーは、セラミヅクス粉末、有機結合剤、溶剤、
必要とあれば可塑剤等からなるものであり、セラミック
ス粉末、有機結合剤、溶剤1可塑剤は第1の方法におい
てグリーンシートを作成するのに用いた種類のものが使
用でき、また有機結合剤および溶剤の添加量もグリーン
シートを作成するのに用いた添加量が使用できる。得ら
れたグリーン体を1個以上積層した後、圧着する。
The green slurry forming the green body used in the method includes ceramidox powder, an organic binder, a solvent,
If necessary, it consists of a plasticizer, etc. Ceramic powder, organic binder, solvent 1 The plasticizer can be of the type used to create the green sheet in the first method, and the organic binder Also, the amount of solvent used can be the same as that used to create the green sheet. One or more of the obtained green bodies are laminated and then press-bonded.

圧着の条件は9第1の方法と同様の条件が使用できる。As the conditions for crimping, the same conditions as in the first method can be used.

次いで第1の方法と同様の脱脂。焼結方法にて、脱脂、
焼結を行うことかできる。
Then degreasing as in the first method. By sintering method, degreasing,
It is possible to perform sintering.

第3の方法 次に。第3の方法について説明する。Third method next. The third method will be explained.

まず、型中にセラミックス粉末を主成分とするグリーン
のスラリーを充填する。なお織物が簡便に埋没されるこ
とを目的と17で、スラリーの温度を」−げて粘度を低
くしてもよい。上記スラリーはセラミックス粉末。有機
結合剤、溶剤、必要とあれば可塑剤等からなるものであ
り、セラミックス粉末、有機結合剤9溶剤、可塑剤は第
1の方法においてグリーンシートを作成するのに用いた
種類のものが使用でき、また有機結合剤および溶剤の添
加量もグリーンシートを作製するのに用いた添加量が使
用できる。また所定方向にのみ導電性を有する織物は第
1の方法で使用したものが使用できる。
First, a mold is filled with a green slurry whose main component is ceramic powder. For the purpose of easily embedding the fabric, the temperature of the slurry may be increased to lower the viscosity in step 17. The slurry above is ceramic powder. It consists of an organic binder, a solvent, a plasticizer, etc. if necessary, and the ceramic powder, organic binder9 solvent, and plasticizer are of the type used to create the green sheet in the first method. Also, the amounts of the organic binder and solvent used for producing the green sheet can be used. Furthermore, the fabric used in the first method can be used as the fabric having conductivity only in a predetermined direction.

該織物を任意の方法で、1枚以上スラリー中に埋没する
が、焼結後導電繊維同士が接続j〜ないことを目的とし
て、焼結後に両方向とも導電性を有しない繊維で織った
織物を導電性を有する織物の間に入れ”Cもよい。その
後、スラリーを乾煙させ。
One or more pieces of the fabric are buried in the slurry by any method, but with the aim of preventing the conductive fibers from connecting with each other after sintering, a fabric woven with fibers that are not conductive in both directions after sintering is used. It may also be placed between conductive fabrics.Then, the slurry is dried and smoked.

織物を含むグリーン体とした後に型から外す。得られた
グリーン体を1個用上積層1j l その後圧着する。
After forming a green body containing fabric, it is removed from the mold. An upper layer 1j l of the obtained green body is then crimped.

圧着の条件は。第1の方法で使用1〜だ条件が使用でき
る。次いで、第1の方法1と同様の脱脂。
What are the conditions for crimping? In the first method, conditions 1 to 1 can be used. Next, degreasing as in the first method 1.

焼結方法にて、脱脂。焼結を1−jうことかできる。Degreased using sintering method. Sintering can be carried out 1-j.

かかる本発明方法を用いることにより、任意の厚みを有
1〜且つ導電密度が高い異方導電性セラミックス複合体
を簡便に作成することができる。
By using the method of the present invention, an anisotropically conductive ceramic composite having an arbitrary thickness and a high conductive density can be easily produced.

なお、前記焼結後に所定方向にのみ導電性を有する織物
と(−で、比抵抗の比較的大きな抵抗体よりなる繊維と
焼結後に消失したり非導電化(7たすする繊維とを織り
込んで得られる繊維を用いることもできる。
In addition, fabrics that have conductivity only in a predetermined direction after sintering, fibers that are made of a resistor with a relatively large resistivity (-), and fibers that disappear after sintering or become non-conductive (7+) are woven. Fibers obtained in can also be used.

(作用) 焼結後に所定方向にのみ導電性を有する織物を用いるこ
とによって従来のように所定形状のバクーンを形成する
必要なく、確実に所定方向に導電性を有する導電体を絶
縁性セラミックス中に形成することができ、また織物の
繊維径。間隔等を変えることによって、複合体の導電密
度も任意に変えることができる。
(Function) By using a fabric that is conductive only in a predetermined direction after sintering, it is possible to reliably insert a conductor that is conductive in a predetermined direction into an insulating ceramic without the need to form a bag in a predetermined shape as in the past. It can also form the fiber diameter of the fabric. By changing the spacing etc., the conductive density of the composite can also be changed arbitrarily.

(実施例) 次に9本発明の詳細な説明する。なお、以下に単に1部
」とあるのは「重量部」を意味する。
(Example) Next, nine detailed explanations of the present invention will be given. In addition, below, "1 part" means "part by weight."

実施例1 平均粒径2虜のアルミナ粉末30部、平均粒径3虜のB
an S+0a−B20a−Can系ガラスフリット粉
末70部、ポリビニブチラール12部、ジブチルフクレ
ー1−4.8i1ffi、)ルエン24部、メチルエチ
ルケトン18部及びイソプロピルアルコール18部をア
ルミナボールミルに供給し、3時間混練I−でスラリー
を得。
Example 1 30 parts of alumina powder with an average particle size of 2 mm, B with an average particle size of 3 mm
70 parts of an S+0a-B20a-Can glass frit powder, 12 parts of polyvinibutyral, 1-4.8i1ffi of dibutyl fucury, 24 parts of luene, 18 parts of methyl ethyl ketone, and 18 parts of isopropyl alcohol were fed into an alumina ball mill for 3 hours. A slurry was obtained by kneading I-.

得られたスラリーをドクターブレード型グリーンシート
作製機に供給し、ポリエチレンテ1/フタレートフィル
ム上に塗布乾燥し、厚さ200 is、縦横100 X
 150mmのグリーンシートを得た。
The obtained slurry was supplied to a doctor blade type green sheet making machine, coated on a polyethylene terephthalate film and dried to form a sheet with a thickness of 200 is and a length and width of 100 x.
A 150 mm green sheet was obtained.

一方、導電性繊維と12でニッケル細線(φ10(ba
)を用い、導電性繊維の方向と直交する方向へ延び且つ
焼結後に焼失する繊維:としてナイロン繊維(φ200
 )J■)を用いη′9両繊維を編み込むことにより9
一方向にのみ導電性の有する編物を得た。
On the other hand, a conductive fiber and a nickel thin wire (φ10 (ba)
), and nylon fiber (φ200
) J■) by knitting both η′9 fibers.
A knitted fabric having conductivity in only one direction was obtained.

該グリーンシートと該織物を5(1”5柵の幅にカット
し、それぞれのシートを220枚積層重Jj その後1
60℃、 100kgf/eatの条件で10分間プレ
スし、50×50X5Il]IiIの積層体を得た。
The green sheets and the fabric were cut into 5 (1") widths, and each sheet was laminated with 220 sheets, then 1
Pressing was carried out for 10 minutes at 60° C. and 100 kgf/eat to obtain a laminate of 50×50×5Il]IiI.

該幀層体を空気雰囲気中の加熱炉に供給し、1.5t/
hrで昇温j〜500tで2時間保持して脱脂し。
The straw layered body was supplied to a heating furnace in an air atmosphere, and a heating rate of 1.5t/
Degrease by holding at 500 t for 2 hours.

次いで100℃/11rで昇温し700℃で2時間焼結
して異方導電性セラミックス複合体を得た。
Next, the temperature was raised at 100°C/11r and sintered at 700°C for 2 hours to obtain an anisotropically conductive ceramic composite.

得られた異方導電性セラミックス複合体の導電方向と垂
直な2つの壁を研磨し、その後に導電方向の比抵抗を高
抵抗測定器で3点測定した。その測定結果の平均は1゜
6X10″’Ωcmであった。また。
Two walls perpendicular to the conduction direction of the obtained anisotropically conductive ceramic composite were polished, and then the specific resistance in the conduction direction was measured at three points using a high resistance measuring device. The average of the measurement results was 1°6×10″Ωcm.Also.

ナイロン繊維が存在した方向の比抵抗を3点測定した。The specific resistance in the direction in which the nylon fibers were present was measured at three points.

その測定結果の平均は6.8X10′4であった。The average of the measurement results was 6.8×10'4.

実施例2 導電性繊維j−でインコネル系耐熱合金細線(φ100
即)を用い、導電性繊維と直交する方向へ延び且つ焼結
後に焼失する繊維としてナイロン繊維(φ200遍)を
用いて1両梼維を編み込むことに5より、一方向にのみ
導電性の有する織物を得た。
Example 2 Inconel heat-resistant alloy thin wire (φ100
By using nylon fibers (φ200 diameter) as fibers that extend in the direction perpendicular to the conductive fibers and are burnt out after sintering, the fabric is conductive in only one direction. Obtained textiles.

実施例1と同様にして得られたグリーンシートと該織物
とを50×5闘の幅にカットし、それぞれのシートを2
20枚積層上、その後160℃、  101001c/
cn!の条件で10分間プレスし、50X50X5mm
の積層体を得た。
The green sheet and the fabric obtained in the same manner as in Example 1 were cut into a width of 50 x 5, and each sheet was cut into 2 pieces.
Laminated 20 sheets, then 160℃, 101001c/
cn! Press for 10 minutes under the conditions of 50X50X5mm
A laminate was obtained.

該積層体を実施例1と同様の方法で脱脂、焼結し、異方
導電性セラミックス複合体を得た。
The laminate was degreased and sintered in the same manner as in Example 1 to obtain an anisotropically conductive ceramic composite.

得られた異方導電性セラミックス複合体の導電方向と垂
直な2つの壁を研磨し、その後に導電方向の比抵抗を高
抵抗測定器で3点測定1−だ、3その測定結果の平均は
1.4X 10−’ΩCI++であった。またナイロン
繊維が存在しノ、一方向の比抵抗を3点測定した。その
測定結果の平均は6. IX 10”であった。
Polish the two walls perpendicular to the conduction direction of the obtained anisotropically conductive ceramic composite, and then measure the specific resistance in the conduction direction at three points using a high-resistance measuring device.1-3The average of the measurement results is It was 1.4X 10-'ΩCI++. Furthermore, in the presence of nylon fibers, the specific resistance in one direction was measured at three points. The average of the measurement results is 6. IX 10”.

実施例3 平均粒径2ノ浦のアルミナ粉末30部、平均粒径3μm
のBan−3i02−82[]]3−Ca1lBaO−
SiOa系ガラスフリット粉末70部ポリビニルブチラ
ール12部。ジブチルフタ1ノート498部、トルエン
30部、ブタノール30部をアルミナボールミルに供給
し、3時間混練してスラリーを得た。
Example 3 30 parts of alumina powder with an average particle size of 2 noura, average particle size of 3 μm
Ban-3i02-82[]]3-Ca1lBaO-
70 parts of SiOa glass frit powder 12 parts of polyvinyl butyral. 498 parts of dibutyl phthalate, 30 parts of toluene, and 30 parts of butanol were supplied to an alumina ball mill and kneaded for 3 hours to obtain a slurry.

実施例1と同様にして得られた一方向のみに導電性の有
する織物を、 50X1.Ommの幅にカットシた後、
 5Qx iox 3 mm117)減圧注入成形の型
の空隙部に7層積層した。該織物が積層されている型内
を0.ITorrに減圧した後、該スラリーを型の中に
吸引して空隙部を埋め、その後、L部の而のみを外し。
A woven fabric having conductivity in only one direction obtained in the same manner as in Example 1 was made into a 50×1. After cutting to a width of 0mm,
5Qx iox 3 mm 117) Seven layers were laminated in the cavity of a vacuum injection molding mold. The inside of the mold in which the fabric is laminated is heated to 0. After reducing the pressure to ITorr, the slurry was sucked into the mold to fill the void, and then only the L part was removed.

乾煙I2て成形体を得た。A molded product was obtained by dry smoke I2.

上記プロセスを繰り返し、該成形体を10個作製し、1
0個の成形体を積層後に160℃、 100kgf/c
n!の条件で10分間プレスし、 50X IOX 2
0+[1[+1の積層体を得た。
The above process was repeated to produce 10 molded bodies, and 1
160℃, 100kgf/c after laminating 0 molded bodies
n! Press for 10 minutes under the conditions of 50X IOX 2
A laminate of 0+[1[+1] was obtained.

該成形体を実施例IL同様の方法で脱脂、焼結し、異方
導電性セラミックス複合体を得た。
The molded body was degreased and sintered in the same manner as in Example IL to obtain an anisotropically conductive ceramic composite.

得られた異方導電性セラミックス複合体の導電方向と垂
直な2つの壁を研磨(2゜その後に導電方向の比抵抗を
高抵抗測定器で3点測定(−た。その測定結果の平均は
1.5 xlO−′Ωcmであった。またナイロン繊維
が存在1.た方向の比抵抗イ分・:1点測定した。その
測定結果の平均は7.7X10”1″″t)、、た1゜
実施例4 実施例3と同様にして得られたスラリ −を51)×1
083mmの型の中に充填(〜だ。その後。実施例1と
同様にj−で得られた。一方向のみに導電性を有する織
物を、 50X10ffllllの幅にカットした後、
該スラリーが充填された型の中に7枚埋没させ、乾煙し
て成形体を得た。
Two walls perpendicular to the conductive direction of the obtained anisotropically conductive ceramic composite were polished (2°), and then the specific resistance in the conductive direction was measured at three points with a high resistance measuring device (-).The average of the measurement results was 1.5xlO-'Ωcm. Also, the specific resistance in the direction in which the nylon fiber existed was measured at one point.The average of the measurement results was 7.7x10"1""t), 1゜Example 4 The slurry obtained in the same manner as in Example 3 was mixed with 51)×1
Filled into a 083 mm mold (after that, J- was obtained in the same manner as in Example 1. After cutting the fabric having conductivity in only one direction to a width of 50 x 10 ffllll,
Seven pieces were buried in a mold filled with the slurry and dried to obtain a molded article.

上記のプロセスを繰り返し、該成形体を10個作成し、
 10個の成形体を積層後に]60℃、 100kgf
/eIIiの条件で10分間ブ1ノスし、 50X I
OX 20a+mの積層体を得プこ。
Repeat the above process to create 10 molded bodies,
After laminating 10 molded bodies] 60℃, 100kgf
/eIIi condition for 10 minutes, 50X I
Obtain a laminate of OX 20a+m.

得られた異方導電性セラミックス複合体の導電方向と垂
直な2つの壁を研磨し、その後に導電方向の比抵抗を高
抵抗測定器で3点測定1.た。その測定結果の平均は1
.7X10−’Ωcmであった。またナイロン繊維が存
在した方向の比抵抗を3点測定した。その測定結果の平
均は7.0X10”であった。
Two walls perpendicular to the conduction direction of the obtained anisotropic conductive ceramic composite were polished, and then the specific resistance in the conduction direction was measured at three points using a high resistance measuring device.1. Ta. The average of the measurement results is 1
.. It was 7×10-'Ωcm. Further, the specific resistance in the direction in which the nylon fibers were present was measured at three points. The average of the measurement results was 7.0×10”.

(発明の効果) 本発明は。所定方向1、゛のみ導電性を有する織物を絶
縁性)パラミックス粉末を主成分とするグリ・−ノ体中
に形成1−2.ぞの後空気雰囲気中で焼結するため、絶
縁性(−ノミックス中に導電体を簡単に埋没することが
で、〜、従来の方法のように導電パターンを形成する工
程が不要で、簡便に異方導電性セラミックス複合体を得
ることができる。
(Effects of the invention) The present invention has the following features. 1-2. Forming a woven fabric having conductivity only in a predetermined direction into a green body mainly composed of paramix powder (insulating) 1-2. Since the conductor is then sintered in an air atmosphere, the conductor can be easily buried in the insulating material (-), which eliminates the need for the process of forming a conductive pattern as in conventional methods. Anisotropically conductive ceramic composites can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明方法の一過程を模式的に示す
斜視図である。 1・・・グリーンシート、2・・・焼結後に所定方向の
みに導電性を有する織物、3・・・積層体。 以上
FIGS. 1 and 2 are perspective views schematically showing one step of the method of the present invention. DESCRIPTION OF SYMBOLS 1... Green sheet, 2... Fabric that has conductivity only in a predetermined direction after sintering, 3... Laminated body. that's all

Claims (1)

【特許請求の範囲】 1、絶縁性セラミックス粉末を主成分とするグリーンシ
ートと、焼結後に所定方向にのみ導電性を有する織物と
を複数枚積層した後に圧着し、空気雰囲気中で焼結を行
うことを特徴とする異方導電性セラミックス複合体の製
造方法。 2、焼結後に所定方向にのみ導電性を有する織物を空隙
部を有する型内に1枚以上積層し、その後に型の空隙部
に絶縁性セラミックス粉末を主成分とするスラリーを充
填して該織物を含むグリーン体を作り、該グリーン体を
1個以上積層、圧着し、空気雰囲気中で焼結を行うこと
を特徴とする異方導電性セラミックス複合体の製造方法
。 3、絶縁性セラミックス粉末を主成分とするスラリー中
に、焼結後に所定方向にのみ導電性を有する織物を1枚
以上埋没し、該織物を含むグリーン体を作り、該グリー
ン体を1個以上積層、圧着し、空気雰囲気中で焼結を行
うことを特徴とする異方導電性セラミックス複合体の製
造方法。
[Claims] 1. A plurality of green sheets mainly composed of insulating ceramic powder and a woven fabric that is conductive only in a predetermined direction after sintering are laminated and pressed together, and then sintered in an air atmosphere. A method for producing an anisotropically conductive ceramic composite comprising: 2. After sintering, one or more fabrics that are conductive only in a predetermined direction are laminated in a mold with voids, and then the voids of the mold are filled with a slurry containing insulating ceramic powder as the main component. A method for producing an anisotropically conductive ceramic composite, which comprises making a green body including a woven fabric, laminating and pressing one or more of the green bodies, and sintering the green body in an air atmosphere. 3. bury one or more fabrics that are conductive only in a predetermined direction after sintering in a slurry containing insulating ceramic powder as a main component to create a green body containing the fabric; A method for producing an anisotropically conductive ceramic composite, characterized by laminating, pressing, and sintering in an air atmosphere.
JP29164589A 1989-11-09 1989-11-09 Manufacture method for anisotropic electrically conductive ceramic composite Pending JPH03151258A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29164589A JPH03151258A (en) 1989-11-09 1989-11-09 Manufacture method for anisotropic electrically conductive ceramic composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29164589A JPH03151258A (en) 1989-11-09 1989-11-09 Manufacture method for anisotropic electrically conductive ceramic composite

Publications (1)

Publication Number Publication Date
JPH03151258A true JPH03151258A (en) 1991-06-27

Family

ID=17771631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29164589A Pending JPH03151258A (en) 1989-11-09 1989-11-09 Manufacture method for anisotropic electrically conductive ceramic composite

Country Status (1)

Country Link
JP (1) JPH03151258A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0858894A3 (en) * 1997-01-31 1999-10-13 Kyocera Corporation Member having ultrafine groove, member for passage, method of manufacturing the same, ink jet printer head using the same, and ink jet printer head

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59111393A (en) * 1982-12-16 1984-06-27 松下電器産業株式会社 Method of producing ceramic multilayer
JPS61179014A (en) * 1985-08-23 1986-08-11 アルプス電気株式会社 Manufacture of anisotropic conductive elastomer sheet

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59111393A (en) * 1982-12-16 1984-06-27 松下電器産業株式会社 Method of producing ceramic multilayer
JPS61179014A (en) * 1985-08-23 1986-08-11 アルプス電気株式会社 Manufacture of anisotropic conductive elastomer sheet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0858894A3 (en) * 1997-01-31 1999-10-13 Kyocera Corporation Member having ultrafine groove, member for passage, method of manufacturing the same, ink jet printer head using the same, and ink jet printer head

Similar Documents

Publication Publication Date Title
JP3666321B2 (en) Multilayer ceramic substrate and manufacturing method thereof
AU617745B2 (en) Hot pressing dense ceramic sheets for electronic substrates and for multilayer ceramic electronic substrates
US5368667A (en) Preparation of devices that include a thin ceramic layer
US3518756A (en) Fabrication of multilevel ceramic,microelectronic structures
JPH03151258A (en) Manufacture method for anisotropic electrically conductive ceramic composite
JP2024152961A (en) Method for manufacturing ceramic sintered body, method for manufacturing electrode-embedded member, and electrode-embedded member
JP2644876B2 (en) Method for producing functional ceramic article
JPH06151044A (en) Ceramics heater and manufacture thereof
CN112568506A (en) Ceramic heating body and manufacturing method thereof
JP3327214B2 (en) Method for manufacturing multilayer ceramic substrate
CN100551208C (en) Ceramic substrate manufacture method and the electronic component modular that uses this ceramic substrate
JP2009137830A (en) Bonding material and method of manufacturing ceramic bonded body
JP4439257B2 (en) Ceramic green sheet and manufacturing method thereof
JP2732171B2 (en) Manufacturing method of ceramic circuit board
KR100459868B1 (en) Composition for low temperature sinterable ceramic heater and fabrication method of ceramic heater
JPH1192256A (en) Conductor for inorganic substrate, paste for conductor and inorganic multilaered substrate using the same
KR20150082934A (en) Multi-layer ceramic substrate and method for manufacturing the same
JPH06164143A (en) Manufacture of multilayer hybrid circuit
JP4522963B2 (en) Heating device
JPH06183860A (en) Multifunctional material
JP2006237493A (en) Wiring board
JPH01195685A (en) Manufacture of ceramic heater
JPH03155008A (en) Anisotropic electrically conductive ceramics complex and its manufacture
JPH09260210A (en) Manufacture of composite electronic part and divided lamination article used for it
JPH04224179A (en) Production of ceramic composite