JPH03151099A - Method for controlling batch operated activated sludge treatment - Google Patents
Method for controlling batch operated activated sludge treatmentInfo
- Publication number
- JPH03151099A JPH03151099A JP1286770A JP28677089A JPH03151099A JP H03151099 A JPH03151099 A JP H03151099A JP 1286770 A JP1286770 A JP 1286770A JP 28677089 A JP28677089 A JP 28677089A JP H03151099 A JPH03151099 A JP H03151099A
- Authority
- JP
- Japan
- Prior art keywords
- value
- treatment
- aeration
- activated sludge
- oxygen utilization
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Activated Sludge Processes (AREA)
Abstract
Description
【発明の詳細な説明】
A、産業上の利用分野
本発明は水処理方法に係り、特に回分式活性汚泥処理制
御方法に関する。DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application The present invention relates to a water treatment method, and particularly to a batch activated sludge treatment control method.
B0発明の概要
本発明は、曝気槽と沈澱槽の両機能を備えた回分槽中の
被処理水の酸素利用速度を基に曝気を制御する回分式汚
泥処理方法において、
酸素利用速度値の変化率を演算し、その演算結果から曝
気処理の完了時点を算出することにより、処理効率の向
上を図った回分式汚泥処理制御方法を得る。B0 Summary of the Invention The present invention provides a batch sludge treatment method that controls aeration based on the oxygen utilization rate of water to be treated in a batch tank having both the functions of an aeration tank and a settling tank. By calculating the rate and calculating the completion point of aeration treatment from the calculation result, a batch type sludge treatment control method that improves treatment efficiency is obtained.
C1従来の技術
今日における排水処理は、標準活性汚泥法が全流であり
、大部分の排水処理の分野に適用され、信頼性の高い技
術として確立されている。しかし、近年、大都市、大規
模事業場の排水処理が普及し、これに伴い小規模の汚泥
排水源が公共用水域への汚濁負荷に占める割合が相対的
に増加したことにより、排水処理施設建物の重点が、小
規模かつ分散型へと移行しつつある。さらに閉鎖性水域
の富栄養化の問題があり、排水中の窒素、リンの除去も
合わせて求められている。以上のような状況に対応でき
る処理方法として現在回分式活性汚泥法が注目されてい
る。回分式活性汚泥法は、同一の槽で曝気槽と沈澱槽の
両方の機能を兼ねるものである。そして、次のような特
徴を持っている。C1 Prior Art The standard activated sludge method is the standard activated sludge method for wastewater treatment today, which is applied to most fields of wastewater treatment and has been established as a highly reliable technology. However, in recent years, wastewater treatment in large cities and large-scale business establishments has become widespread, and as a result, the proportion of small-scale sludge wastewater sources in the pollution load on public water bodies has increased relatively. The focus of buildings is shifting to smaller and more decentralized structures. Furthermore, there is a problem of eutrophication in closed water bodies, and the removal of nitrogen and phosphorus from wastewater is also required. The batch activated sludge process is currently attracting attention as a treatment method that can cope with the above situations. In the batch activated sludge method, the same tank functions as both an aeration tank and a settling tank. And it has the following characteristics.
l) 汚泥のバルキングが起こりにくい。l) Sludge bulking is less likely to occur.
2) 処理工程中に曝気停止期間を導入する場合は、曝
気に要するブロワの電力費を節減できる。2) If an aeration stop period is introduced during the treatment process, the power cost for the blower required for aeration can be reduced.
3) 装置の構成が簡単であり、設置費、維持管理費か
連続式より安い。3) The configuration of the device is simple, and the installation and maintenance costs are cheaper than continuous type.
4) 適切な運転操作により、生物学的脱窒、脱リンが
可能である。4) Biological denitrification and dephosphorization are possible through appropriate operation.
D0発明が解決しようとする課題
回分式活性汚泥処理法における運転方法は、有機物除去
主眼とするもの、さらに窒素、リンまでも除去対象とす
るかにより、異なる処理サイクルをとることになる。し
かし、その際の運転サイクルは時間設定を固定とするた
め、回分活性汚泥処理をより効率よく運転するための流
入水の質量の変化に応じた運転ができない状況にある。D0 Problems to be Solved by the Invention The operating method in the batch activated sludge treatment method takes different treatment cycles depending on whether the main objective is to remove organic matter or whether nitrogen and phosphorus are also to be removed. However, since the time setting of the operation cycle is fixed, it is not possible to operate the system in response to changes in the mass of inflow water, which would be necessary to operate the batch activated sludge treatment more efficiently.
本発明は上述の問題点に鑑みてなされたもので、その目
的は酸素利用速度値を基に曝気処理を制御することによ
り、運転効率の向上を図った活性汚泥処理制御方法を提
供することである。The present invention has been made in view of the above-mentioned problems, and its purpose is to provide an activated sludge treatment control method that improves operational efficiency by controlling aeration treatment based on oxygen utilization rate values. be.
E0課題を解決するための手段と作用
本発明は、上記の目的を達成するために、曝気槽と沈澱
槽の機能を備えた回分槽内の被処理水の酸素利用速度に
基づいて曝気を制御する回分式汚泥処理制御方法におい
て、前記被処理水中の活性汚泥の酸素利用速度値を測定
し、この測定値の変化率を演算すると共に、この演算値
を基に曝気処理の完了時点を決定する。Means and Effects for Solving the E0 Problem In order to achieve the above object, the present invention controls aeration based on the oxygen utilization rate of the water to be treated in a batch tank equipped with the functions of an aeration tank and a settling tank. In the batch sludge treatment control method, the oxygen utilization rate value of activated sludge in the water to be treated is measured, the rate of change of this measured value is calculated, and the completion point of the aeration treatment is determined based on this calculated value. .
F、実施例
回分式活性汚泥処理をより効率よく運転するためには、
流入水の質量に応じた運転を行う必要がある。このため
には処理過程のa機物濃度変化をモニタリングし、処理
終了時間を決定しなければならない。F. Example In order to operate batch activated sludge treatment more efficiently,
It is necessary to operate according to the mass of inflow water. For this purpose, it is necessary to monitor changes in the concentration of a substance during the treatment process and determine the time at which the treatment ends.
しかし、処理が終了したかどうかの判断は、生物酸化さ
れる有機物が残存しているかが判れば良い訳であるから
、有機物濃度を直接測定しな・くても、間接的にでも出
来るだけ簡易的に濃度変化を把握できればよい。However, since it is sufficient to determine whether or not the treatment has been completed as long as it is possible to determine whether or not organic matter to be biooxidized remains, it is as simple as possible to measure the organic matter concentration indirectly, even if it is not necessary to directly measure the organic matter concentration. It is sufficient if the concentration changes can be grasped visually.
そこで、本発明は、回分式活性汚泥処理槽内混合液の酸
素利用速度を定時間ごとに測定し、その値の変化より処
理が完了したかを判定し、運転の制御を行わせようとす
るものである。Therefore, the present invention measures the oxygen utilization rate of the mixed liquid in the batch activated sludge treatment tank at regular intervals, determines whether the treatment has been completed based on changes in the value, and controls the operation. It is something.
酸素利用速度(以後r1と記載する)は、一般に次式に
て表される。The oxygen utilization rate (hereinafter referred to as r1) is generally expressed by the following formula.
r r” a ”△S + b −M −−−−−−
(1)ただし、△Sは除去基質量、Mは活性汚泥量、a
は単位除去基質当たりの酸素消費量、bは活性汚泥の内
生呼吸速度である。r r” a ”△S + b −M −−−−−−
(1) However, △S is the amount of removed substrate, M is the amount of activated sludge, a
is the oxygen consumption per unit removed substrate, and b is the endogenous respiration rate of activated sludge.
回分処理においては、通常、新たな有機物の流入がない
ので有機物の浄化に従って、残存有機物量も減少して行
くため、酸素利用速度rrの値しそれに伴って小さくな
り、生物処理可能な有機物が無くなった状態では、(1
)式においてr、=b−M ・・・・・・(2)
となり、はぼ一定値をとることになる。In batch processing, there is usually no inflow of new organic matter, so as the organic matter is purified, the amount of residual organic matter also decreases, so the oxygen utilization rate rr decreases accordingly, and there is no organic matter that can be biologically treated. (1
) In the equation, r,=b-M (2), and thus takes an approximately constant value.
すなわち、第2図の回分式活性汚泥法における水質変化
で示すように、有機物濃度は曝気経過とともに低下し、
X時以降はほぼ一定となる。従って、このXの時点をr
r値によって見付けて曝気を停止すれば、不必要な曝気
エネルギーの削減につながることになる。In other words, as shown in the changes in water quality in the batch activated sludge method in Figure 2, the organic matter concentration decreases as the aeration progresses.
After X o'clock, it becomes almost constant. Therefore, this time point of X is r
If the aeration is stopped based on the r value, unnecessary aeration energy can be reduced.
第1図は上述の制御方法を実施するための回分式活性汚
泥処理制御装置を示すもので、この装置は大別して回分
式活性汚泥処理部と酸素利用速度測定部からなる。FIG. 1 shows a batch type activated sludge treatment control device for carrying out the above-mentioned control method, and this device is roughly divided into a batch type activated sludge treatment section and an oxygen utilization rate measurement section.
第1図において里は回分槽、2は回分槽I内に配設され
た散気部、3はブロワ(B)、4は回分槽!内に配設さ
れたフロート式の上澄水吸込部、5は上澄水排出ポンプ
(PI)、6はレベルスイッチ、7は余剰汚泥引抜ポン
プで、これらによって回分式活性汚泥処理部8が構成さ
れる。また、第1図において9は酸素利用速度測定セン
サ、IOは測定センサ9の検出信号S1を人力として酸
素利用速度を演算する酸素利用速度計測器、11は計測
器IOの計測信号S2を人力として回分式活性処理部8
を制御する演算制御部で、これらによって酸素利用速度
制御部12が構成される。In Figure 1, Sato is a batch tank, 2 is a diffuser installed in batch tank I, 3 is a blower (B), and 4 is a batch tank! A float-type supernatant water suction section disposed inside, 5 a supernatant water discharge pump (PI), 6 a level switch, and 7 an excess sludge extraction pump, these constitute a batch-type activated sludge treatment section 8. . In FIG. 1, reference numeral 9 indicates an oxygen utilization rate measuring sensor, IO indicates an oxygen utilization rate measuring device that calculates the oxygen utilization rate using the detection signal S1 of the measuring sensor 9 as human power, and 11 indicates an oxygen utilization rate measuring device that uses the measurement signal S2 of the measuring device IO as human power. Batch activation processing section 8
These components constitute an oxygen utilization rate control section 12.
上記構成の制御装置において、始めに原水を回分槽1に
導入し、レベルスイッチ6により上限レベル(HWL)
を検知したら原水の流入を止め、ブロワ3を運転して回
分槽1内に溶存酸素を供給する。溶存酸素を供給すると
共に、活性汚泥と流入原水を混合し、水質の浄化を行う
。処理が完了したらブロワ3を停止して活性汚泥と処理
水とを固液分離する。固液分離が終了した時点で、上澄
水排出ポンプ5を運転し、回分槽1内の水面上のフロー
ト式上澄水吸込部4から処理水を槽外へ排出する。この
とき処理水の排出に伴って上澄水吸込部4も水面の降下
に追従するが、レベルスイッチ6が下限レベル(LWL
)を検知した時点で上澄水排出ポンプ5が停止する。ま
た、必要に応じて余剰汚泥引抜ポンプ7を運転し余剰汚
泥を排出する。以上で1つの処理サイクルが終了する訳
であるが、これらの機器の運転は演算制御部2に上って
実行される。In the control device with the above configuration, raw water is first introduced into the batch tank 1, and the upper limit level (HWL) is set by the level switch 6.
When detected, the inflow of raw water is stopped and the blower 3 is operated to supply dissolved oxygen into the batch tank 1. In addition to supplying dissolved oxygen, activated sludge and incoming raw water are mixed to purify the water quality. When the treatment is completed, the blower 3 is stopped and activated sludge and treated water are separated into solid and liquid. When the solid-liquid separation is completed, the supernatant water discharge pump 5 is operated to discharge the treated water from the float-type supernatant water suction section 4 above the water surface in the batch tank 1 to the outside of the tank. At this time, as the treated water is discharged, the supernatant water suction section 4 also follows the drop in the water surface, but the level switch 6 is set at the lower limit level (LWL).
) is detected, the supernatant water discharge pump 5 stops. In addition, the excess sludge extraction pump 7 is operated as necessary to discharge excess sludge. This is the end of one processing cycle, and the operations of these devices are executed by the arithmetic control section 2.
酸素利用速度制御部12の動作としては、回分槽l曝気
時に定時間ごとに酸素利用速度値rrを測定し、その値
を出力信号S2として演算制御部I!へ送る。演算制御
部11では演算部IOから送られてくるrr値により、
その後の変化率を演算し、予め設定された値以下になっ
たとき処理完了と判断し、ブロワ3の運転を停止させる
。従って、全体の動作は基本的に回分活性汚泥処理装置
の動作と同じであるが、ブロワ3の運転時間すなわち曝
気時間はr1計の測定値により制御される。The operation of the oxygen utilization rate control unit 12 is to measure the oxygen utilization rate value rr at regular intervals during aeration of the batch tank l, and output the value as an output signal S2 to the arithmetic control unit I! send to In the calculation control unit 11, based on the rr value sent from the calculation unit IO,
The subsequent rate of change is calculated, and when the rate of change is below a preset value, it is determined that the process is complete, and the operation of the blower 3 is stopped. Therefore, the overall operation is basically the same as that of the batch activated sludge treatment apparatus, but the operation time of the blower 3, that is, the aeration time is controlled by the measured value of the r1 meter.
G1発明の効果
本発明は以上の如くであって、曝気工程中に定時間ごと
に酸素利用速度測定部によって測定されるへ11定値の
変化率を演算し、その結果からブロワの継続運転か停止
を行うことにより、過不足のない最適な曝気時間設定が
可能となり、流入水の質。G1 Effects of the Invention The present invention is as described above, and calculates the rate of change of the constant value measured by the oxygen utilization rate measurement unit at regular intervals during the aeration process, and determines whether the blower continues to operate or stops based on the result. By doing this, it is possible to set the optimal aeration time without excess or deficiency, and the quality of the inflow water can be improved.
量の変化に対応した運転ができ安定した処理水が得られ
ると共に、処理に要するエネルギーの大部分を占めるブ
ロワの電力を必要最小限にでき、効率の良い運転が可能
となる。It is possible to operate in response to changes in the amount of water, and stable treated water can be obtained, and the electric power of the blower, which accounts for most of the energy required for treatment, can be minimized, allowing for efficient operation.
第1図は本発明の実施例による回分式活性汚泥処理制御
方法を実行するための装置のブロック図、第2図は回分
式活性汚泥法における水質変化を示す特性図である。
■・・・回分槽、2・・・散気部、3・・・ブロック、
4・・・上澄水吸込部、5・・・上澄水排出ポンプ、6
・・・レベルスイッチ、7・・・余剰汚泥引抜ポンプ、
8・・・回分式活性汚泥処理部、9・・・酸素利用速度
測定センサ、lO・・・酸素利用速度計測器、11・・
・演算制御部、12・・酸素利用速度測定部。
第1図
実施例の回分式活性汚泥処理制御装置
0
!・・・回分槽
2・・・散気部
3・・ブロワ
4・・・上部水吸込部
5・・・上澄水排出ポンプ
6・・・レベルスイッチ
7・・・余剰汚泥引抜ポンプ
8・・・回分式活性汚泥処理部
9・・・酸素利用速度測定センナ
lO・al素利用速度計測器
11・・・演算制御部
I2・・・酸素利用速度測定部FIG. 1 is a block diagram of an apparatus for carrying out a batch activated sludge treatment control method according to an embodiment of the present invention, and FIG. 2 is a characteristic diagram showing changes in water quality in the batch activated sludge process. ■...batch tank, 2...diffuser, 3...block,
4...Supernatant water suction section, 5...Supernatant water discharge pump, 6
...Level switch, 7...Excess sludge extraction pump,
8...Batch type activated sludge treatment section, 9...Oxygen utilization rate measuring sensor, lO...Oxygen utilization rate measuring device, 11...
- Arithmetic control unit, 12...Oxygen utilization rate measurement unit. FIG. 1 Batch-type activated sludge treatment control device according to the embodiment 0! ... Batch tank 2 ... Air diffuser 3 ... Blower 4 ... Upper water suction section 5 ... Supernatant water discharge pump 6 ... Level switch 7 ... Excess sludge extraction pump 8 ... Batch type activated sludge treatment section 9...Oxygen utilization rate measurement sensor lO/Al element utilization rate measuring device 11...Calculation control section I2...Oxygen utilization rate measurement section
Claims (1)
水の酸素利用速度に基づいて曝気を制御する回分式汚泥
処理制御方法において、前記被処理水中の活性汚泥の酸
素利用速度値を測定し、この測定値の変化率を演算する
と共に、この演算値を基に曝気処理の完了時点を決定す
ることを特徴とする回分式活性汚泥処理制御方法。(1) In a batch sludge treatment control method in which aeration is controlled based on the oxygen utilization rate of treated water in a batch tank having the functions of an aeration tank and a settling tank, the oxygen utilization rate of activated sludge in the treated water 1. A batch activated sludge treatment control method, comprising: measuring a value, calculating a rate of change of the measured value, and determining a completion point of aeration treatment based on the calculated value.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1286770A JPH03151099A (en) | 1989-11-02 | 1989-11-02 | Method for controlling batch operated activated sludge treatment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1286770A JPH03151099A (en) | 1989-11-02 | 1989-11-02 | Method for controlling batch operated activated sludge treatment |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03151099A true JPH03151099A (en) | 1991-06-27 |
Family
ID=17708825
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1286770A Pending JPH03151099A (en) | 1989-11-02 | 1989-11-02 | Method for controlling batch operated activated sludge treatment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03151099A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5387624A (en) * | 1991-12-26 | 1995-02-07 | Dow Corning Toray Silicon Co., Ltd. | Method for the preparation of a powder mixture composed of cured silicone microparticles and inorganic microparticles |
-
1989
- 1989-11-02 JP JP1286770A patent/JPH03151099A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5387624A (en) * | 1991-12-26 | 1995-02-07 | Dow Corning Toray Silicon Co., Ltd. | Method for the preparation of a powder mixture composed of cured silicone microparticles and inorganic microparticles |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6369595A (en) | Method and device for controlling operation in intermittent-aeration activated sludge process | |
CN206289131U (en) | A kind of sewage treatment control system based on PLC | |
CN110482686B (en) | Consumption-reducing and efficiency-improving system and method suitable for biological denitrification of oxidation ditch | |
CN101948176B (en) | Method for realizing short-cut nitrification and denitrification through online monitoring and controlling SBR (Selective Beacon Radar) aeration duration on basis of HPR (High Performance Routing) | |
JPH03151099A (en) | Method for controlling batch operated activated sludge treatment | |
JPH0389993A (en) | Method for controlling concentration of phosphorus in waste water | |
JPH0938690A (en) | Flocculant injection control method in water treatment | |
JPH09122681A (en) | Water quality controlling apparatus | |
SK284313B6 (en) | Method of two step cleaning process of waste waters by biological way and apparatus for executing this method | |
CN110498502A (en) | A kind of segmented aerobic tank automatic control intermittent aerating device | |
JPS644295A (en) | Waste water treatment apparatus | |
CN206188603U (en) | Treatment of domestic sewage , cyclic utilization system | |
KR19980033489A (en) | Method and apparatus for optimizing the process of intermittent batch reactor by automatically measuring non-oxygen ratio and nitrate nitrogen in biological wastewater treatment process in real time | |
JP4968420B2 (en) | Flocculant injection device | |
CN209797695U (en) | A Wastewater Treatment Device Combining Flat Ceramic Membrane and SBR | |
JPH11262777A (en) | How to remove phosphorus from sewage | |
CN105800777A (en) | Energy-saving sewage treatment system based on SBR process | |
JPH10165976A (en) | Sewage water treatment apparatus | |
JPS571490A (en) | Method and apparatus for automatical control of aeration in active sludge process for disposal of sewage | |
CN113024008A (en) | Integrated device for efficient advanced treatment of surface water | |
RU2057723C1 (en) | Method of automatic control of air tanks | |
JPS643554B2 (en) | ||
CN217351042U (en) | Automatic waste water electric degradation device that detects and handle | |
JP3795993B2 (en) | Method and apparatus for treating phosphate ion-containing wastewater | |
JP3637819B2 (en) | Waste water nitrification method |