[go: up one dir, main page]

JPH03149882A - Field effect transistor - Google Patents

Field effect transistor

Info

Publication number
JPH03149882A
JPH03149882A JP1287820A JP28782089A JPH03149882A JP H03149882 A JPH03149882 A JP H03149882A JP 1287820 A JP1287820 A JP 1287820A JP 28782089 A JP28782089 A JP 28782089A JP H03149882 A JPH03149882 A JP H03149882A
Authority
JP
Japan
Prior art keywords
insulating film
gate insulating
oxide superconductor
gate
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1287820A
Other languages
Japanese (ja)
Other versions
JP2740680B2 (en
Inventor
Kenichi Kuroda
研一 黒田
Yasuo Tazo
康夫 田雑
Junya Kobayashi
潤也 小林
Masashi Mukoda
昌志 向田
Masahiro Sasaura
正弘 笹浦
Shintaro Miyazawa
宮澤 信太郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP1287820A priority Critical patent/JP2740680B2/en
Publication of JPH03149882A publication Critical patent/JPH03149882A/en
Application granted granted Critical
Publication of JP2740680B2 publication Critical patent/JP2740680B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

PURPOSE:To prevent critical current density from being lowered by providing a gate insulating film which does not cause mutual diffusion and reaction with a superconductor, and realizing and making a single crystal high quality oxide superconductor film by epitaxially growing the oxide superconductor film on the insulating film. CONSTITUTION:As a gate electrode 3 comprising an oxide superconductor, one among materials of LnBaCuOy (Ln is at least one among yttrium or lanthanoid elements), BiSrCaCuOy, TlBaCaCuOy or NdCeCuOy, is employed and epitaxially grown on a gate insulating film 2. In GaAs single crystal growth on Si1 a mismatching rate of the lattice is set 1% or lower. LnXO3 (X is any one of Fe, Co, and Ni) or LaSrMO4 (M is any one of Cr, Mn, Fe, Co, Ni, Ga, Rh, and Al), which includes as one of constituting elements a rare earth element is employed, as a perovskite composite oxide being a gate insulating film mate rial.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、超伝導体をゲート電極に用いる電界効果トラ
ンジスタに関するものである。
The present invention relates to a field effect transistor using a superconductor as a gate electrode.

【−従来の技術J ゲート電極と半導体活性層との間に酸化膜、あるいは他
の絶縁膜を介在させたいわゆるMOS構造、あるいはM
IS構造の電界効果トランジスタにおいて、その高周波
特性を支配する要素は、ゲートツース間容量ca*と相
互コンダクタンスg#の比、Cgs/ggであり、この
数値が小さいほど性能が高い、すなわち、高周波性能を
向上させるには、Cj!sを小さくし、g、を大きくす
ることが必要となる。 相互コンダクタンスg、は、 glll=gm、/(l+gm、(Rs+Rg))で表
わすことができる。ここで、g+++、は真性相互コン
ダクタンス、R1はゲートツース間抵抗、R8はゲート
抵抗である。この式かられかるように、g、はゲート抵
抗に依存しており、性能を向上させるためゲート電極を
細くしようとしても。 ゲート抵抗が増大し、g、は増加しなくなる。そこでゲ
ート抵抗の問題を解決するため、ゲート電極として超伝
導体を用いた電界効果トランジスタが提案されていた。 この場合には、ゲート抵抗はほとんどゼロとなり、飛躍
的に高いg、が得られることとなる。 超伝導体として、Nb、Pbなとの金属超伝導体を用い
た場合は、これらの金属の超伝導転移温度が絶対温度1
0に以下であるため、極低温環境が必要となり、冷却に
要する装置、費用が問題であったが、超伝導転移温度が
液体窒素温度を越えるいわゆる酸化物高温超伝導体の発
見により冷却の問題はかなり軽減されることとなった。 【発明が解決しようとする課題】 しかしなから、酸化物超伝導体をゲート電極として用い
る場合、ゲート絶縁膜としてSi半導体に一般に用いら
れているS i O,を用いるとS i O,上の酸化
物超伝導体の超伝導的性質、すなわち、超伝導転移温度
、臨界電流密度などが劣化し、素子の動作温度の低下や
必要とされるゲート電流を得ることができないという問
題点が存在した。これは、酸化物超伝導体薄膜形成時の
高温環境において、界面での相互拡散、反応等により超
伝導体膜中に不純物が取り込まれてしまうことと、形成
される超伝導体薄膜が多結晶となり結晶粒界が多数存在
することなどに起因している。そこで、ゲート絶縁膜と
して酸化物超伝導体簿膜との結晶構造の類似性、格子整
合性等にすぐれたSrTiO,を用いた電界効果トラン
ジスタが提案されているが、SrTiO,の格子定数と
Siの格子整合が悪いために、Si上にSrTiO。 はエピタキシャル成長せず、多結晶となってしまい、こ
の上に形成される酸化物超伝導薄膜は、粒界が多数存在
する膜となり、臨界電流密度が低下してしまうという間
層を有していた。 本発明の目的は、半導体と超伝導体との間に介在するゲ
ート絶縁膜として、超伝導体との相互拡散、反応が起こ
らず、かつ、この絶縁膜上に酸化物超伝導膜をエピタキ
シャル成長させ、高品質の酸化物超伝導膜を実現すると
ともに、ひいては単結晶化することにより粒界の存在に
よる臨界電流密度の低下を抑制しようとするものである
[-Conventional technology J A so-called MOS structure in which an oxide film or other insulating film is interposed between a gate electrode and a semiconductor active layer, or M
In a field effect transistor with an IS structure, the element that governs its high frequency characteristics is the ratio of gate-to-toe capacitance ca* to mutual conductance g#, Cgs/gg. The smaller this value is, the higher the performance is. To improve, Cj! It is necessary to reduce s and increase g. The mutual conductance g can be expressed as gllll=gm,/(l+gm, (Rs+Rg)). Here, g+++ is the intrinsic mutual conductance, R1 is the gate-to-gate resistance, and R8 is the gate resistance. As can be seen from this equation, g depends on the gate resistance, even if we try to make the gate electrode thinner to improve performance. The gate resistance increases and g no longer increases. In order to solve the problem of gate resistance, a field effect transistor using a superconductor as the gate electrode was proposed. In this case, the gate resistance becomes almost zero, and a dramatically high g can be obtained. When a metal superconductor such as Nb or Pb is used as a superconductor, the superconducting transition temperature of these metals is the absolute temperature 1
Since the temperature is below 0, an extremely low temperature environment is required, and the equipment and cost required for cooling were a problem, but with the discovery of so-called oxide high-temperature superconductors whose superconducting transition temperature exceeds the liquid nitrogen temperature, the cooling problem was solved. has been significantly reduced. [Problems to be Solved by the Invention] However, when using an oxide superconductor as a gate electrode, if SiO, which is commonly used in Si semiconductors, is used as the gate insulating film, the The superconducting properties of oxide superconductors, such as the superconducting transition temperature and critical current density, deteriorate, resulting in problems such as lowering the operating temperature of the device and making it impossible to obtain the required gate current. . This is because impurities are incorporated into the superconductor film due to mutual diffusion and reactions at the interface in the high-temperature environment during formation of the oxide superconductor thin film, and the formed superconductor thin film is polycrystalline. This is due to the presence of many grain boundaries. Therefore, a field effect transistor using SrTiO, which has excellent crystal structure similarity and lattice matching with the oxide superconductor film as the gate insulating film, has been proposed, but the lattice constant of SrTiO and Si SrTiO on Si due to the poor lattice match of SrTiO. did not grow epitaxially and became polycrystalline, and the oxide superconducting thin film formed on it had interlayers that had many grain boundaries and reduced the critical current density. . An object of the present invention is to provide a gate insulating film interposed between a semiconductor and a superconductor in which mutual diffusion and reaction with the superconductor do not occur, and in which an oxide superconducting film is epitaxially grown on this insulating film. The aim is to realize a high-quality oxide superconducting film and to suppress the decrease in critical current density due to the presence of grain boundaries by making it a single crystal.

【課題を解決するための手段】[Means to solve the problem]

上記目的を達成するために、本発明の電界効果トランジ
スタは、半導体基板の活性層上に絶縁膜を介してゲート
電極を有する電界効果トランジスタにおいて、前記ゲー
ト電極として。 LnBaCuO,系(Lnは、イットリウム、あるいは
ランタノイド元素のうちの少なくとも1つ、以下同様)
、B i S rcacuo、系、TIBaCaCuO
y系、あるいは N d Ce Cu O,系のうちの少なくとも1つか
ら成るペロウスカイト構造を基本とする酸化物超伝導体
を用い、かつ前記ゲート絶縁膜として、LnXO,(X
は、Fe、Go、NilAl。 Gaのうちの少なくとも1つ)、あるいはLaSrMO
,(Mは、Cr、Mn%Fe、Co。 Ni、Ga1Rh%Alのうちの少なくとも1つ)のう
ちの少なくとも1つから成るペロウスカイト構造を基本
とする絶縁物を用いたことを特徴とする特 vた、前記半導体基板がSiから成り、前記ゲート絶縁
膜の組成がその膜厚方向に変化するように形成され、前
記ゲート絶縁膜と前記活性層との界面における格子不整
合率と、前記ゲート絶縁膜と前記酸化物超伝導体との界
面における格子不整合率が各々1%以下であることを特
徴とする特*作用l Si基板上へゲート絶縁膜をヘテロエピタキシャル成長
させ、、さらにその上に酸化物超伝導体薄膜をヘテロエ
ピタキシャル成長させるためには。 ゲート絶縁膜材料の選択として、いくつかの条件を満足
する必要がある。第1にその格子定数が、Siの格子定
数とほぼ等しいこと、第2にその格子定数が、酸化物超
伝導体の格子定数とほぼ等しいこと、第3にその結晶構
造が、酸化物超伝導体と類似していることである。さら
に、Siとの反応性が低いこと、絶縁膜材料の拡散によ
る超伝導性の劣化が少ないことも重要である。本発明は
、ゲート絶縁膜材料として、酸化物超伝導体の格子定数
とほぼ合致しく格子不整合率4%以下)、かつ酸化物超
伝導体の結晶構造の基本骨格である酸素八面体で構成さ
れたペロウスカイト構造の複合酸化物番選定することを
最も主要な特徴とする。 さらに、酸化物超伝導体の構成元素である希土類元素を
複合酸化物の構成元素の1つとして含むことも補足的特
徴である。従来の技術では困難なゲート絶縁膜、酸化物
超伝導体ゲート電極を含む全ての構造を単結晶にする酸
化物超伝導体ゲートMIS形電界効果トランジスタを実
現するものである。
In order to achieve the above object, a field effect transistor of the present invention has a gate electrode on an active layer of a semiconductor substrate with an insulating film interposed therebetween. LnBaCuO, system (Ln is yttrium or at least one of the lanthanide elements, the same applies hereinafter)
, B i S rcacuo, system, TIBaCaCuO
An oxide superconductor based on a perowskite structure consisting of at least one of y-based or N d Ce Cu O, and as the gate insulating film, LnXO, (X
are Fe, Go, NiAl. at least one of Ga), or LaSrMO
, (M is at least one of Cr, Mn%Fe, Co.Ni, Ga1Rh%Al). v, the semiconductor substrate is made of Si, the composition of the gate insulating film is formed to vary in the thickness direction, and the lattice mismatch rate at the interface between the gate insulating film and the active layer and the gate A special feature characterized in that the lattice mismatch rate at the interface between the insulating film and the oxide superconductor is 1% or less, respectively.1 A gate insulating film is heteroepitaxially grown on a Si substrate, and further thereon. For heteroepitaxial growth of oxide superconductor thin films. When selecting a gate insulating film material, it is necessary to satisfy several conditions. Firstly, its lattice constant is approximately equal to that of Si, secondly, its lattice constant is approximately equal to that of oxide superconductor, and thirdly, its crystal structure is similar to that of oxide superconductor. It is similar to the body. Furthermore, it is important that the reactivity with Si is low and that there is little deterioration of superconductivity due to diffusion of the insulating film material. The present invention uses an oxygen octahedron as a gate insulating film material, which has a lattice constant that almost matches the lattice constant of an oxide superconductor (lattice mismatch rate of 4% or less), and which is the basic skeleton of the crystal structure of an oxide superconductor. The most important feature is the selection of composite oxides with a perowskite structure. Furthermore, it is a supplementary feature that a rare earth element, which is a constituent element of the oxide superconductor, is included as one of the constituent elements of the composite oxide. This is to realize an oxide superconductor gate MIS type field effect transistor in which all structures including the gate insulating film and the oxide superconductor gate electrode are made into single crystals, which is difficult to achieve with conventional technology.

【実施例1 第1図は、本発明による酸化物超伝導体ゲートMIS形
電界や果トランジスタの基本構造を示す概略断面である
。1はSt基板であり、単結晶で構成されている。2は
ゲート絶縁膜で、Si基板上にエピタキシャルに構成さ
れている。、3は酸化物超伝導体よりなるゲート電極で
あり。 LnBaCuOy系(Lnは、イットリウム(Y)、あ
るいはランタノイド元素のうち少なくともその1”)を
表わす、以下同様)、Bi SrcacuO。 系、TlBaCaCuOy系、あるいはNdCeCuO
,基材料であり、ゲート絶縁膜上にエピタキシャルに形
成されている。4.5はそれぞれ、ソース、ドレイン電
極である。 このような構成を形成するには、良く知られているよう
に、超伝導転移温度Tc〜90Kを持つLn、Ba、C
u、Or系はCull子を中心にした酸素八面体が規則
的に配列したペロウスカイト構造が基本となっている。 転移温度〜8OK、〜IIOKを持つBi Srcac
uoy系超伝導体(転移温度〜80にはB i、S r
、(,a、CullOy、転移温度〜IIOにはB i
、S r、Ca、Cu、Oyと言われている、)、ある
いは転移温度〜120にのTlBaCaCuOy系超伝
導体も同様な構造とみなせる。従って、このような材料
がヘテロエピタキシャル成長する下層膜としてはペロウ
スカイト構造の物質で、格子整合する材料が望ましい。 Ln、Ba、Cu、Oy系酸化物超伝導体は基本的には
斜方晶形で格子定数はa〜3.82A、b〜3゜88A
であるが、この結晶構造は格子定数a、の擬い、また、
BiSrCaCuO,系は〜80に相も〜IIOK相も
ほぼ正方晶でa、〜5.4Aである。一般に格子構造を
考える上で対角線を副格子とみなすことができるのは結
晶学上でよく行なわれている。従って、対角線副格子と
してa、×rIr/2〜3J2Aを取ることができる。 TlBaCaCuOy系は、a、〜3,86Aの正方晶
系である。次に、単結晶を実現するための格子の不整合
程度について論議する。最も、技術的に進んでいる半導
体の分野では、その不整合率は1%以下が許容されてい
る。さらにはヘテロエピタキシャルの代表であるSi上
G a A s単結晶成長においては、〜4%の格子の
不整合が許容されている。いずれも現在良質な単結晶が
実現され実用化されている。本発明では、このような科
学技術上の一般観念から格子定数の不整合条件を4%以
下とする。前記の酸素八面体ペロウスカイト構造を持つ
複合酸化物材料は極めて数多く報告されているが、酸化
物超伝導体との格子の不整合が4%以下のものは限られ
てくる。 さらに、酸化物超伝導体と熱的、化学的に反応しにくい
材料系の方がゲート絶縁膜として適していると考えられ
る(従って、できるだけ高融点材料が望ましい、)、ま
た、以上述べてきた酸化物超伝導体は希土類元素が含ま
れており、希土類元素が混合しても超伝導特性が劣化し
ないという特徴がある。これらに着目すると、ゲート絶
縁膜材料となるペロウスカイト複合酸化物として希土類
元素を構成元素の1つとして含む化合物系が適している
と考えられる。格子定数の整合、ペロウスカイト構造、
希土類(Ln)酸化物系、の条件を満足するものとして
、斜方晶構造を持つLnXO,(XはFe、Co1Ni
のいずれか)、LnAlO,、LaGaO,−(Aグル
ープ)、あるいは、正方晶構造を持つLaSrMO,(
Mは、C「、Mn、Fe、Co、Ni%Ga%Rh%A
lのいずれか)−(iグループ)などがある。 Aグループの構造は擬正方晶にとることができ。 Bグループ材料も含めてこれらの格子定数のE7倍はS
iの格子定数5.43Aとも非常に近く、Si上に容易
にエピタキシャル成長する。 表1に前記条件を満足する代表的なペロウスカイト酸化
物系の格子定数を示す、Aグループについては擬正方晶
としたときの格子定数を示す、併せてすでに述べた酸化
物超伝導体及びSiの格子定数も示す、これらの伺れの
組み合わせでも、一般的ヘテロエピタキシャルの格子整
合条件(不整合度4%以下)の範囲内である。従って、
Si活性層上に前記の材料よりなるゲート絶縁膜、さら
にその上に酸化物超伝導体よりなるゲート電極膜をエピ
タキシャルに形成することができ、これによりゲート電
極として高い超伝導転移温度と高い臨界電流密度を有す
る超伝導体を構成することができ、ひいては、ゲート抵
抗がゼロで高いg、をもつ高性能の電界効果トランジス
タを実現することができる。 表1 材料       格子定数(A) ゲート絶縁膜 YA 10.        3.68GdAlO,3
,71 EuA 10.       3,725NdA 10
.       3.752SmA 10.     
  3.734P rA 10.       3,7
57LaAl0.       3,778NdGaO
,3,851 PrGa0.       3−863LaGa0. 
      3.875CeGaO,3,879 GdGaO,:t840 LaSrCr0.     3.84 LaSrMnO,3,88 LaSrFe0.     3.86 LaSrCo0.     3.80 LaSrNi0.    3.80 材料       格子定数(A) LaSrGaO,3,84 LaSrRh0.    3.92 LaSrAl0.     3.75 ゲート電極 (La、−xMJ *Cu0. 3.78   (M=
Ba、 Sr、 Ce)YBa、Cu、0.     
3.82  3.88   (斜方晶)BiSrcac
uO系  5.4    (/(T =3.82)TI
BaCaCuO系  3,86 NdCeCuO系    3.95 以下、余白。 次の実施例では、ゲート絶縁膜を前記の選定材料を2つ
以上混合したL n (A l a −X G a X
) Onとするものである。前記の選定材料はペロウス
カイト構造であるからXのすべてに均一混合し、従って
、そのときN格子定数は2者の中間をとることになり、
より精密な格子整合が可能になる。例えば酸化物超伝導
ゲート電極を B i Srcacuo、、ゲート絶縁膜をNd (A
1...Ga、、、)O,とすれば格子定数は3.82
AとなりBi Srcacuo、系の副格子と完全な格
子整合(不整合率θ%)となり、いわゆるエピタキシャ
ル成長として最適になる。2者の組み合わせは表1の中
で任意にすることができることは言うまでもない。この
ときSiに対しても1%以内で格子整合する。さらに厳
密な格子整合を実現するためには、及びXの値をゲート
絶縁膜の厚み方向に連続的に変化させる。例えば、酸化
物超伝導ゲート電極を丁IBaCaCuOア。 ゲート絶縁膜をL a (A I 、−xG aJ O
,とすると、Si側の界面でのXの値を0.63に酸化
物超伝導体ゲート電極側の界面でのXを0.85にし、
ゲート絶g膜の厚み方向にXを0.63から0.85ま
で連続的に変化させればよい。酸化物超伝導体ゲート電
極材料との組み合わせ、及びXの値は表1のデータを参
考に決めることができることは言うまでもない。 ゲート絶縁膜の格子定数をコントロールする方法として
は、L n G a Omのランタノイド元素の部分を
複数の組成としてそれらの組成比をSiとの界面側でS
iと格子整合をとるように定め、そこから酸化物超伝導
体との界面側へ漸次変化させ。 酸化物超伝導体との界面で酸化物超伝導体との格子整合
を実現する方法も可能である。具体的には。 Si界面側での組成をGdGaO,、酸化物超伝導体界
面側での組成をCe G a O,となるように、ゲー
ト酸化膜中の組成を次第に変化させることにより、ゲー
ト酸化膜の両側で厳密な格子整合を実現することができ
る。このとき、膜中での組成変化については、組成をG
 d 、 −X Ce x G a O,として、Gd
、Ceの組成を変えてもよいし、さらにその他のランタ
ノイド元素を混入することにより格子定数を調整するこ
とも可能である。 さらに別の実施例としてはBグループの材料をゲート絶
縁膜として用い、Siとの界面側の組成をLaSrCr
O,、またはLaSrGaO,とし、膜中で組成を変化
させ酸化物超伝導体ゲート電極界面側でLaSrFeO
,とし、超伝導体ゲート電極としてTlBaCaCuO
y系酸化物超伝導体を選ぶと、両側の界面での格子整合
性はきわめて良好なものとなる。 このように上記実施例では、酸化物超伝導体ゲート電界
効果トランジスタのゲート絶縁膜として、超伝導酸化物
ゲート電極と格子整合(不整合率4%以下)し、かつ該
酸化物超伝導体と類似の結晶構造を持ち、さらにSiと
も格子整合する材料としてしnXO,(XはFe%Go
、Niのいずれか)、LnAlO,、L n G a 
O,、(Lnはランタノイド元素またはY)−(Aグル
ープ)、あるいは、正方晶構造を持つLaSrMO,(
MはCr1Mn、Fe1Co、Ni%Ga%Rh。 Alのいずれカリー(Bグループ)などを選定したため
、Si半導体基板からゲート絶縁膜、ゲート電極まで含
めてヘテロエピタキシャル成長が可能となり、素子全体
を単結晶で成長させることができる。従って、酸化物超
伝導体ゲート電極中の結晶粒界に生じるジョセフソン接
合を完全に無くすことができ、劣化が少なく、かつ高い
超伝導転移温度と高い電流密度の実現を可能とし、ゲー
ト抵抗を減少させることができ、高性能のMIS形電界
効果トランジスタを実現することができる。 以上、述べてきた実施例の他にも、表1から格子整合条
件を満たす組み合わせを選ぶことができることは言うま
でもない。 【発明の効果】 以上説明したように、本発明によれば、酸化物超伝導体
ゲート電極中の結晶粒界に生じるジョセフソン接合を完
全に無くすことができ、劣化が少なく、かつ高い超伝導
転移温度と高い電流密度の実現を可能とし、ゲート抵抗
を減少させることができ、高性能のMIS形電界効果ト
ランジスタを実現することができる。
Embodiment 1 FIG. 1 is a schematic cross-section showing the basic structure of an oxide superconductor gate MIS type electric field transistor according to the present invention. Reference numeral 1 denotes an St substrate, which is made of a single crystal. Reference numeral 2 denotes a gate insulating film, which is epitaxially formed on a Si substrate. , 3 is a gate electrode made of an oxide superconductor. LnBaCuOy system (Ln represents yttrium (Y) or at least one of the lanthanide elements, the same applies hereinafter), BiSrcacuO system, TlBaCaCuOy system, or NdCeCuO system.
, is a base material and is epitaxially formed on the gate insulating film. 4.5 are source and drain electrodes, respectively. To form such a structure, as is well known, Ln, Ba, and C having superconducting transition temperatures Tc ~ 90K are required.
The basic structure of the u, Or system is a perowskite structure in which oxygen octahedrons centered around Cull atoms are regularly arranged. Bi Srcac with transition temperature ~8OK, ~IIOK
Uoy-based superconductors (B i, S r for transition temperature ~80
, (,a, CullOy, transition temperature ~ IIO has B i
, Sr, Ca, Cu, Oy), or TlBaCaCuOy superconductors with a transition temperature of ~120°C can be considered to have a similar structure. Therefore, the lower layer film in which such a material is grown by heteroepitaxial growth is preferably a material with a perowskite structure and lattice matching. Ln, Ba, Cu, Oy-based oxide superconductors are basically orthorhombic with lattice constants of a~3.82A and b~3°88A.
However, this crystal structure has a pseudo lattice constant a, and
In the BiSrCaCuO system, both the ~80 phase and the ~IIOK phase are almost tetragonal with a and ~5.4A. In general, when considering lattice structures, it is common practice in crystallography to consider diagonals as sublattices. Therefore, a,×rIr/2 to 3J2A can be taken as the diagonal sublattice. The TlBaCaCuOy system is a tetragonal system with a, ~3,86A. Next, we will discuss the degree of lattice mismatch for realizing a single crystal. In the most technologically advanced field of semiconductors, the mismatch rate is allowed to be 1% or less. Furthermore, in GaAs single crystal growth on Si, which is a representative example of heteroepitaxial growth, a lattice mismatch of ~4% is allowed. High-quality single crystals of both have now been realized and put into practical use. In the present invention, the lattice constant mismatch condition is set to 4% or less based on such general scientific and technological concepts. Although a large number of composite oxide materials having the above-mentioned oxygen octahedral perouskite structure have been reported, those having a lattice mismatch with the oxide superconductor of 4% or less are limited. Furthermore, materials that are less likely to react thermally or chemically with the oxide superconductor are considered to be more suitable for the gate insulating film (therefore, materials with as high a melting point as possible are desirable). Oxide superconductors contain rare earth elements, and have the characteristic that their superconducting properties do not deteriorate even when rare earth elements are mixed. Focusing on these, it is considered that a compound system containing a rare earth element as one of the constituent elements is suitable for the perowskite composite oxide serving as the gate insulating film material. Matching of lattice parameters, perouskite structure,
As a rare earth (Ln) oxide system, LnXO with an orthorhombic structure (X is Fe, Co1Ni
), LnAlO, LaGaO, - (A group), or LaSrMO, which has a tetragonal structure (
M is C", Mn, Fe, Co, Ni%Ga%Rh%A
(any of l) - (i group), etc. The structure of group A can be pseudotetragonal. E7 times these lattice constants, including B group materials, are S
It is very close to the lattice constant of i, 5.43 A, and is easily epitaxially grown on Si. Table 1 shows the lattice constants of typical perouskite oxides that satisfy the above conditions, and for group A, the lattice constants when pseudotetragonal are shown. Even the combination of these deviations, which also shows the lattice constant, is within the range of the general heteroepitaxial lattice matching condition (mismatch degree of 4% or less). Therefore,
It is possible to epitaxially form a gate insulating film made of the above-mentioned material on the Si active layer, and furthermore, a gate electrode film made of an oxide superconductor thereon. A superconductor having a current density can be constructed, and a high-performance field-effect transistor with zero gate resistance and high g can be realized. Table 1 Material Lattice constant (A) Gate insulating film YA 10. 3.68GdAlO,3
,71 EuA 10. 3,725NdA 10
.. 3.752SmA 10.
3.734P rA 10. 3,7
57LaAl0. 3,778NdGaO
, 3,851 PrGa0. 3-863LaGa0.
3.875CeGaO, 3,879 GdGaO, :t840 LaSrCr0. 3.84 LaSrMnO, 3,88 LaSrFe0. 3.86 LaSrCo0. 3.80 LaSrNi0. 3.80 Material Lattice constant (A) LaSrGaO, 3,84 LaSrRh0. 3.92 LaSrAl0. 3.75 Gate electrode (La, -xMJ *Cu0. 3.78 (M=
Ba, Sr, Ce) YBa, Cu, 0.
3.82 3.88 (Orthorhombic) BiSrcac
uO system 5.4 (/(T = 3.82)TI
BaCaCuO system 3,86 NdCeCuO system 3.95 The following is a margin. In the next example, the gate insulating film is formed using a mixture of two or more of the above-mentioned selected materials.
) is turned on. Since the above-selected material has a perouskite structure, it is uniformly mixed in all of
More precise lattice matching becomes possible. For example, the oxide superconducting gate electrode is made of B i Srcacuo, the gate insulating film is made of Nd (A
1. .. .. If Ga, , )O, the lattice constant is 3.82
A becomes Bi Srcacuo, which has a perfect lattice match (mismatch rate θ%) with the sublattice of the system, making it optimal for so-called epitaxial growth. It goes without saying that the combination of the two can be arbitrary in Table 1. At this time, lattice matching is also achieved with Si within 1%. In order to realize even stricter lattice matching, the value of X is changed continuously in the thickness direction of the gate insulating film. For example, an oxide superconducting gate electrode can be used as an oxide superconducting gate electrode. The gate insulating film is L a (A I , -xG aJ O
, then the value of X at the interface on the Si side is 0.63, and the value of X at the interface on the oxide superconductor gate electrode side is 0.85,
It is sufficient to continuously change X from 0.63 to 0.85 in the thickness direction of the gate isolation g film. It goes without saying that the combination with the oxide superconductor gate electrode material and the value of X can be determined with reference to the data in Table 1. As a method of controlling the lattice constant of the gate insulating film, the lanthanoid element part of L n Ga Om is made into multiple compositions, and the composition ratio is changed to S on the interface side with Si.
It is determined to have lattice matching with i, and from there it is gradually changed to the interface side with the oxide superconductor. A method of achieving lattice matching with the oxide superconductor at the interface with the oxide superconductor is also possible. in particular. By gradually changing the composition in the gate oxide film so that the composition on the Si interface side becomes GdGaO and the composition on the oxide superconductor interface side becomes CeGaO, Strict lattice matching can be achieved. At this time, regarding the composition change in the film, change the composition to G
d, −X Cex Ga O, as Gd
, the composition of Ce may be changed, and it is also possible to adjust the lattice constant by further mixing other lanthanide elements. As yet another example, a B group material is used as the gate insulating film, and the composition on the interface side with Si is changed to LaSrCr.
O, or LaSrGaO, and the composition is changed in the film to form LaSrFeO on the oxide superconductor gate electrode interface side.
, and TlBaCaCuO as the superconductor gate electrode.
If a y-based oxide superconductor is selected, the lattice matching at both interfaces will be extremely good. In this way, in the above embodiment, the gate insulating film of the oxide superconductor gate field effect transistor is lattice matched (mismatch rate of 4% or less) to the superconducting oxide gate electrode and is nXO, (X is Fe% Go
, Ni), LnAlO,, LnGa
O,, (Ln is a lanthanoid element or Y)-(A group), or LaSrMO, (with a tetragonal structure)
M is Cr1Mn, Fe1Co, Ni%Ga%Rh. Since Al curry (group B) or the like was selected, heteroepitaxial growth is possible from the Si semiconductor substrate to the gate insulating film and the gate electrode, and the entire device can be grown as a single crystal. Therefore, it is possible to completely eliminate the Josephson junction that occurs at the grain boundaries in the oxide superconductor gate electrode, and it is possible to achieve a high superconducting transition temperature and high current density with little deterioration, and to reduce the gate resistance. Therefore, it is possible to realize a high-performance MIS type field effect transistor. It goes without saying that in addition to the embodiments described above, combinations satisfying the lattice matching conditions can be selected from Table 1. [Effects of the Invention] As explained above, according to the present invention, Josephson junctions occurring at grain boundaries in oxide superconductor gate electrodes can be completely eliminated, resulting in less deterioration and higher superconductivity. It is possible to realize a transition temperature and a high current density, and it is possible to reduce gate resistance, and it is possible to realize a high-performance MIS type field effect transistor.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明による酸化物超伝導体ゲートMIS形
電界効果トランジスタの基本構造の概略断面図である。 l・・・電界効果トランジスタの主要部分であるSi基
板 2・・・ゲート絶縁膜
FIG. 1 is a schematic cross-sectional view of the basic structure of an oxide superconductor gate MIS type field effect transistor according to the present invention. l...Si substrate which is the main part of the field effect transistor 2...Gate insulating film

Claims (1)

【特許請求の範囲】 1、半導体基板の活性層上に絶縁膜を介してゲート電極
を有する電界効果トランジスタにおいて、前記ゲート電
極として、LnBaCuO_y系(Lnは、イットリウ
ム、あるいはランタノイド元素のうちの少なくとも1つ
、以下同様)、BiSrCaCuO_y系、TlBaC
aCuO_y系、あるいはNdCeCuO_y系のうち
の少なくとも1つから成るペロウスカイト構造を基本と
する酸化物超伝導体を用い、かつ前記ゲート絶縁膜とし
て、LnXO、(Xは、Fe、Co、Ni、Al、Ga
のうちの少なくとも1つ)、あるいは LaSrMO、(Mは、Cr、Mn、Fe、Co、Ni
、Ga、Rh、Alのうちの少なくとも1つ)のうちの
少なくとも1つから成るペロウスカイト構造を基本とす
る絶縁物を用いたことを特徴とする電界効果トランジス
タ。 2、前記半導体基板がSiから成り、前記ゲート絶縁膜
の組成がその膜厚方向に変化するように形成され、前記
ゲート絶縁膜と前記活性層との界面における格子不整合
率と、前記ゲート絶縁膜と前記酸化物超伝導体との界面
における格子不整合率が各々1%以下であることを特徴
とする請求項1記載の電界効果トランジスタ。
[Claims] 1. In a field effect transistor having a gate electrode on an active layer of a semiconductor substrate with an insulating film interposed therebetween, the gate electrode is an LnBaCuO_y system (Ln is at least one of yttrium and lanthanide elements). ), BiSrCaCuO_y system, TlBaC
An oxide superconductor based on a perowskite structure consisting of at least one of aCuO_y system or NdCeCuO_y system is used, and the gate insulating film is LnXO, (X is Fe, Co, Ni, Al, Ga
or LaSrMO, (M is Cr, Mn, Fe, Co, Ni
, Ga, Rh, and Al). 2. The semiconductor substrate is made of Si, and the gate insulating film is formed so that its composition changes in the film thickness direction, and the lattice mismatch rate at the interface between the gate insulating film and the active layer and the gate insulating film are 2. The field effect transistor according to claim 1, wherein a lattice mismatch rate at the interface between the film and the oxide superconductor is 1% or less.
JP1287820A 1989-11-07 1989-11-07 Field effect transistor Expired - Lifetime JP2740680B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1287820A JP2740680B2 (en) 1989-11-07 1989-11-07 Field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1287820A JP2740680B2 (en) 1989-11-07 1989-11-07 Field effect transistor

Publications (2)

Publication Number Publication Date
JPH03149882A true JPH03149882A (en) 1991-06-26
JP2740680B2 JP2740680B2 (en) 1998-04-15

Family

ID=17722189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1287820A Expired - Lifetime JP2740680B2 (en) 1989-11-07 1989-11-07 Field effect transistor

Country Status (1)

Country Link
JP (1) JP2740680B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6806202B2 (en) 2002-12-03 2004-10-19 Motorola, Inc. Method of removing silicon oxide from a surface of a substrate
US6855992B2 (en) 2001-07-24 2005-02-15 Motorola Inc. Structure and method for fabricating configurable transistor devices utilizing the formation of a compliant substrate for materials used to form the same
US6885065B2 (en) 2002-11-20 2005-04-26 Freescale Semiconductor, Inc. Ferromagnetic semiconductor structure and method for forming the same
US6916717B2 (en) 2002-05-03 2005-07-12 Motorola, Inc. Method for growing a monocrystalline oxide layer and for fabricating a semiconductor device on a monocrystalline substrate
US6965128B2 (en) 2003-02-03 2005-11-15 Freescale Semiconductor, Inc. Structure and method for fabricating semiconductor microresonator devices
US6992321B2 (en) 2001-07-13 2006-01-31 Motorola, Inc. Structure and method for fabricating semiconductor structures and devices utilizing piezoelectric materials
US7005717B2 (en) 2000-05-31 2006-02-28 Freescale Semiconductor, Inc. Semiconductor device and method
US7019332B2 (en) 2001-07-20 2006-03-28 Freescale Semiconductor, Inc. Fabrication of a wavelength locker within a semiconductor structure
US7045815B2 (en) 2001-04-02 2006-05-16 Freescale Semiconductor, Inc. Semiconductor structure exhibiting reduced leakage current and method of fabricating same
US7067856B2 (en) 2000-02-10 2006-06-27 Freescale Semiconductor, Inc. Semiconductor structure, semiconductor device, communicating device, integrated circuit, and process for fabricating the same
US7105866B2 (en) 2000-07-24 2006-09-12 Freescale Semiconductor, Inc. Heterojunction tunneling diodes and process for fabricating same
US7161227B2 (en) 2001-08-14 2007-01-09 Motorola, Inc. Structure and method for fabricating semiconductor structures and devices for detecting an object
US7169619B2 (en) 2002-11-19 2007-01-30 Freescale Semiconductor, Inc. Method for fabricating semiconductor structures on vicinal substrates using a low temperature, low pressure, alkaline earth metal-rich process
US7211852B2 (en) 2001-01-19 2007-05-01 Freescale Semiconductor, Inc. Structure and method for fabricating GaN devices utilizing the formation of a compliant substrate
US7342276B2 (en) 2001-10-17 2008-03-11 Freescale Semiconductor, Inc. Method and apparatus utilizing monocrystalline insulator

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7067856B2 (en) 2000-02-10 2006-06-27 Freescale Semiconductor, Inc. Semiconductor structure, semiconductor device, communicating device, integrated circuit, and process for fabricating the same
US7005717B2 (en) 2000-05-31 2006-02-28 Freescale Semiconductor, Inc. Semiconductor device and method
US7105866B2 (en) 2000-07-24 2006-09-12 Freescale Semiconductor, Inc. Heterojunction tunneling diodes and process for fabricating same
US7211852B2 (en) 2001-01-19 2007-05-01 Freescale Semiconductor, Inc. Structure and method for fabricating GaN devices utilizing the formation of a compliant substrate
US7045815B2 (en) 2001-04-02 2006-05-16 Freescale Semiconductor, Inc. Semiconductor structure exhibiting reduced leakage current and method of fabricating same
US6992321B2 (en) 2001-07-13 2006-01-31 Motorola, Inc. Structure and method for fabricating semiconductor structures and devices utilizing piezoelectric materials
US7019332B2 (en) 2001-07-20 2006-03-28 Freescale Semiconductor, Inc. Fabrication of a wavelength locker within a semiconductor structure
US6855992B2 (en) 2001-07-24 2005-02-15 Motorola Inc. Structure and method for fabricating configurable transistor devices utilizing the formation of a compliant substrate for materials used to form the same
US7161227B2 (en) 2001-08-14 2007-01-09 Motorola, Inc. Structure and method for fabricating semiconductor structures and devices for detecting an object
US7342276B2 (en) 2001-10-17 2008-03-11 Freescale Semiconductor, Inc. Method and apparatus utilizing monocrystalline insulator
US6916717B2 (en) 2002-05-03 2005-07-12 Motorola, Inc. Method for growing a monocrystalline oxide layer and for fabricating a semiconductor device on a monocrystalline substrate
US7169619B2 (en) 2002-11-19 2007-01-30 Freescale Semiconductor, Inc. Method for fabricating semiconductor structures on vicinal substrates using a low temperature, low pressure, alkaline earth metal-rich process
US6885065B2 (en) 2002-11-20 2005-04-26 Freescale Semiconductor, Inc. Ferromagnetic semiconductor structure and method for forming the same
US6806202B2 (en) 2002-12-03 2004-10-19 Motorola, Inc. Method of removing silicon oxide from a surface of a substrate
US6965128B2 (en) 2003-02-03 2005-11-15 Freescale Semiconductor, Inc. Structure and method for fabricating semiconductor microresonator devices

Also Published As

Publication number Publication date
JP2740680B2 (en) 1998-04-15

Similar Documents

Publication Publication Date Title
US5372992A (en) Superconducting thin film
JPH03149882A (en) Field effect transistor
JPH07106883B2 (en) Superconductor structure
DE68918746T2 (en) Semiconductor substrate with a thin superconductor layer.
CN1312332C (en) Oxide high-temperature superconductor and its production method
JP2533649B2 (en) Substrate material for superconductor thin film
JPH0824200B2 (en) Tunnel junction device
EP0366510B2 (en) Process for preparing superconductor of compound oxide of Bi-Sr-Ca-Cu system
JP3258824B2 (en) Metal oxide material, superconducting junction element using the same, and substrate for superconducting element
JPH01280380A (en) Semiconductor substrate with superconductor layer
JPH01101677A (en) electronic equipment
JPH0793461B2 (en) Method for manufacturing field effect superconducting transistor device
US5362709A (en) Superconducting device
Kobayashi et al. Chemi-physical diagnosis of BiSrCaCuO thin film preparation
JPH01101678A (en) Semiconductor device
JPH01173674A (en) Semiconductor substrate containing superconductor layer
Reardon et al. The use of Ga2O3 and In2O3 in forming superconducting glass ceramics
JPH01280374A (en) Semiconductor substrate having superconductor layer
JPH0783146B2 (en) Method for manufacturing oxide superconducting transistor device
JPH02135618A (en) Base for forming superconductor thin film
JPH01173662A (en) Semiconductor substrate containing superconductor layer
Alvarez et al. Edge Junctions zyxwvutsrqponml
JPH01173667A (en) Semiconductor substrate containing superconductor layer
JPH01280370A (en) Semiconductor substrate having superconductor layer
JPH02181482A (en) Semiconductor substrate with superconductor layer

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090123

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090123

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100123

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100123

Year of fee payment: 12