[go: up one dir, main page]

JPH03149823A - Semiconductor device of multilayer interconnection structure - Google Patents

Semiconductor device of multilayer interconnection structure

Info

Publication number
JPH03149823A
JPH03149823A JP1288005A JP28800589A JPH03149823A JP H03149823 A JPH03149823 A JP H03149823A JP 1288005 A JP1288005 A JP 1288005A JP 28800589 A JP28800589 A JP 28800589A JP H03149823 A JPH03149823 A JP H03149823A
Authority
JP
Japan
Prior art keywords
wiring
semiconductor device
copper
multilayer
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1288005A
Other languages
Japanese (ja)
Inventor
Fumitoshi Matsuoka
史倫 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP1288005A priority Critical patent/JPH03149823A/en
Priority to KR1019900017929A priority patent/KR930009019B1/en
Publication of JPH03149823A publication Critical patent/JPH03149823A/en
Priority to US08/096,844 priority patent/US5365110A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)

Abstract

PURPOSE:To improve electromigration resistance of a first interconnection, to reduce a voltage drop and to provide high reliability by forming the first interconnection for supplying power to switching elements and a second interconnection for transmitting a signal between the elements of different metal materials. CONSTITUTION:A semiconductor device of a multilayer interconnection structure in which a plurality of switching elements are formed and the elements are connected by using multilayer interconnections, is formed by composing first and second interconnections 21, 22 for supplying power to the elements and second interconnections 18-20 for transmitting signals between the elements of different metal materials. For example, interconnections 21, 22 of the second layer used as power supply lines for supplying a power source voltage and a ground voltage to a CMOS inverter are formed of copper, and an interconnection 20 of the first layer used as a signal line for transmitting a signal between CMOS gates is formed of aluminum or alloy of aluminum, silicon, copper, etc.

Description

【発明の詳細な説明】 [発明の目的J (産業上の利用分野) この発明は多層配線構造の半導体装置に係り、特にそれ
ぞれが金属材料を用いて構成された二層以上の配線層を
有する半導体装置に関する。
[Detailed Description of the Invention] [Objective of the Invention J (Industrial Field of Application) This invention relates to a semiconductor device having a multilayer wiring structure, and particularly to a semiconductor device having two or more wiring layers each made of a metal material. Related to semiconductor devices.

(従来の技術) ゲートアレイやCPU (中央演算処理ユニット)等、
近年のLSI(大規模集積回路)では、集積度を上げる
ために二層以上の配線が用いられている。LSIで用い
られる配線は、素子に電力を供給するための電源線と、
信号を伝搬するための信号線とに分けられる。例えば、
第3図に示すように、PチャネルのMOSFET31と
NチャネルのMOSFET32とからなるCMOSイン
バータが設けられたCMOS−LSI (CMOS型集
積回路)において、図中、実線の太線で示す配線が電源
線33であり、破線の太線で示す配線が信号線34であ
る。上記電源線33には直流電圧が印加され、直流電流
が流れているか、素子のオン、オフに伴い電流が断続す
るような直流のパルス電流が流れており、一般に電源線
には一定の方向にのみに電流が流れている。これに対し
て信号線34、特にCMOS−LS Iの信号線には、
容量性負荷に対する充放電電流である双方向のパルス電
流が流れている。
(Conventional technology) Gate arrays, CPUs (central processing units), etc.
In recent LSIs (Large Scale Integrated Circuits), two or more layers of wiring are used to increase the degree of integration. The wiring used in LSI includes a power line for supplying power to the elements,
It is divided into signal lines for transmitting signals. for example,
As shown in FIG. 3, in a CMOS-LSI (CMOS integrated circuit) equipped with a CMOS inverter consisting of a P-channel MOSFET 31 and an N-channel MOSFET 32, the wiring shown by the solid thick line in the diagram is the power supply line 33. The wiring indicated by the thick broken line is the signal line 34. A DC voltage is applied to the power line 33, and either a DC current is flowing, or a DC pulse current is flowing intermittently as the element turns on and off, and generally the power line flows in a fixed direction. Current is flowing only through it. On the other hand, the signal line 34, especially the CMOS-LSI signal line,
A bidirectional pulsed current, which is a charging/discharging current for a capacitive load, is flowing.

従来の多層配線構造の半導体装置では、多層配線に用い
る金属材料はアルミニウム又はその合金のみであり、多
層配線を用いる場合のレイアウトにおいても特に電源線
と信号線とを区別していなかった。
In a conventional semiconductor device having a multilayer wiring structure, the metal material used for the multilayer wiring is only aluminum or its alloy, and even in the layout when using the multilayer wiring, power lines and signal lines are not particularly distinguished.

(発明が解決しようとする課!i) ところで、半導体装置において、配線に流すことができ
る最大電流はエレクトロマイグレーションと呼ばれる磨
耗不良に左右され、通常、この規格値は直流電流を配線
に流す試験によって決定されており、この値は例えば1
 x 10  (A/cd)程度である。そして、素子
に電力を供給するために使用される電源線には比較的大
きな電流が流れるため、従来では電源線の幅をできるだ
け太くしている。しかしながら、素子が微細化されるに
つれ、電源線において直流電流で決められた規格値を満
足させることが困難になってきた。−さらに、従来では
、内部の素子や配線が微細化されてもチップサイズ自体
の大きさが変わらないこと、すなわち電源線の長さにほ
とんど変化がないこと、、また電源電圧自体が素子の微
細化につれて小さくなっていくため、電源線における電
圧降下による素子の誤動作が大きな問題となってきてい
る。
(The problem that the invention aims to solve! i) By the way, in semiconductor devices, the maximum current that can be passed through the wiring is affected by a wear failure called electromigration, and this standard value is usually determined by a test in which a direct current is passed through the wiring. For example, this value is 1
x 10 (A/cd). Since a relatively large current flows through the power supply line used to supply power to the element, conventionally the width of the power supply line is made as wide as possible. However, as elements become finer, it has become difficult to satisfy the standard value determined for DC current in power supply lines. -Furthermore, in the past, even if the internal elements and wiring were miniaturized, the chip size itself did not change, that is, the length of the power supply line did not change much, and the power supply voltage itself was As devices become smaller and smaller, malfunctions of devices due to voltage drops in power supply lines have become a major problem.

一方、従来から金属材料のエレクトロマイグレーション
耐性と融点については相関関係があることが良く知られ
ているが、配線材料としてタングステンのような高融点
金属材料を用いるとすると、信号線の場合は、集積回路
の微細化につれて1つのスイッチング素子に対する信号
線の長さも短くなる傾向にあり、配線抵抗による信号伝
搬遅れ時間はほとんど問題にはならない。しかし、電源
線の場合には、その抵抗がアルミニウムに比べて数桁高
く、前記の電圧降下による動作不良が間通となり、電源
線に用いることは困難である。
On the other hand, it has long been well known that there is a correlation between the electromigration resistance and melting point of metal materials, but if a high melting point metal material such as tungsten is used as a wiring material, in the case of signal lines, As circuits become finer, the length of a signal line for one switching element tends to become shorter, and signal propagation delay time due to wiring resistance hardly becomes a problem. However, in the case of power supply lines, its resistance is several orders of magnitude higher than that of aluminum, and malfunctions due to the voltage drop described above are common, making it difficult to use as power supply lines.

この発明は上記のような事情を考慮してなされたもので
あり、その目的は、高信頼性を有する多層配線構造の半
導体装置を提供することにある。
The present invention has been made in consideration of the above circumstances, and an object thereof is to provide a highly reliable semiconductor device having a multilayer wiring structure.

[発明の構成]    − (課題を解決するための手段) この発明の多層配線構造の半導体装置は、各スイッチン
グ素子に電力を供給するための第1配線と、スイッチン
グ素子相互間で信号を伝搬するための第2配線とを互い
に異なる金属材料を用いて構成したことを特徴とする特 *作用) この発明によれば、各スイッチング素子に電力を供給す
るための第1配線と、スイッチング素子相互間で信号を
伝搬するための第2配線層とを異なる金属材料を用いて
構成する。つまり、第1配線には抵抗″率が小さく、か
つ融点が高い金属材料を用いることにより、第1配線の
エレクトロマイグレーション耐性の向上と電圧降下の低
減とを図ることができる。
[Structure of the Invention] - (Means for Solving the Problems) A semiconductor device with a multilayer wiring structure of the present invention includes a first wiring for supplying power to each switching element and a signal propagating between the switching elements. According to the present invention, the first wiring for supplying power to each switching element and the second wiring for supplying power to each switching element are constructed using different metal materials. The second wiring layer and the second wiring layer for transmitting signals are formed using different metal materials. That is, by using a metal material with a low resistivity and a high melting point for the first wiring, it is possible to improve the electromigration resistance of the first wiring and reduce the voltage drop.

(実施例) 以下、図面を参照してこの発明を実施例により説明する
(Examples) Hereinafter, the present invention will be explained by examples with reference to the drawings.

第1図はこの発明を、Pチャネル及びNチャネルのMO
SFETからなり、前記第1図に示すようなCMOSイ
ンバータが設けられたCMOS−LSIに実施した場合
の素子構造を示す断面図である。
FIG. 1 shows the present invention in a P-channel and N-channel MO
FIG. 2 is a cross-sectional view showing an element structure when implemented in a CMOS-LSI consisting of SFETs and provided with a CMOS inverter as shown in FIG. 1.

図において、11はN型のシリコン半導体基板、12は
素子分離を行うフィールド酸化膜、13はP型のウェル
領域、14.15はPチャネルMOSFETのソース、
ドレイン領域となるP+型拡散領域、16、17はNチ
ャネルMOSFETのソース、ドレイン領域となるP+
型拡散領域、18.19は多結晶シリコン層からなり、
Pチャネル及びNチャネルMOSFETのゲート電極と
なる第1配線、20はPチャネルMOSFETのドレイ
ン領域であるP+型拡散領域15とNチャネルMOSF
ETのドレイン領域であるP+型拡散領域14とを接続
し、第1層目の金属材料を用いて構成された第2配線、
21、22はそれぞれPチャネルMOSFETのソース
領域であるP+型拡散領域14及びNチャネルMOSF
ETのソース領域であるP+型拡散領域14それぞれに
接続され、第2層目の金属材料を用いて構成された第3
配線であり、23及び24はそれぞれは層間絶縁膜であ
る。
In the figure, 11 is an N-type silicon semiconductor substrate, 12 is a field oxide film for element isolation, 13 is a P-type well region, 14.15 is a source of a P-channel MOSFET,
P+ type diffusion regions that will become the drain region, 16 and 17 are P+ type diffusion regions that will become the source and drain regions of the N-channel MOSFET.
The type diffusion region, 18.19, consists of a polycrystalline silicon layer;
The first wiring becomes the gate electrode of the P-channel and N-channel MOSFETs, 20 is the P+ type diffusion region 15 which is the drain region of the P-channel MOSFET, and the N-channel MOSFET.
a second wiring connected to the P+ type diffusion region 14, which is the drain region of the ET, and configured using the first layer metal material;
21 and 22 are a P+ type diffusion region 14 and an N channel MOSF, which are source regions of a P channel MOSFET, respectively.
A third layer is connected to each of the P+ type diffusion regions 14, which are the source regions of the ET, and is constructed using the metal material of the second layer.
These are wirings, and 23 and 24 are interlayer insulating films, respectively.

上記第2配線20は、図示しない他のCMOSインバー
タ等、CMOSゲートとの間で相互に信号を伝搬するた
めの信号線として使用されるものであり、この第2配線
20は従来と同様にアルミニウム、又はアルミニウムに
シリコン、銅等を添加した合金を用いて構成されている
。これに対して、第3配!121、22はこのCMOS
インバータに電源電圧及び接地電圧をそれぞれ供給する
ための電源線として使用されるものであり、この画策3
配線21、22は銅を用いて構成されている。
The second wiring 20 is used as a signal line to mutually propagate signals to and from a CMOS gate such as another CMOS inverter (not shown), and the second wiring 20 is made of aluminum as in the conventional case. , or an alloy of aluminum to which silicon, copper, etc. are added. On the other hand, 3rd place! 121 and 22 are this CMOS
It is used as a power line to supply power supply voltage and ground voltage to the inverter, and this plan 3
The wirings 21 and 22 are made of copper.

すなわち、上記実施例装置では、電源線を銅からなる第
2層目の金属材料を用いて構成し、信号線はアルミニウ
ム、又はアルミニウムにシリコン、銅等を添加した合金
からなる第1層目の金属材料を用いて構成したものであ
る。
That is, in the above embodiment device, the power supply line is constructed using a second layer of metal material made of copper, and the signal wire is constructed using a first layer of metal material made of aluminum or an alloy of aluminum with silicon, copper, etc. It is constructed using a metal material.

ところで、多層配線を用いたLSIを実現する場合、各
配線層の下の絶縁膜を平坦化する必要があることから、
一般に下層の配線層の方が薄膜化、微細化に適している
。従って、第2配!120は、配線の抵抗による信号の
遅延があまり問題にならず、その配線に流れる電流が双
方向のパルス電流であるためにエレクトロマイグレーシ
ョン耐性に関してはあまり問題にならない信号線として
用いることができる。このため、このM2配線20は、
十分に薄膜化でき、加工限界で決まる最小寸法で形成す
ることかできる。
By the way, when realizing an LSI using multilayer wiring, it is necessary to flatten the insulating film under each wiring layer.
Generally, the lower wiring layer is more suitable for thinning and miniaturization. Therefore, second place! 120 can be used as a signal line in which signal delay due to wiring resistance does not pose much of a problem, and since the current flowing through the wiring is a bidirectional pulse current, electromigration resistance does not pose much of a problem. Therefore, this M2 wiring 20 is
It can be made sufficiently thin and can be formed with minimum dimensions determined by processing limits.

これに対し、電源線はエレクトロマイグレーション耐性
が高い、すなわち融点の高い銅を使用して構成している
ため、直流電流のエレクトロマイグレーションに十分耐
え得ることができる。しかも、抵抗率が低い銅を用いて
構成されているので、電源線における電圧降下が少なく
、素子の誤動作を防止することができる。
On the other hand, since the power supply line is made of copper having high electromigration resistance, that is, a high melting point, it can sufficiently withstand direct current electromigration. Moreover, since it is constructed using copper with low resistivity, there is little voltage drop in the power supply line, and malfunction of the element can be prevented.

第3図は配線に直流電流を流したときと、交流パルス電
流を流したときのエレクトロマイグレーション耐性を比
較したものであり、横軸は経過時間(時間)を、縦軸は
試験する配線40本のうち断線せずに残っている配線の
数(本)をそれぞれ示している。なお、比較条件は温度
が共に250℃、電流密度が共に2.Qx10 A/c
m2であり、交流パルス電流の繰り返し周波数は1KH
zである。図示のように、交流パルス電流を流した配線
の特性Aは、直流電流を流した配線の特性Bに比べて大
幅にエレクトロマイグレーションによる断線が少なくな
っている。このため、交流パルス電流が流れる上記第2
配線20は、エレクトロマイグレーション耐性について
ほんど考慮する必要がなく、従来と同様にアルミニウム
、又はアルミニウムにシリコン、銅等を添加した合金か
らなる金属材料を用いて、十分に薄膜化され、かつ最小
寸法の配線を形成ができる。
Figure 3 compares the electromigration resistance when DC current is passed through the wiring and when AC pulse current is passed through the wiring, where the horizontal axis represents the elapsed time (hours) and the vertical axis represents the 40 wirings to be tested. The number of wires (wires) remaining without disconnection is shown. The comparison conditions were a temperature of 250°C and a current density of 2. Qx10 A/c
m2, and the repetition frequency of the AC pulse current is 1KH.
It is z. As shown in the figure, the characteristic A of the wiring in which an alternating current pulse current is passed has significantly fewer disconnections due to electromigration compared to the characteristic B of the wiring in which a direct current is passed. Therefore, the second
The wiring 20 does not need to take into account electromigration resistance, and as in the past, it is made of a metal material made of aluminum or an alloy of aluminum with silicon, copper, etc., and is made sufficiently thin and has the minimum dimensions. wiring can be formed.

なお、この発明は上記実施例に限定されるものではなく
、種々の変形が可能であることはいうまでもない。例え
ば、上記実施例では、電源線として使用される第3配線
21、22を銅により構成する場合について説明したが
、これは銅の他に、融点が高くエレクトロマイグレーシ
ョン耐性が高く、かつ抵抗率が低い金属材料、例えば金
、銀又は金、銀、銅等を主成分とした合金を用いて構成
することもできる。
It goes without saying that the present invention is not limited to the above-mentioned embodiments, and that various modifications are possible. For example, in the above embodiment, the case where the third wirings 21 and 22 used as power supply lines are made of copper has been described. It can also be constructed using a low-metallic material such as gold, silver, or an alloy containing gold, silver, copper, or the like as a main component.

さらに、上記実施例では、第2層目の金属材料を用いて
電源線を構成し、第1層目の金属材料を用いて信号線を
構成する場合について説明したが、これは第1層目の金
属材料を用いて電源線を構成し、第2層目の金属材料を
用いて信号線を構成するようにしてもよい。なお、この
場合も、電源線は融点が高くエレクトロマイグレーショ
ン耐性が高く、抵抗率が低い金属材料を用いることはも
ちろんである。
Furthermore, in the above embodiment, a case was explained in which the power supply line is configured using the second layer metal material and the signal line is configured using the first layer metal material. The power line may be configured using a metal material of the second layer, and the signal line may be configured using a second layer metal material. In this case as well, it goes without saying that the power supply line should be made of a metal material that has a high melting point, high electromigration resistance, and low resistivity.

また、この発明は上記した2層配線構造の半導体装置に
限らず、これ以上の配SaWを有する半導体装置や、C
MOS半導体装置以外のものにも実施が可能であること
はいうまでもない。
Further, the present invention is not limited to the semiconductor device with the above-mentioned two-layer wiring structure, but also applies to semiconductor devices having a wiring structure of more than 100% SaW, and C
It goes without saying that the present invention can be implemented in devices other than MOS semiconductor devices.

[発明の効果] 以上説明したようにこの発明によれば、電源線を銅等か
らなり融点が高くかつ抵抗率が低い金属材料を用いて構
成するようにしたので、高信頼性を有する多層配線構造
の半導体装置を提供することができる。
[Effects of the Invention] As explained above, according to the present invention, the power supply line is constructed using a metal material such as copper, which has a high melting point and low resistivity, so that multilayer wiring with high reliability can be achieved. A semiconductor device having the structure can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例装置の構成を示す断面図、
第2図はこの発明を説明するための特性図、第3図はC
MOS−LSIの回路図である。 11・・・N型のシリコン半導体基板、12・・・フィ
ールド酸化膜、13・・・P型のウェル領域、14.1
5−・・P+型拡散領域、16.1フー・・P+型拡散
領域、18.19・・・第1配線、20・・・第2配線
、21、22・・・第3配線、23゜24・・・層間絶
縁膜。
FIG. 1 is a sectional view showing the configuration of an apparatus according to an embodiment of the present invention;
Figure 2 is a characteristic diagram for explaining this invention, Figure 3 is C
It is a circuit diagram of MOS-LSI. 11... N-type silicon semiconductor substrate, 12... Field oxide film, 13... P-type well region, 14.1
5-...P+ type diffusion region, 16.1 Fu...P+ type diffusion region, 18.19...first wiring, 20...second wiring, 21, 22...third wiring, 23° 24...Interlayer insulating film.

Claims (6)

【特許請求の範囲】[Claims] (1)複数個のスイッチング素子が形成され、これらス
イッチング素子を多層の配線を用いて接続するようにし
た多層配線構造の半導体装置において、 上記各スイッチング素子に電力を供給するための第1配
線と、上記スイッチング素子相互間で信号を伝搬するた
めの第2配線とを互いに異なる金属材料を用いて構成し
たことを特徴とする多層配線構造の半導体装置。
(1) In a semiconductor device having a multilayer wiring structure in which a plurality of switching elements are formed and these switching elements are connected using multilayer wiring, a first wiring for supplying power to each of the switching elements; A semiconductor device having a multilayer wiring structure, characterized in that the second wiring for propagating signals between the switching elements is constructed using different metal materials.
(2)前記第1配線と前記第2配線とが互いに異なる層
の配線で構成されている請求項1記載の多層配線構造の
半導体装置。
(2) A semiconductor device having a multilayer wiring structure according to claim 1, wherein the first wiring and the second wiring are formed of wiring in different layers.
(3)前記第2配線に対して前記第1配線が上層に設け
られている請求項1記載の多層配線構造の半導体装置。
(3) A semiconductor device having a multilayer wiring structure according to claim 1, wherein the first wiring is provided in a layer above the second wiring.
(4)前記第1配線を構成する金属材料の抵抗率が前記
第2配線を構成する金属材料のそれよりも低くされてい
る請求項1記載の多層配線構造の半導体装置。
(4) A semiconductor device having a multilayer wiring structure according to claim 1, wherein the resistivity of the metal material forming the first wiring is lower than that of the metal material forming the second wiring.
(5)前記第1配線を構成する金属材料の融点が前記第
2配線を構成する金属材料のそれよりも高くされている
請求項1記載の多層配線構造の半導体装置。
(5) A semiconductor device having a multilayer wiring structure according to claim 1, wherein the melting point of the metal material forming the first wiring is higher than that of the metal material forming the second wiring.
(6)前記第2配線がアルミニウム、又はアルミニウム
にシリコン及び銅を添加した合金を用いて構成され、記
第1配線が銅、金、銀のいずれかもしくは銅、金、銀の
いずれかを主成分とした合金を用いて構成されている請
求項1記載の多層配線構造の半導体装置。
(6) The second wiring is made of aluminum or an alloy of aluminum with silicon and copper added, and the first wiring is made of copper, gold, or silver, or mainly of copper, gold, or silver. 2. A semiconductor device with a multilayer wiring structure according to claim 1, which is constructed using an alloy as a component.
JP1288005A 1989-11-07 1989-11-07 Semiconductor device of multilayer interconnection structure Pending JPH03149823A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP1288005A JPH03149823A (en) 1989-11-07 1989-11-07 Semiconductor device of multilayer interconnection structure
KR1019900017929A KR930009019B1 (en) 1989-11-07 1990-11-07 Semiconductor device of multilayer interconnection structure
US08/096,844 US5365110A (en) 1989-11-07 1993-07-26 Semiconductor device with multi-layered wiring structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1288005A JPH03149823A (en) 1989-11-07 1989-11-07 Semiconductor device of multilayer interconnection structure

Publications (1)

Publication Number Publication Date
JPH03149823A true JPH03149823A (en) 1991-06-26

Family

ID=17724577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1288005A Pending JPH03149823A (en) 1989-11-07 1989-11-07 Semiconductor device of multilayer interconnection structure

Country Status (2)

Country Link
JP (1) JPH03149823A (en)
KR (1) KR930009019B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6489689B2 (en) 2000-05-29 2002-12-03 Matsushita Electric Industrial Co., Ltd. Semiconductor device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5488778A (en) * 1977-12-26 1979-07-14 Cho Lsi Gijutsu Kenkyu Kumiai Method of fabricating complementary mos transistor
JPS62118540A (en) * 1985-11-18 1987-05-29 Nec Corp Semiconductor integrated circuit
JPS62237747A (en) * 1986-04-08 1987-10-17 Nec Corp Semiconductor integrated circuit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5488778A (en) * 1977-12-26 1979-07-14 Cho Lsi Gijutsu Kenkyu Kumiai Method of fabricating complementary mos transistor
JPS62118540A (en) * 1985-11-18 1987-05-29 Nec Corp Semiconductor integrated circuit
JPS62237747A (en) * 1986-04-08 1987-10-17 Nec Corp Semiconductor integrated circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6489689B2 (en) 2000-05-29 2002-12-03 Matsushita Electric Industrial Co., Ltd. Semiconductor device

Also Published As

Publication number Publication date
KR910010692A (en) 1991-06-29
KR930009019B1 (en) 1993-09-18

Similar Documents

Publication Publication Date Title
US6515337B1 (en) Input protection circuit connected to projection circuit power source potential line
US9171767B2 (en) Semiconductor device and manufacturing method for the same
KR20030090880A (en) Semiconductor integrated circuit device with test element group circuit
JP3160586B2 (en) CMOS inverter and standard cell using the same
JP3917683B2 (en) Semiconductor integrated circuit device
US20060097396A1 (en) Semiconductor device
EP0360477B1 (en) Integrated circuit power supply contact
JP3116916B2 (en) Circuit device and method of manufacturing the same
JPH04102370A (en) Semiconductor integrated circuit device
EP0283046A2 (en) Complementary integrated circuit device equipped with latch-up preventing means
US5365110A (en) Semiconductor device with multi-layered wiring structure
US6635515B2 (en) Method of manufacturing a semiconductor device having signal line above main ground or main VDD line
JPH03149823A (en) Semiconductor device of multilayer interconnection structure
TW543174B (en) External power ring with multiple tapings to reduce ir drop in integrated circuit
EP0388179B1 (en) Semiconductor device having multilayer wiring and the method of making it
JP2676801B2 (en) Semiconductor integrated circuit device having output buffer circuit
JP2001244267A (en) Semiconductor device
CN101226937A (en) Semiconductor devices and storage media
JPS62263653A (en) Manufacture of semiconductor integrated circuit device
JP2906532B2 (en) Multilayer wiring semiconductor integrated circuit
JPH05335308A (en) Semiconductor integrated circuit device
JPH0316135A (en) Semiconductor device
JPH08316323A (en) Method for forming power wiring and circuit device using the same
JPH053252A (en) Semiconductor integrated circuit device
JPS60128655A (en) semiconductor equipment