JPH03146608A - Manufacture of rare earth magnet alloy powder having excellent magnetic anisotropy - Google Patents
Manufacture of rare earth magnet alloy powder having excellent magnetic anisotropyInfo
- Publication number
- JPH03146608A JPH03146608A JP1284293A JP28429389A JPH03146608A JP H03146608 A JPH03146608 A JP H03146608A JP 1284293 A JP1284293 A JP 1284293A JP 28429389 A JP28429389 A JP 28429389A JP H03146608 A JPH03146608 A JP H03146608A
- Authority
- JP
- Japan
- Prior art keywords
- alloy
- magnetic anisotropy
- rare earth
- powder
- excellent magnetic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910045601 alloy Inorganic materials 0.000 title claims abstract description 83
- 239000000956 alloy Substances 0.000 title claims abstract description 83
- 239000000843 powder Substances 0.000 title claims abstract description 55
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 21
- 229910052761 rare earth metal Inorganic materials 0.000 title claims abstract description 17
- 150000002910 rare earth metals Chemical class 0.000 title claims 13
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 12
- 239000012535 impurity Substances 0.000 claims abstract description 10
- 239000000463 material Substances 0.000 claims abstract description 4
- 238000001816 cooling Methods 0.000 claims abstract 3
- 238000010298 pulverizing process Methods 0.000 claims abstract 3
- 238000005338 heat storage Methods 0.000 claims description 34
- 239000011232 storage material Substances 0.000 claims description 33
- 239000000203 mixture Substances 0.000 claims description 16
- 229910052726 zirconium Inorganic materials 0.000 claims description 10
- 229910052735 hafnium Inorganic materials 0.000 claims description 8
- 229910052733 gallium Inorganic materials 0.000 claims description 7
- 238000000265 homogenisation Methods 0.000 claims description 7
- 238000002844 melting Methods 0.000 claims description 5
- 230000008018 melting Effects 0.000 claims description 5
- 239000000919 ceramic Substances 0.000 claims description 2
- 239000007769 metal material Substances 0.000 claims description 2
- 229910002091 carbon monoxide Inorganic materials 0.000 claims 1
- 238000000034 method Methods 0.000 abstract description 10
- 239000001257 hydrogen Substances 0.000 abstract description 9
- 229910052739 hydrogen Inorganic materials 0.000 abstract description 9
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 abstract description 8
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 abstract description 5
- 238000006356 dehydrogenation reaction Methods 0.000 abstract description 5
- 239000000395 magnesium oxide Substances 0.000 abstract description 4
- 230000006641 stabilisation Effects 0.000 abstract 1
- 238000011105 stabilization Methods 0.000 abstract 1
- 229910000521 B alloy Inorganic materials 0.000 description 34
- 230000007423 decrease Effects 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 7
- 238000010438 heat treatment Methods 0.000 description 7
- 230000009466 transformation Effects 0.000 description 7
- 230000000694 effects Effects 0.000 description 4
- 238000000465 moulding Methods 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 239000004033 plastic Substances 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 238000000844 transformation Methods 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- 229910052777 Praseodymium Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 230000005415 magnetization Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000007873 sieving Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/047—Alloys characterised by their composition
- H01F1/053—Alloys characterised by their composition containing rare earth metals
- H01F1/055—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
- H01F1/057—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
- H01F1/0571—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
- H01F1/0573—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes obtained by reduction or by hydrogen decrepitation or embrittlement
Landscapes
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Powder Metallurgy (AREA)
- Hard Magnetic Materials (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は、Yを含む希土類元素(以下、Rで示す)と
、FeあるいはFeの一部をCoで置換した成分(以下
、Tで示す)と、Bを主成分とした合金(以下、R−T
−B系合金という)を、水素吸蔵−゛脱水素の水素処理
することにより、磁気的異方性に優れたR−T−B系磁
石合金粉末を製造する方法に関するものである。[Detailed Description of the Invention] [Industrial Application Field] This invention is based on a rare earth element containing Y (hereinafter referred to as R) and a component in which Fe or a part of Fe is replaced with Co (hereinafter referred to as T). ) and an alloy containing B as the main component (hereinafter referred to as R-T
The present invention relates to a method for producing R-T-B-based magnet alloy powder having excellent magnetic anisotropy by subjecting a B-based alloy to a hydrogen treatment process of hydrogen absorption and dehydrogenation.
一般に、R−T−B系合金を水素吸蔵したのち脱水素処
理することによりR−T−B系磁石合金粉末を製造する
方法は、例えば、特開平1−132108号公報などに
開示されている。In general, a method for manufacturing an RTB-based magnet alloy powder by absorbing hydrogen in an RT-B-based alloy and then dehydrogenating it is disclosed, for example, in JP-A-1-132108. .
上記特開平1−132106号公報に開示のR−T−B
系磁石合金粉末の製造方法は、
強磁性相であるR2T14B型金属間化合物相(以下、
R2T14B相という)を主相とするR−T−B系合金
インゴットまたはそのインゴットの粉砕粉を均質化処理
するかまたは均質化処理せずに、所定の高温度域のH2
雰囲気中に保持してH2吸蔵せしめ、引き続いて同高温
度域を保持しながら排気し、真空雰囲気下で脱H2処理
することにより再び上記R2T14B相を生成させる方
法で、その結果得られたR−T−B系磁石合金粉末は、
平均粒径: 0.05〜50xの極めて微細なR2T1
4B相の再結晶組織を主相とした集合組織を有し、かつ
磁気的異方性を有している。R-T-B disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 1-132106
The manufacturing method of the magnet alloy powder is as follows: R2T14B type intermetallic compound phase (hereinafter referred to as
An R-T-B alloy ingot having R2T14B phase as a main phase or a pulverized powder of the ingot is subjected to a homogenization treatment or is not homogenized and is heated to H2 in a predetermined high temperature range.
This is a method in which the R2T14B phase is generated again by holding in an atmosphere to absorb H2, then evacuation while maintaining the same high temperature range, and removing H2 in a vacuum atmosphere. T-B magnet alloy powder is
Average particle size: 0.05-50x extremely fine R2T1
It has a texture whose main phase is a recrystallized structure of 4B phase, and has magnetic anisotropy.
上記従来法で製造されたR−T−B系磁石合金粉末は、
優れた磁気的異方性を有するが、インゴットの合金組成
、H吸蔵および脱H2などの処理条件の微少な変動など
により、得られたR−T−B系磁石合金粉栄の磁気的異
方性が著しく低下したり、また磁気的異方性にばらつき
が生じたりすることがあった。上記R−T−B系磁石合
全磁石合金粉末に大量生産する場合に、かかる事態が発
生すると多大の損害をこうむることになる。The R-T-B magnet alloy powder produced by the above conventional method is
Although it has excellent magnetic anisotropy, due to slight variations in the alloy composition of the ingot and processing conditions such as H occlusion and deH2 removal, the magnetic anisotropy of the obtained R-T-B magnet alloy powder may change. In some cases, the magnetic anisotropy may be significantly reduced, and the magnetic anisotropy may vary. If such a situation occurs when mass producing the above-mentioned R-T-B type magnet alloy powder, a great deal of damage will be incurred.
したがりて、安定して優れた磁気的異方性を得るために
は、上記R−T−B系磁石合全磁石合金粉末ロール圧延
等の熱間塑性加工を施す必要があるが、上記熱間塑性加
工を施すことにより磁気的異方性を付与するR−T−B
系磁石合金粉末の製造工程は、複雑でコストがかかる等
の問題点があった。Therefore, in order to stably obtain excellent magnetic anisotropy, it is necessary to perform hot plastic working such as roll rolling of the above-mentioned R-T-B magnet alloy powder. R-T-B which imparts magnetic anisotropy by performing plastic working
The manufacturing process of magnet alloy powder has problems such as being complicated and expensive.
そこで、本発明者等は、上記磁気的異方性が低下したり
磁気的異方性にばらつきが生じたりすることなく、また
上記熱間塑性加工を施すことなく安定して優れた磁気的
異方性を有するR−T−B系磁石合金粉末を製造すべく
研究を行った結果、(a) 温度=750〜950℃
のH2雰囲気中において、R−T−B系合金インゴット
または粉末のR2T14B相は、
R2Tl4B−eRH2+T+T2B ・・・・・・・
・・(1)の相変態を起こし、続けて同温度の脱H2工
程で、RH+T+T2B→R2T14B ・・・・・・
・・・(2)の相変態で再びR2T 14 B相の再結
晶集合組織となるが、上記(2)式の反応は吸熱反応で
あるために温度低下変動が発生し、この温度低下変動が
発生すると、上記(1)および(2)式の相変態を経て
得られた再結晶集合組織の磁気的異方性は低下し、また
上記原料としてのR−T−B系合金インゴットまたは粉
末の容器内充填個所に応じて温度の低下変動差が生ずる
ことにより、得られたR−T−B系磁石合金粉末の磁気
的異方性にばらつきが生ずる原因となっていることが解
明され、上記温度低下変動の発生を防止するためには、
上記R−T−B系合金インゴットまたは粉末を、蓄熱材
とともにH2雰囲気中高温度に加熱し、引き続いて同温
度真空雰囲気中に保持すると、上記(2)の吸熱反応に
よる温度低下変動は上記蓄熱材の保温作用により防止さ
れ、一定の高温度に維持されて、得られたR:T−B系
磁石合金粉末の磁気的異方性の低下およびばらつきがな
くなる、(b) 上記原料としてのR−T−B系合金
インゴットまたは粉末の成分組成は、原子百分率で、R
:8〜30%。Therefore, the present inventors have developed a method for achieving stable and excellent magnetic anisotropy without reducing the magnetic anisotropy or causing variations in the magnetic anisotropy, and without performing the hot plastic working. As a result of research to produce RTB magnet alloy powder with orientation, (a) Temperature = 750 to 950°C
In the H2 atmosphere, the R2T14B phase of the R-T-B alloy ingot or powder is R2Tl4B-eRH2+T+T2B...
...The phase transformation of (1) occurs, followed by a deH2 step at the same temperature, RH+T+T2B→R2T14B...
...The phase transformation in (2) results in a recrystallized texture of the R2T 14 B phase again, but since the reaction in equation (2) above is an endothermic reaction, a temperature drop fluctuation occurs, and this temperature drop fluctuation When this occurs, the magnetic anisotropy of the recrystallized texture obtained through the phase transformations of equations (1) and (2) above decreases, and the magnetic anisotropy of the R-T-B alloy ingot or powder as the raw material decreases. It has been clarified that differences in temperature drop fluctuation occur depending on the filling location in the container, which causes variations in the magnetic anisotropy of the obtained R-T-B magnet alloy powder, and the above-mentioned To prevent temperature drop fluctuations,
When the above R-T-B alloy ingot or powder is heated together with a heat storage material to a high temperature in an H2 atmosphere and then held in a vacuum atmosphere at the same temperature, the temperature drop fluctuation due to the endothermic reaction in (2) above is caused by the above heat storage material. (b) The R- The component composition of the T-B alloy ingot or powder is R
:8~30%.
B:3〜15%。B: 3-15%.
を含有し、残りがTおよび不可避不純物からなるR−T
−B系合金であってもよいが、
上記合金にさらに、
(1) Ga:0.01〜5.(1%。R-T containing T and the remainder consisting of T and inevitable impurities
-B alloy may be used, but the above alloy further includes: (1) Ga: 0.01 to 5. (1%.
(ll)ZrおよびHfのうち1種または2種=0.0
1〜3.0%。(ll) One or two of Zr and Hf = 0.0
1-3.0%.
(iii) Ga、並びにZ「およびHfのうち1種ま
たは2FJ : 0.01〜5.0%。(iii) Ga, one of Z' and Hf, or 2FJ: 0.01 to 5.0%.
上記(1)〜(iii)のうちいずれかを添加したR−
T−B系合金を用いると、磁気的異方性の一層優れたR
−T−B系磁石合金が得られる、という知見を得たので
ある。R- containing any one of the above (1) to (iii)
When a T-B alloy is used, R with even better magnetic anisotropy can be obtained.
-T-B based magnet alloy was obtained.
この発明は、上記知見にもとづいてなされたものであっ
て、
必要に応じて前処理として温度:600〜1200℃の
均質化処理したR−T−B系合金を、蓄熱材とともに、
温度=750〜950℃のH2雰囲気中に保持したのち
、引き続いて同温度の真空雰囲気中に保持し、ついで冷
却し、粉砕する磁気的異方性に優れたR−T−B系磁石
合金粉末の製造法に特徴を有するものであり、このよう
にして得られたR−T−B系磁石合金粉末は、さらに温
度:300〜1000℃で熱処理することにより一層優
れた磁気特性が得られるのである。This invention was made based on the above findings, and includes an R-T-B alloy that has been homogenized at a temperature of 600 to 1200°C as a pretreatment as necessary, together with a heat storage material.
R-T-B magnet alloy powder with excellent magnetic anisotropy, which is maintained in an H2 atmosphere at a temperature of 750 to 950°C, then held in a vacuum atmosphere at the same temperature, then cooled and crushed. The R-T-B magnet alloy powder obtained in this way can be further heat-treated at a temperature of 300 to 1000°C to obtain even better magnetic properties. be.
つぎに、この発明の製造法における条件限定理由につい
て説明する。Next, the reason for limiting the conditions in the manufacturing method of the present invention will be explained.
(1)R−T−B系合金
原料として用いるR−T−B系合金は、一般にインゴッ
トまたはバルク状のものを用いるが、その他フレーク、
粉末など任意の形状を有するものでよく、その成分組成
は、原子百分率で、(a)R:8〜30%。(1) The R-T-B alloy used as the raw material for the R-T-B alloy is generally in the form of an ingot or a bulk, but other types such as flakes,
It may have any shape such as powder, and its component composition is (a) R: 8 to 30% in atomic percentage.
B:3〜15%。B: 3-15%.
を含有し、残部二Tおよび不可避不純物からなる組成を
有するもの、または、
(b)R:8〜30%。(b) R: 8 to 30%.
B :3〜15゛%。B: 3-15%.
を含有し、さらに、 Ga:0.01〜5.0%。Contains, and furthermore, Ga: 0.01-5.0%.
を含有し、残部二Tおよび不可避不純物からなる組成を
有するもの、
(c)R:8〜30%。(c) R: 8 to 30%.
B :3〜15%。B: 3-15%.
を含有し、さらに、 Ga:0.01〜5.0%。Contains, and furthermore, Ga: 0.01-5.0%.
Z「およびHfのうち18または2種:0.01〜3.
0%。18 or 2 of Z' and Hf: 0.01 to 3.
0%.
を含有し、残部二Tおよび不可避不純物からなる組成を
有するもの、
(d)R:8〜30%。(d) R: 8 to 30%.
B :3〜15%。B: 3-15%.
を含有し、さらに、
2「およびHfのうち1種または2種:0、O2N2.
0%。2" and one or two of Hf: 0, O2N2.
0%.
を含有し、残部二Tおよび不可避不純物からなる組成を
有するもの、
上記(a)〜(d)のうちいずれでもよい。Any one of the above (a) to (d) may be used.
Rは、Yを含む希土類元素のうち1種または2種以上で
あるが、特にNd、 Prまたはそれらの混合物が好ま
しく、8%より低いと、また30%より高いと保磁力が
低下し、高特性が得られない。R is one or more rare earth elements including Y, and Nd, Pr, or a mixture thereof is particularly preferable; when it is lower than 8% and when it is higher than 30%, the coercive force decreases and high Characteristics cannot be obtained.
Bは、3%より低いと、また15%より高いと、保磁力
が低下し高特性が得られない。If B is lower than 3% or higher than 15%, the coercive force decreases and high characteristics cannot be obtained.
Ga、Zr、Hfは、磁気的異方性および保磁力を向上
させる元素であるが、これらの元素は0.01%より低
いとその効果が顕著に表われず、一方、Gaが5.0%
より高いと、またZrおよびHfが3.0%より高いと
、磁化の値、保磁力が低下し高特性が得られない。Ga, Zr, and Hf are elements that improve magnetic anisotropy and coercive force, but their effects are not noticeable when the content of these elements is less than 0.01%.On the other hand, when Ga is 5.0% %
If it is higher, or if Zr and Hf are higher than 3.0%, the magnetization value and coercive force decrease and high characteristics cannot be obtained.
残部のTは、FeまたはFeの一部をCoで置換した成
分で、Feの一部を0.01〜40%のCoで置換する
ことができ、上記Feの一部をCoで置換することによ
り、耐食性、磁気特性、磁気温度特性を改善することが
できる。The remaining T is a component in which Fe or a part of Fe is replaced with Co. Part of Fe can be replaced with 0.01 to 40% Co, and part of the Fe can be replaced with Co. This makes it possible to improve corrosion resistance, magnetic properties, and magnetic temperature properties.
(2)均質化処理
上記R−T−B系合金は、均質化処理しなくてもよいが
、均質化処理することにより一層均−な磁気特性を有す
るR−T−B系磁石合金粉末が得られ、その温度は、6
00〜1200℃、好ましくは1050−1200℃で
ある。均質化処理温度が600℃より低いと均質化処理
に長時間を要するため、工業的に生産性が悪く、一方、
1200℃を越えると溶融するので好ましくない。(2) Homogenization Treatment The above R-T-B alloy does not need to be homogenized, but by homogenizing it, the R-T-B magnet alloy powder can have more uniform magnetic properties. obtained and its temperature is 6
00-1200°C, preferably 1050-1200°C. If the homogenization temperature is lower than 600°C, the homogenization process will take a long time, resulting in poor industrial productivity;
If the temperature exceeds 1200°C, it will melt, which is not preferable.
(3)H2雰囲気および真空雰囲気における処理温度、
500〜1000℃の範囲内の温度のH2雰囲気中にR
−T−B系合金を保持すると、上記(1)式に示される
相変態が起り、引き続いて同温度の真空雰囲気中に保持
すると上記(2)式の相変態が起り、再結晶集合組織が
得られるが、上記(1)および(2)式の相変態は、特
に750〜950℃で顕著に起り、磁気的異方性の優れ
た再結晶集合組織が得られる。したがって、H2雰囲気
および真空雰囲気における処理温度は750〜950℃
に定めた。(3) Processing temperature in H2 atmosphere and vacuum atmosphere, R in H2 atmosphere at a temperature within the range of 500-1000℃
When the -T-B alloy is held, the phase transformation shown by equation (1) above occurs, and when it is subsequently held in a vacuum atmosphere at the same temperature, the phase transformation shown by equation (2) above occurs, and the recrystallization texture changes. However, the phase transformations of the above formulas (1) and (2) occur significantly particularly at 750 to 950°C, and a recrystallized texture with excellent magnetic anisotropy is obtained. Therefore, the processing temperature in H2 atmosphere and vacuum atmosphere is 750-950℃.
Established.
このようにして得られる再結晶集合組織は、平均再結晶
粒径: 0.05〜t、o即のR2T t 4 B型金
翼間化合物相を主相とする再結晶の集合組織であること
が好ましい。The recrystallized texture obtained in this manner is a recrystallized texture with an average recrystallized grain size of 0.05 to t, o as the main phase of R2T t4 B type interwing compound phase. is preferred.
(4)蓄熱材
上記(2)式は、吸熱反応であるから、750〜950
℃の一定温度に保持しても、保持温度の低下変動が生じ
る。上記保持温度の低下変動が生じると、得られるR−
T−B系磁石合金粉末の磁気的異方性の低下またはばら
つきが発生して好ましくない。上記保持温度低下変動を
防止するために、上記(2)式の相変態時に炉内温度を
制御して保持温度の低下変動を防止する手段も考えられ
るが、上記炉内温度の制御によるR−T−B系合金の保
持温度低下変動防止制御は、工業的には難しく、十分な
保持温度の低下変動を防止するために特別な設備を必要
とし、コストも高くなる。(4) Heat storage material Since the above equation (2) is an endothermic reaction, 750 to 950
Even if the temperature is held at a constant temperature of °C, the holding temperature will fluctuate downward. When the above holding temperature decreases and fluctuates, the obtained R-
This is undesirable because the magnetic anisotropy of the T-B magnet alloy powder decreases or varies. In order to prevent the above-mentioned holding temperature drop fluctuations, it is possible to control the furnace temperature during the phase transformation in equation (2) above to prevent the holding temperature drop fluctuations. Control to prevent fluctuations in lowering of the holding temperature of T-B alloys is industrially difficult, and requires special equipment to sufficiently prevent fluctuations in lowering of the holding temperature, resulting in high costs.
したがって、この発明では、R−T−B系合金原料を蓄
熱材と共に加熱し、上記750〜950℃内の一定温度
に保持する方法を採用したのである。Therefore, in this invention, a method is adopted in which the R-T-B alloy raw material is heated together with the heat storage material and maintained at a constant temperature within the above-mentioned range of 750 to 950°C.
上記R−T−B集合金が集合材とともに共存すると、上
記(2)式の吸熱反応があっても、蓄熱材の保温作用に
よりR−T−B系合金の保持温度低下は起こらず、簡単
に750〜950℃の範囲内の一定温度に保持すること
ができる。上記蓄熱材は、熱容量が大きく、750〜9
50℃の水素および真空雰囲気においてR−T−B系合
金と反応しない高融点材料であれば、いかなる材料で製
造されてもよいが、特にアルミナ、マグネシア、ジルコ
ニアなどのセラミックスまたはタングステン、モリブデ
ン、ステンレススチールなどの高融点金属材料が好まし
い。また蓄熱材の形状は、板状、ブロック状、塊状、球
状など得られたR−T−B系磁石合金粉末と分離可能な
形状であればよい。When the above R-T-B aggregate alloy coexists with the aggregate material, even if the endothermic reaction of equation (2) occurs, the holding temperature of the R-T-B alloy does not decrease due to the heat retention effect of the heat storage material, and it is easy to The temperature can be maintained at a constant temperature within the range of 750 to 950°C. The heat storage material has a large heat capacity of 750 to 9
It may be manufactured from any material with a high melting point that does not react with the R-T-B alloy in a hydrogen and vacuum atmosphere at 50°C, but in particular ceramics such as alumina, magnesia, and zirconia, or tungsten, molybdenum, and stainless steel. High melting point metallic materials such as steel are preferred. The heat storage material may have any shape as long as it can be separated from the obtained R-T-B magnet alloy powder, such as a plate, block, lump, or sphere.
つぎに、蓄熱材を用いたこの発明の保持温度低下防止方
法を図面を用いて具体的に説明する。Next, the method for preventing a drop in holding temperature according to the present invention using a heat storage material will be specifically explained with reference to the drawings.
第1図は、蓄熱材として球状蓄熱材を用いた場合の断面
説明図、
第2図は、蓄熱材として板状蓄熱材を用いた場合の断面
説明図であり、
1は球状蓄熱材、1′は板状蓄熱材、2はR−T−B系
合金ブロック状インゴット、3は容器、4は加熱保持炉
である。FIG. 1 is a cross-sectional explanatory diagram when a spherical heat storage material is used as a heat storage material, and FIG. 2 is a cross-sectional explanatory diagram when a plate-shaped heat storage material is used as a heat storage material, 1 is a spherical heat storage material, 1 ' is a plate-shaped heat storage material, 2 is an R-T-B alloy block ingot, 3 is a container, and 4 is a heating and holding furnace.
第1図に示されるように、R−T−B系合金ブロック状
インゴット2を球状蓄熱材1とともに加熱保持炉4内の
容器3に充填し、上記加熱保持炉4内の雰囲気を水素雰
囲気にし、750〜950”Cの範囲内の一定温度に保
持してR−T−B系合金インゴットにH2吸蔵せしめ、
引き続いて上記加熱保持炉4内の雰囲気を真空雰囲気に
して脱H2処理しても、球状蓄熱材1が存在することに
より吸熱反応による保持温度の低下変動は起こらない。As shown in FIG. 1, an R-T-B alloy block ingot 2 is filled together with a spherical heat storage material 1 into a container 3 in a heating and holding furnace 4, and the atmosphere in the heating and holding furnace 4 is made into a hydrogen atmosphere. , holding the temperature at a constant temperature within the range of 750 to 950"C to cause the R-T-B alloy ingot to absorb H2,
Subsequently, even if the atmosphere in the heating and holding furnace 4 is made into a vacuum atmosphere and the H2 removal process is performed, the holding temperature does not decrease or fluctuate due to an endothermic reaction due to the presence of the spherical heat storage material 1.
第2図は、蓄熱材として板状蓄熱材1′を用い、R−T
−B系合金ブロック状インゴット2を板状蓄熱材1′の
間に挾んで、第1図と同禄にH2吸蔵−脱H2処理する
ものである。FIG. 2 shows the R-T
-B alloy block ingot 2 is sandwiched between plate-shaped heat storage materials 1' and subjected to H2 occlusion and H2 desorption treatment in the same manner as shown in FIG.
第1図および第2図、に示されるように、R−T−B系
合金インゴットを蓄熱材と共存させてH2処理すると、
蓄熱材の熱容量が大きいため、脱H2処理工程で吸熱反
応が起きても保持温度が低下変動することなぐ一定温度
に保持することができ、それによって得られたR−T−
B系磁石合金粉末は磁気的異方性にばらつきが生じない
。As shown in FIGS. 1 and 2, when an R-T-B alloy ingot is treated with H2 in the presence of a heat storage material,
Because the heat storage material has a large heat capacity, even if an endothermic reaction occurs during the H2 removal process, the holding temperature can be maintained at a constant temperature without decreasing or fluctuating.
B-based magnet alloy powder has no variation in magnetic anisotropy.
原料をプラズマ・アーク溶解炉に占り溶解し、鋳造して
第1表に示される成分組成のR−T−B系合金インゴッ
トA−Pを製造した。The raw materials were melted in a plasma arc melting furnace and cast to produce R-T-B alloy ingots A-P having the composition shown in Table 1.
、mtLらR−T−B系合金インゴットA−Pをそれぞ
れ温度: 1000℃のA「雰囲気中に40時間保持し
て均質化処理を行った。, mtL and R-T-B alloy ingots A-P were held in an atmosphere of 1000° C. for 40 hours to perform homogenization treatment.
実施例 1〜IB
上記R−T−B系合金インゴットA−Pを約10〜30
mm角のブロック状に割り、R−T−B系合金ブロック
状インゴットを作製した。Examples 1 to IB Approximately 10 to 30
It was divided into mm square blocks to produce R-T-B alloy block ingots.
一方純度: 99.9重量%、直径:5ff111のア
ルミナボールを用意し、このアルミナボールを蓄熱材と
して用い、重量比で、R−T−B系合金ブロック状イン
ゴット:蓄熱材−1:1の割合で第1図に示されるよう
にアルミナ製容器内に共存せしめ、加熱炉に装入し、加
熱炉の雰囲気を780Torrの水素ガスとし、温度=
850℃に3時間保持したのち、続けて温度=850℃
に保持しながら、1時間保持して脱水素を行って真空度
: I X 1O−5Torrになるまで排気し、冷却
した。On the other hand, alumina balls with a purity of 99.9% by weight and a diameter of 5ff111 were prepared, and these alumina balls were used as a heat storage material, and the weight ratio of R-T-B alloy block ingot: heat storage material - 1:1. The proportions shown in Figure 1 were coexisted in an alumina container, charged into a heating furnace, and the atmosphere in the heating furnace was hydrogen gas at 780 Torr.
After holding at 850℃ for 3 hours, continue to increase temperature to 850℃
The reactor was held for 1 hour to perform dehydrogenation, evacuated to a vacuum level of 10-5 Torr, and cooled.
その後、蓄熱材を上記R−T−B系合金インゴットとを
ふるい分けして分離し、上記R−T−B系合金インゴッ
トはブラウンミルにて、Ar雰囲気中、50〇−以下に
なるまで粉砕し、R−T−B系磁石合金粉末を得た。Thereafter, the heat storage material is separated from the R-T-B alloy ingot by sieving, and the R-T-B alloy ingot is crushed in a brown mill in an Ar atmosphere until it becomes less than 500. , RTB magnet alloy powder was obtained.
得られたR−T−B系磁石合金粉末を3重量%のエポキ
シ樹脂と混合し、20KOeの磁場中あるいは無磁場中
、圧カニ 6Ton/c−で成形し、温度:120℃、
60分保持して硬化させ、それぞれ異方性ボンド磁石(
磁場中成形)および等方性ボンド磁石(無磁場中成形)
を作製した。得られたボンド磁石の磁気特性を第2表に
示す。The obtained R-T-B magnet alloy powder was mixed with 3% by weight of epoxy resin and molded with a pressure crab of 6Ton/c- in a magnetic field of 20 KOe or in no magnetic field, at a temperature of 120°C.
Hold for 60 minutes to harden, and each anisotropic bonded magnet (
(molding in a magnetic field) and isotropic bonded magnet (molding in a non-magnetic field)
was created. The magnetic properties of the obtained bonded magnet are shown in Table 2.
比較例 1〜1B
第1表のR−T−B系合金インゴットA−Pを均質化処
理し、約10〜30m+w角のブロック状に割って得ら
れたR−T−B系ブロック状インゴットを、蓄熱材なし
で上記実施例1〜16と同様に処理したのち、粉砕し、
R−T−B系磁石合金粉末を作製し、このR−T−B系
磁石合金粉末を用いて実施例1〜16と全く同様にして
ボンド磁石を作製し、得られたボンド磁石の磁気特性を
測定し、それらの測定結果を第2表に示した。Comparative Examples 1 to 1B R-T-B alloy ingots A-P shown in Table 1 were homogenized and divided into block shapes of approximately 10 to 30 m+w square. , treated in the same manner as in Examples 1 to 16 above without a heat storage material, and then pulverized,
An R-T-B based magnet alloy powder was produced, and a bonded magnet was produced using this RTB based magnet alloy powder in exactly the same manner as in Examples 1 to 16, and the magnetic properties of the obtained bonded magnet were were measured, and the measurement results are shown in Table 2.
第2表の結果から、
(1) R−T−B系ブロック状インゴットを蓄熱材
を用いてH吸蔵および脱H2処理した場合は、蓄熱材を
用いない場合よりも、磁場中成形して得られた異方性ボ
ンド磁石および磁場無し成形して得られた等方性ボンド
磁石の磁気特性が共に優れていることから、高磁気特性
のR−T−B系磁石合金粉末が得られる。From the results in Table 2, (1) When an R-T-B block-shaped ingot is subjected to H occlusion and H2 removal treatment using a heat storage material, it is possible to obtain a better result by forming it in a magnetic field than when a heat storage material is not used. Since both the anisotropic bonded magnet obtained by molding and the isotropic bonded magnet obtained by molding without a magnetic field have excellent magnetic properties, an R-T-B magnet alloy powder with high magnetic properties can be obtained.
(2) Ga、 Zr、 H1’を添加した成分組
成を有するR−T−B系磁石合金粉末から青られたボン
ド磁石は、これらGa、Zr、Hfを含HしないR−T
−B系磁石合金粉末から得られたボンド磁石よりも磁気
的異方性が優れていることから、Ga、Zr、Hfを添
加することにより、磁気的異方性に一層優れたR−T−
B系磁石合金粉末が得られる。(2) A bonded magnet made from an R-T-B magnet alloy powder having a component composition containing Ga, Zr, and H1' is an R-T magnet that does not contain H and does not contain Ga, Zr, or Hf.
- Since the magnetic anisotropy is superior to that of bonded magnets obtained from B-based magnet alloy powder, by adding Ga, Zr, and Hf, R-T-
A B-based magnet alloy powder is obtained.
ことがわかる。I understand that.
実施例17〜22および比較例17〜18合金組成が原
子百分率で”12.4PrO,2FcBaICo10.
1 BB、0GaO,5のR−T−B系合金インゴット
を一辺がf5mm角の立方体となるように切断し、R−
T−B系合金ブロック状インゴットを作製した。上記イ
ンゴットを1150℃、20時間A「雰囲気中で均質化
処理を行った。Examples 17 to 22 and Comparative Examples 17 to 18 alloy compositions are "12.4PrO,2FcBaICo10.
1 An R-T-B alloy ingot of BB, 0 GaO, 5 was cut into a cube with one side f5 mm square, and R-
A block-shaped ingot of a T-B alloy was produced. The above ingot was subjected to homogenization treatment at 1150°C for 20 hours in an atmosphere of A.
一方、純度: 99.9%、厚さ:5龍の寸法を有する
マグネシア板状蓄熱材を用意し、上記R−T−B系合金
ブロック状インゴットを第2図に示されるように、重量
比で、
R−T−B系合金ブロック状インゴット:蓄熱材−1:
2
の割合となるように容器内に配置し、この容器を加熱炉
に装入し、第3表に示されたH2吸蔵条件にて3時間熱
処理し、続けて第3表の脱H2条件で1時間脱水素を行
って冷却した。その後、マグネシア板状蓄熱材を鯖去し
、処理したR−T−B系合金ブロック状インゴットをA
「雰囲気中ディスクミルにて500μs以下となるまで
粉砕し、R−T−B系磁石合金粉末を得た。On the other hand, a magnesia plate-like heat storage material having a purity of 99.9% and a thickness of 5 mm was prepared, and the above R-T-B alloy block ingot was mixed in a weight ratio as shown in FIG. So, R-T-B alloy block ingot: Heat storage material-1:
This container was placed in a heating furnace and heat treated for 3 hours under the H2 storage conditions shown in Table 3. Dehydrogenation was performed for 1 hour and the mixture was cooled. After that, the magnesia plate heat storage material is removed and the treated R-T-B alloy block ingot is
"It was ground in a disk mill in an atmosphere until it became 500 μs or less to obtain an R-T-B magnet alloy powder.
得られたR−T−B系磁石合金粉末を、2重−%のエポ
キシ樹脂と混合し、20KOeの磁場中、圧カニ6To
n/c−で成形し、温度:120℃、60分間保持して
硬化させ、異方性ボンド磁石を作製した。The obtained R-T-B magnet alloy powder was mixed with 2% epoxy resin, and heated in a magnetic field of 20 KOe with pressure crab 6To.
It was molded at n/c- and kept at a temperature of 120° C. for 60 minutes to harden, thereby producing an anisotropic bonded magnet.
得られたボンド磁石の磁気特性を第3表に示す。The magnetic properties of the obtained bonded magnet are shown in Table 3.
第3表の結果から、R−T−B系磁石合金粉末の製造に
おいて、H吸蔵および脱H2処理温度を750〜950
℃の範囲内に保持することにより優れた磁気的異方性を
付与できることがわかる。From the results in Table 3, it can be seen that in the production of R-T-B magnet alloy powder, the temperature for H storage and deH2 treatment is 750 to 950.
It can be seen that excellent magnetic anisotropy can be imparted by maintaining the temperature within the range of .degree.
この発明の製造法によると、蓄熱材を用いることにより
、従来よりも簡単に安定して優れた磁気的異方性を有す
るR−T−B系磁石合金粉末および磁気特性の優れた等
方性R−T−B系磁石合全磁石合金粉末とができるので
、大幅なコスト低下をもたらすことができ、産業上澄れ
た効果をもたらすものである。According to the production method of the present invention, by using a heat storage material, R-T-B magnet alloy powder that is more stable than before and has excellent magnetic anisotropy and isotropy with excellent magnetic properties can be obtained. Since the RTB system magnet can be made into a total magnet alloy powder, it can bring about a significant cost reduction and bring about excellent industrial effects.
第1図および第2図は、R−T−B系合金ブロック状イ
ンゴットと蓄熱材を共存するように容器に充填したこの
発明の実施状態を示す断面概略図である。FIGS. 1 and 2 are schematic cross-sectional views showing an embodiment of the present invention in which a container is filled with an R-T-B alloy block ingot and a heat storage material so as to coexist.
Claims (12)
るいはFeの一部をCoで置換した成分(以下、Tで示
す)とBを主成分とする合金を、蓄熱材と共に、温度:
750〜950℃の水素ガス雰囲気中に保持したのち、
引き続いて温度:750〜950℃の真空雰囲気中に保
持し、 ついで、冷却し、粉砕することを特徴とする磁気的異方
性に優れた希土類磁石合金粉末の製造法。(1) A rare earth element containing Y (hereinafter referred to as R), Fe or a component in which a part of Fe is replaced with Co (hereinafter referred to as T), and an alloy mainly composed of B are used together with a heat storage material at a temperature :
After being maintained in a hydrogen gas atmosphere at 750 to 950°C,
A method for producing a rare earth magnet alloy powder with excellent magnetic anisotropy, which comprises subsequently holding the powder in a vacuum atmosphere at a temperature of 750 to 950°C, then cooling and pulverizing it.
〜1200℃に保持して均質化処理を行ない、上記均質
化処理したRとTとBを主成分とする合金を、 蓄熱材と共に、温度:750〜950℃の水素ガス雰囲
気中に保持したのち、引き続いて温度:750〜950
℃の真空雰囲気中に保持し、 ついで、冷却し、粉砕することを特徴とする磁気的異方
性に優れた希土類系磁石合金 粉末の製造法。(2) An alloy containing R, T, and B as main components at a temperature of 800
Homogenization treatment was carried out by holding at ~1200℃, and the homogenized alloy containing R, T, and B as main components was held together with the heat storage material in a hydrogen gas atmosphere at a temperature of 750 to 950℃. , followed by temperature: 750-950
1. A method for producing rare earth magnet alloy powder with excellent magnetic anisotropy, which comprises holding the powder in a vacuum atmosphere at ℃, followed by cooling and pulverizing.
がそれぞれ原子百分率で、 R:8〜30%, B:3〜15%, を含有し、残部:Feおよび不可避不純物からなる合金
であることを特徴とする請求項1および2記載の磁気的
異方性に優れた希土類磁石合金粉末の製造法。(3) The alloy containing R, T, and B as main components has an alloy composition of R: 8 to 30%, B: 3 to 15%, and the remainder: Fe and unavoidable impurities. 3. The method for producing a rare earth magnet alloy powder having excellent magnetic anisotropy according to claim 1 or 2, wherein the powder is an alloy having an excellent magnetic anisotropy.
がそれぞれ原子百分率で、 R:8〜30%, B:3〜15%, Co:0.01〜40%。 を含有し、残部:Feおよび不可避不純物からなる合金
であることを特徴とする請求項1および2記載の磁気的
異方性に優れた希土類磁石合金粉末の製造法。(4) The alloy containing R, T, and B as main components has an alloy composition in atomic percentages of R: 8 to 30%, B: 3 to 15%, and Co: 0.01 to 40%. 3. The method for producing a rare earth magnet alloy powder having excellent magnetic anisotropy according to claim 1 or 2, wherein the alloy contains Fe and unavoidable impurities.
がそれぞれ原子百分率で、 R:8〜30%。 B:3〜15%。 Ga:0.01〜5.0%。 を含有し、残部:Feおよび不可避不純物からなる合金
であることを特徴とする請求項1および2記載の磁気的
異方性に優れた希土類磁石合金粉末の製造法。(5) The alloy whose main components are R, T, and B has an alloy composition of R: 8 to 30% in atomic percentage. B: 3-15%. Ga: 0.01-5.0%. 3. The method for producing a rare earth magnet alloy powder having excellent magnetic anisotropy according to claim 1 or 2, wherein the alloy contains Fe and unavoidable impurities.
がそれぞれ原子百分率で、 R:8〜30%, B:3〜15%, Ga:0.01〜5.0%, ZrおよびHfのうち1種または2種:0.01〜3.
0%, を含有し、残部:Feおよび不可避不純物からなる合金
であることを特徴とする請求項1および2記載の磁気的
異方性に優れた希土類磁石合金粉末の製造法。(6) The alloy whose main components are R, T, and B has the following alloy compositions in atomic percentage: R: 8 to 30%, B: 3 to 15%, Ga: 0.01 to 5.0%, One or two of Zr and Hf: 0.01 to 3.
3. The method for producing a rare earth magnet alloy powder having excellent magnetic anisotropy according to claim 1 or 2, wherein the alloy contains 0%, and the balance consists of Fe and unavoidable impurities.
がそれぞれ原子百分率で、 R:8〜30%, B:3〜15%, ZrおよびHfのうち1種または2種:0.01〜3.
0%, を含有し、残部:Feおよび不可避不純物からなる合金
であることを特徴とする請求項1および2記載の磁気的
異方性に優れた希土類磁石合金粉末の製造法。(7) The alloy containing R, T, and B as main components has the following alloy composition in atomic percentage: R: 8 to 30%, B: 3 to 15%, and one or two of Zr and Hf: 0.01-3.
3. The method for producing a rare earth magnet alloy powder having excellent magnetic anisotropy according to claim 1 or 2, wherein the alloy contains 0%, and the balance consists of Fe and unavoidable impurities.
がそれぞれ原子百分率で、 R:8〜30%, B:3〜15%, Ga:0.01〜5.0%, Co:0.01〜40%。 を含有し、残部:Feおよび不可避不純物からなる合金
であることを特徴とする請求項1および2記載の磁気的
異方性に優れた希土類磁石合金粉末の製造法。(8) The alloy whose main components are R, T, and B has the following alloy compositions in atomic percentage: R: 8 to 30%, B: 3 to 15%, Ga: 0.01 to 5.0%, Co: 0.01-40%. 3. The method for producing a rare earth magnet alloy powder having excellent magnetic anisotropy according to claim 1 or 2, wherein the alloy contains Fe and unavoidable impurities.
がそれぞれ原子百分率で、 R:8〜30%, B:3〜15%, Ga:0.01〜5.0%, ZrおよびHfのうち1種または2種:0.01〜3.
0%, CO:0.01〜40%。 を含有し、残部:Feおよび不可避不純物からなる合金
であることを特徴とする請求項1および2記載の磁気的
異方性に優れた希土類磁石合金粉末の製造法。(9) The alloy whose main components are R, T, and B has the following alloy compositions in atomic percentage: R: 8 to 30%, B: 3 to 15%, Ga: 0.01 to 5.0%, One or two of Zr and Hf: 0.01 to 3.
0%, CO: 0.01-40%. 3. The method for producing a rare earth magnet alloy powder having excellent magnetic anisotropy according to claim 1 or 2, wherein the alloy contains Fe and unavoidable impurities.
成がそれぞれ原子百分率で、 R:8〜30%, B:3〜15%, ZrおよびHfのうち1種または2種:0.01〜3.
0%, Co:0.01〜40%。 を含有し、残部:Feおよび不可避不純物からなる合金
であることを特徴とする請求項1および2記載の磁気的
異方性に優れた希土類磁石合金粉末の製造法。(10) The alloy whose main components are R, T, and B has the following alloy composition in atomic percentage: R: 8 to 30%, B: 3 to 15%, and one or two of Zr and Hf: 0.01-3.
0%, Co: 0.01-40%. 3. The method for producing a rare earth magnet alloy powder having excellent magnetic anisotropy according to claim 1 or 2, wherein the alloy contains Fe and unavoidable impurities.
ンゴット、バルク、フレークまたは粉末であることを特
徴とする請求項1〜10記載の磁気的異方性に優れた希
土類磁石合金粉末の製造法。(11) A rare earth magnet alloy with excellent magnetic anisotropy according to any one of claims 1 to 10, wherein the alloy containing R, T, and B as main components is a pulverized ingot, bulk, flake, or powder. Powder manufacturing method.
ミックスまたは高融点金属材料からなることを特徴とす
る請求項1〜11記載の磁気的異方性に優れた希土類磁
石合金粉末の製造法。(12) The method for producing a rare earth magnet alloy powder with excellent magnetic anisotropy according to any one of claims 1 to 11, wherein the heat storage material is made of a high melting point material, preferably a ceramic or a high melting point metal material. .
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1284293A JPH03146608A (en) | 1989-10-31 | 1989-10-31 | Manufacture of rare earth magnet alloy powder having excellent magnetic anisotropy |
DE69009335T DE69009335T2 (en) | 1989-07-31 | 1990-07-31 | Rare earth powder for permanent magnet, manufacturing process and bonded magnet. |
US07/560,594 US5228930A (en) | 1989-07-31 | 1990-07-31 | Rare earth permanent magnet power, method for producing same and bonded magnet |
EP90114691A EP0411571B1 (en) | 1989-07-31 | 1990-07-31 | Rare earth permanent magnet powder, method for producing same and bonded magnet |
US07/978,911 US5338371A (en) | 1989-07-31 | 1992-11-19 | Rare earth permanent magnet powder, method for producing same and bonded magnet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1284293A JPH03146608A (en) | 1989-10-31 | 1989-10-31 | Manufacture of rare earth magnet alloy powder having excellent magnetic anisotropy |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03146608A true JPH03146608A (en) | 1991-06-21 |
JPH0579723B2 JPH0579723B2 (en) | 1993-11-04 |
Family
ID=17676655
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1284293A Granted JPH03146608A (en) | 1989-07-31 | 1989-10-31 | Manufacture of rare earth magnet alloy powder having excellent magnetic anisotropy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03146608A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07307211A (en) * | 1992-11-20 | 1995-11-21 | General Motors Corp <Gm> | Hot pressed magnet formed from anisotropic powder |
JPH09505245A (en) * | 1993-11-19 | 1997-05-27 | ドネリイ コーポレーション | Hologram, kinoform, diffractive optical element, microstructure duplication method, and plastic binary optical element manufactured by the duplication method |
US5643491A (en) * | 1992-12-28 | 1997-07-01 | Aichi Steel Works, Ltd. | Rare earth magnetic powder, its fabrication method, and resin bonded magnet |
US6444052B1 (en) | 1999-10-13 | 2002-09-03 | Aichi Steel Corporation | Production method of anisotropic rare earth magnet powder |
-
1989
- 1989-10-31 JP JP1284293A patent/JPH03146608A/en active Granted
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07307211A (en) * | 1992-11-20 | 1995-11-21 | General Motors Corp <Gm> | Hot pressed magnet formed from anisotropic powder |
US5643491A (en) * | 1992-12-28 | 1997-07-01 | Aichi Steel Works, Ltd. | Rare earth magnetic powder, its fabrication method, and resin bonded magnet |
JPH09505245A (en) * | 1993-11-19 | 1997-05-27 | ドネリイ コーポレーション | Hologram, kinoform, diffractive optical element, microstructure duplication method, and plastic binary optical element manufactured by the duplication method |
US6444052B1 (en) | 1999-10-13 | 2002-09-03 | Aichi Steel Corporation | Production method of anisotropic rare earth magnet powder |
Also Published As
Publication number | Publication date |
---|---|
JPH0579723B2 (en) | 1993-11-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5630885A (en) | Alloy ingot for permanent magnet, anisotropic powders for permanent magnet, method for producing same and permanent magnet | |
US5634987A (en) | Magnetic materials and method of making them | |
US5580396A (en) | Treatment of pulverant magnetic materials and products thus obtained | |
JPH06212327A (en) | Rare earth permanent magnet alloy | |
US5690752A (en) | Permanent magnet containing rare earth metal, boron and iron | |
EP0632471A2 (en) | Permanent magnet containing rare earth metal, boron and iron | |
JPH04245403A (en) | Rare earth-fe-co-b-based anisotropic magnet | |
JPS6223902A (en) | Alloy powder for rare earth magnet and its production | |
JPH03129702A (en) | Rare-earth-fe-b-based permanent magnet powder and bonded magnet excellent in magnetic anisotropy and corrosion resistance | |
JPH04133406A (en) | Rare earth-fe-b permanent magnet powder and bonded magnet having excellent magnetic anisotropy and corrosion-resisting property | |
JPH03146608A (en) | Manufacture of rare earth magnet alloy powder having excellent magnetic anisotropy | |
JP2576672B2 (en) | Rare earth-Fe-Co-B permanent magnet powder and bonded magnet with excellent magnetic anisotropy and corrosion resistance | |
JPH0579724B2 (en) | ||
JPH09162054A (en) | Manufacture of r-t-b anisotropic bond magnet | |
JP3097387B2 (en) | Manufacturing method of rare earth magnet material powder | |
CN115458266B (en) | Samarium cobalt magnet and its preparation method and use of nickel | |
JPH04260302A (en) | Magnetic powder and its manufacture and bonded magnet | |
JP2827643B2 (en) | Method for producing rare earth-Fe-B based magnet alloy powder | |
JP2691034B2 (en) | Method for producing rare earth element-iron-nitrogen based magnetic material with controlled microstructure | |
JPH08176617A (en) | Production of rare-earth element-iron-boron alloy magnet powder excellent in magnetic anisotropy | |
JPH04141502A (en) | Manufacture of alloy powder for rare earth metal bond magnet | |
JPH07278615A (en) | Method for producing anisotropic rare earth alloy powder for permanent magnet | |
JPH06224015A (en) | Manufacture of rare earth-fe-n intermetallic compound magnetic material particle and magnetic material powder of rare earth-fe-n intermetallic compound produced by same | |
WO2025141626A1 (en) | Method for producing rare-earth magnet powder | |
JPH06310316A (en) | Rare earth-fe-c-n intermetallic compound magnetic material powder and its manufacture |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |