JPH03145787A - Semiconductor laser element - Google Patents
Semiconductor laser elementInfo
- Publication number
- JPH03145787A JPH03145787A JP1284535A JP28453589A JPH03145787A JP H03145787 A JPH03145787 A JP H03145787A JP 1284535 A JP1284535 A JP 1284535A JP 28453589 A JP28453589 A JP 28453589A JP H03145787 A JPH03145787 A JP H03145787A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- type
- quantum well
- active
- semiconductor laser
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 19
- 229910001218 Gallium arsenide Inorganic materials 0.000 claims abstract description 17
- 239000000758 substrate Substances 0.000 claims abstract description 10
- 230000004888 barrier function Effects 0.000 claims abstract description 7
- 238000005253 cladding Methods 0.000 claims description 20
- 238000003776 cleavage reaction Methods 0.000 abstract description 5
- 230000007017 scission Effects 0.000 abstract description 5
- 239000000969 carrier Substances 0.000 abstract description 4
- 238000000034 method Methods 0.000 abstract description 4
- 229910000530 Gallium indium arsenide Inorganic materials 0.000 abstract description 3
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 abstract description 2
- 230000003287 optical effect Effects 0.000 description 10
- 230000003647 oxidation Effects 0.000 description 6
- 238000007254 oxidation reaction Methods 0.000 description 6
- 239000000203 mixture Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 3
- 230000010355 oscillation Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000005086 pumping Methods 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
Landscapes
- Semiconductor Lasers (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、歪量子井戸半導体レーザ素子の改良に関する
ものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to improvements in strained quantum well semiconductor laser devices.
I n XG a +−xA s (x =0.1〜0
.5)歪量子井戸層及びGaAs障壁層からなる歪量子
井戸層構造の活性層をGaAs基板上に形成した歪量子
井戸半導体レーザ素子は、従来のGaAs/Al2Ga
AsおよびGa1nAsP/InP等の格子整合系レー
ザではちょうど谷間となっていた波長0.9〜1.1/
1mの光源として期待されている。I n XG a + - xA s (x = 0.1~0
.. 5) A strained quantum well semiconductor laser device in which an active layer with a strained quantum well layer structure consisting of a strained quantum well layer and a GaAs barrier layer is formed on a GaAs substrate is different from the conventional GaAs/Al2Ga
For lattice matched lasers such as As and Ga1nAsP/InP, the wavelength ranged from 0.9 to 1.1/2, which was just in the valley.
It is expected to be a 1m light source.
ところで、半導体レーザ素子は、活性層にキャリアおよ
び光を閉じ込めるために、発振波長の光に対して透明で
、活性層(または活性層近傍の光閉じ込め層)よりも屈
折率が小さく、またエネルギー・ギャップが大きい半導
体をクラッドとして用いる必要がある。Incidentally, in order to confine carriers and light in the active layer, a semiconductor laser element is transparent to light at the oscillation wavelength, has a lower refractive index than the active layer (or an optical confinement layer near the active layer), and has a lower energy It is necessary to use a semiconductor with a large gap as the cladding.
従来InつG a 、XA s歪量子井戸半導体レーザ
素子では、w>0.3のA Itl、G a +−wA
Sがクラッドとして用いられている。In the conventional strained quantum well semiconductor laser device, where w>0.3, A Itl, Ga + - wA
S is used as the cladding.
従来例を第2図を用いて説明する。■は約350声厚の
n型GaAs基板であり、この上にMBEあるいはMO
CVD等のエピタキシャル成長により2以下の層を積層
する。2は0.5−厚のn型GaAsバッファ層であり
、3は、1.5戸厚のn型Aj!o、3Gao、7As
クラッド層である。A conventional example will be explained using FIG. 2. ■ is an n-type GaAs substrate with a thickness of approximately 350 mm, and MBE or MO
Two or less layers are stacked by epitaxial growth such as CVD. 2 is a 0.5-thick n-type GaAs buffer layer, and 3 is a 1.5-thick n-type Aj! o, 3Gao, 7As
This is the cladding layer.
4は、l n@、35Ga6.6sAS歪量子井戸、G
aAs障壁層等からなる活性層および光閉し込め層であ
る。4 is l n@, 35Ga6.6s AS strained quantum well, G
These are an active layer and a light confinement layer consisting of an aAs barrier layer or the like.
5は、1.5膜厚のp型A l o、 s G a o
、 7 A Sクラッド層であり、6は0.2−厚のp
型コンタクト層である。5 is a p-type A lo, s Ga o with a film thickness of 1.5
, 7 A S cladding layer, 6 is a 0.2-thick p
type contact layer.
4の詳細は、第3図を用いて説明する。7は、上下それ
ぞれ1500500久厚As光閉じ込め層であり、8は
各々100久厚のGaAs障壁層であり、9は各々40
人厚のI n 6.3SG a O,65A S歪量子
井戸層である。The details of 4 will be explained using FIG. 7 are As optical confinement layers with a thickness of 1,500,500 mm each on the upper and lower sides, 8 are GaAs barrier layers each with a thickness of 100 mm, and 9 are each with a thickness of 40 mm.
It is a strained quantum well layer of I n 6.3SG a O, 65A S with a human thickness.
以上のGaAs基板上に一様に形成したダブルへテロ構
造に、電流狭窄層形成、電極形成、素子分離等の微細加
工を施してレーザ・チップを得る。The double heterostructure uniformly formed on the GaAs substrate is subjected to fine processing such as current confinement layer formation, electrode formation, and element isolation to obtain a laser chip.
なお、以上は、従来例の一例であり混晶の組成比、量子
井戸の層数、各層の膜厚等はさまざまである。また、光
閉じ込め層としては、/lの組成比をバラポリツクに変
化させたAjIC;aAsを用いたGRIN−3CH構
造も良く用いられる。Note that the above is an example of a conventional example, and the composition ratio of the mixed crystal, the number of quantum well layers, the film thickness of each layer, etc. may vary. Further, as the optical confinement layer, a GRIN-3CH structure using AjIC;aAs in which the /l composition ratio is varied is also often used.
波長0.9〜1.1−のレーザの主な用途は、Er等の
希土類をドープしたファイバアンプの励起、あるいはS
HGとの組合せによる可視光源等であり、一般に数十
mW以上の高い出力での長い寿命が必要とされる。The main uses of lasers with a wavelength of 0.9 to 1.1 - are for pumping fiber amplifiers doped with rare earth elements such as Er, or for pumping S
It is a visible light source etc. in combination with HG, and generally requires a high output of several tens of mW or more and a long life.
従来の歪量子井戸半導体レーザ素子は、前記のようにク
ラッド層にAffGaAsを用いているが、つぎのよう
な問題点をもっている。The conventional strained quantum well semiconductor laser device uses AffGaAs for the cladding layer as described above, but has the following problems.
化合物半導体を構成するIn、Ap、、Ga、As、P
、Sb等の元素のなかで、Apは最も酸化され易い元素
である。そのため、埋め込み成長での再成長界面等、レ
ーザチップ作製途中で酸化が起きると、非発光中心の発
生、結晶性の悪化の原因となり、良好なレーザ特性が得
られない。In, Ap, , Ga, As, P constituting a compound semiconductor
, Sb, and the like, Ap is the element that is most easily oxidized. Therefore, if oxidation occurs during the fabrication of the laser chip, such as at the regrowth interface during buried growth, it will cause non-emissive centers to occur and deterioration of crystallinity, making it impossible to obtain good laser characteristics.
また、へき開面をレーザ端面とすると、レーザの使用期
間中に端面酸化が進行し、反射率の低下、吸収の増加を
招きレーザ特性が悪化する。特に高注入時には高温とな
り酸化の進行が速い。Further, if the cleavage plane is used as a laser end face, end face oxidation progresses during the period of use of the laser, resulting in a decrease in reflectance and an increase in absorption, resulting in deterioration of laser characteristics. Particularly during high injection, the temperature becomes high and oxidation progresses rapidly.
従って、この様なANの酸化を抑えるために、レーザ作
製プロセスにおいて酸素および水分除去に多大な努力を
払わなければならないし、端面保護の工夫もしなければ
ならない。Therefore, in order to suppress such oxidation of AN, great efforts must be made to remove oxygen and moisture during the laser manufacturing process, and efforts must be made to protect the end faces.
すなわち、高い出力での長い寿命を持つレーザを容易に
得ることが出来ないという問題があった。That is, there was a problem in that it was not easy to obtain a laser with high output and long life.
本発明は上記問題点を解決した半導体レーザ素子を提供
するもので、T n XG a 1−XA Sを量子井
戸層としGaAsを障壁層とする歪量子井戸構造の活性
層と、この活性層の上下に配置されるクラッド層とがG
aAs基板上にエピタキシャル成長によって形成された
半導体レーザ素子において、前記クラッ゛ド層はI n
zG a l−mA S yP +−yより構成され
ていることを特徴とするものである。The present invention provides a semiconductor laser device that solves the above-mentioned problems, and includes an active layer having a strained quantum well structure in which a quantum well layer is made of T n The cladding layers placed above and below are G
In a semiconductor laser device formed by epitaxial growth on an aAs substrate, the cladding layer is In
It is characterized by being composed of zG a l-mA S yP +-y.
活性層の上下クラッド層は、歪量子井戸活性層および光
閉じ込め層に光とキャリアを十分に閉し込めるため、G
aAs基板に格子整合し、波長0.9〜1.1−の光に
対する屈折率がA/!wGa+−wAS(W−0,5〜
0.6)と同程度に小さく、エネルギーギャップがA
p、wG a 1−wA s (w 〜0.5〜0.6
)と同程度に大きいことが必要である。In、IG a
I−zA s yP +−yは、組成を調整すること
により上記条件を満足するため、クラッド層として用い
ることができるとともに、Affを含まないため、Ap
の酸化にともなう前記諸問題の発生を防くことができる
。なお、本発明で↓よ、少なくとも活性層の上下クラッ
ド層をAj2を含まない材質で構成したが、歪量子井戸
半導体レーザ素子のすべての構成材質をAffiを含ま
ない材質とすることが望ましいことは言うまでもない。The upper and lower cladding layers of the active layer can sufficiently confine light and carriers in the strained quantum well active layer and optical confinement layer, so G
It is lattice matched to the aAs substrate and has a refractive index of A/! for light with a wavelength of 0.9 to 1.1-. wGa+-wAS(W-0,5~
0.6), and the energy gap is A
p, wG a 1-wA s (w ~0.5~0.6
) is required to be as large as . In, IG a
Since I-zA syP +-y satisfies the above conditions by adjusting the composition, it can be used as a cladding layer, and since it does not contain Aff, it can be used as a cladding layer.
It is possible to prevent the above-mentioned problems caused by the oxidation of . In the present invention, at least the upper and lower cladding layers of the active layer are made of materials that do not contain Aj2, but it is desirable that all constituent materials of the strained quantum well semiconductor laser device be made of materials that do not contain Affi. Needless to say.
〔実施例] 以下、本発明の実施例について説明する。〔Example] Examples of the present invention will be described below.
本発明の一つの実施例は、従来例の説明に用いた第2図
の3及び5のクラッド層をそれぞれ、n型及びp型のI
no、aqGao、s+Pとしたものである。In one embodiment of the present invention, the cladding layers 3 and 5 in FIG. 2 used to explain the conventional example are replaced with n-type and p-type I
No, aqGao, s+P.
すなわち、約350膜厚のn型GaAs基板1上にMB
EあるいはMOCVD法により、0.51m1厚のn型
GaAsバッファ層2.1.5膜厚のn型■n o、
411G a o、 s+ Pクラッド層3、活性層お
よび光閉じ込め層4.1.5−厚のp型1 n o、
aqG a o、 5+Pクラッド層5および0.2−
厚のp型コンタクト層6を順次積層した。活性層および
光閉じ込め層4は、第3図に示すように、100久厚の
GaAs障壁層8と40人人厚I n Q、 3SG
a o、 6sA S歪量子井戸層9を多層にした活性
層の上下を、1500人厚のGaAs光閉し込め層7で
おおった構造になっている。このような構造をした全面
電極型の半導体レーザ素子の室温パルス駆動時の発振し
きい値電流密度は290A/ciであり、A1.o、5
Gao、5ASと同等の値が得られた。That is, MB is formed on an n-type GaAs substrate 1 with a film thickness of about 350 mm.
By E or MOCVD method, an n-type GaAs buffer layer of 0.51 m1 thickness is formed.
411G ao, s+ P cladding layer 3, active layer and optical confinement layer 4.1.5-thick p-type 1 no,
aqG ao, 5+P cladding layer 5 and 0.2-
Thick p-type contact layers 6 were sequentially laminated. As shown in FIG. 3, the active layer and optical confinement layer 4 are composed of a GaAs barrier layer 8 with a thickness of 100 mm and a thickness of I n Q, 3SG with a thickness of 40 mm.
It has a structure in which an active layer made up of multiple layers of ao, 6sA S strained quantum well layers 9 is covered above and below with a GaAs light confinement layer 7 with a thickness of 1500 μm. The oscillation threshold current density of a full electrode type semiconductor laser device having such a structure during room temperature pulse driving is 290 A/ci, and A1. o, 5
Values equivalent to those of Gao and 5AS were obtained.
本発明の第2の実施例は、第1図に示すように、埋め込
み型の半導体レーザ素子であり、20はAuGeNi/
Auの金属n型電極、11はn型GaA型、n型のIn
GaP層でこのp/n接合で電流ブロッキングを行う。The second embodiment of the present invention, as shown in FIG.
Au metal n-type electrode, 11 is n-type GaA type, n-type In
Current blocking is performed at this p/n junction in the GaP layer.
17ば、p型1nGaPクラッド層、18はp型CaA
sキー!” ’7ブ層、19はAuZnのp型電極であ
る。14は、歪量子井戸活性層と光閉じ込め層である。17, p-type 1nGaP cladding layer, 18, p-type CaA
S key! 7. 19 is a p-type electrode of AuZn. 14 is a strained quantum well active layer and an optical confinement layer.
活性層および光閉じ込め層14の幅は、約1.5/IT
IIで、共振器長300−で、へき開面を保護膜なしで
ミラーとした。The width of the active layer and optical confinement layer 14 is approximately 1.5/IT
In II, the resonator length was 300 -, and the cleavage plane was made into a mirror without a protective film.
この半導体レーザ素子を動作させると、7mAで室温c
w光発振得られ、150mA注入時には100mWの出
力を得た。50mW、 2000時間のレーザ駆動後も
1− L特性に変化は見られず、高い出力での長い寿命
が得られた。When this semiconductor laser device is operated, a current of 7 mA is generated at room temperature c.
W optical oscillation was obtained, and an output of 100 mW was obtained when 150 mA was injected. No change was observed in the 1-L characteristics even after laser driving at 50 mW for 2000 hours, and a long life with high output was obtained.
以上の実施例では、InGaPをクラッド層に用いたが
、エネルギーギャップが、1.5eV以上のTnGaA
sPをクランド層に用いても、光およびキャリアの閉じ
込めができ、A!を含まないので再成長界面およびへき
界面の酸化はおきにくく長寿命のレーザが作製できる。In the above examples, InGaP was used for the cladding layer, but TnGaP with an energy gap of 1.5 eV or more
Even if sP is used in the ground layer, light and carriers can be confined, and A! Since it does not contain oxidation at the regrowth interface and cleavage interface, a long-life laser can be produced.
InGaAsPは、転移の発生しない程度にGaAs基
板に格子整合していればよい。InGaAsP only needs to be lattice matched to the GaAs substrate to the extent that no dislocation occurs.
また、各層の膜厚、組成、歪量子井戸の層数等は、実施
例に限らない。さらに、InGaAsPの組成を段階的
に変化させたGRIN構造を光閉じ込め層に用いてもよ
い。Further, the film thickness and composition of each layer, the number of strained quantum well layers, etc. are not limited to those in the embodiment. Furthermore, a GRIN structure in which the composition of InGaAsP is changed in stages may be used for the optical confinement layer.
なお、半導体レーザ素子構造は前記実施例に限定される
ことなくしきい値低減、効率改善、さらなる出力の向上
環の目的でへき開端面にコーティングを行ってもよい。Note that the semiconductor laser element structure is not limited to the above embodiments, and the cleavage end face may be coated for the purpose of reducing the threshold value, improving efficiency, and further increasing output.
以上説明したように本発明によれば、歪量子井戸活性層
の上下をクランド層で挟むInGaAs系タプルへテロ
構造において、クラッド層をIn、lG a 1−ZA
S yP l−yより構成するため、大出力で長寿命
の歪量子井戸半導体レーザ素子が得られるという優れた
効果がある。As explained above, according to the present invention, in the InGaAs-based tuple heterostructure in which the strained quantum well active layer is sandwiched between the upper and lower sides by the cladding layers, the cladding layer is made of In, lGa 1-ZA.
Since it is composed of S yP ly, there is an excellent effect that a strained quantum well semiconductor laser device with high output and long life can be obtained.
第1図は本発明にかかる半導体レーザ素子の一実施例の
断面説明図、第2図は他の実施例および従来例の断面説
明図、第3図は第2図の部分拡大図である。、 1 、
11−G a A s基板、 2,12・・・バッファ
層、 3. 5.13.17・・・クラッド層、4.1
4・・・活性層および光閉し込め層、 6・・・コンタ
クト層、 7・・・光閉し込め層、 8・・・障壁層、
9・・・歪量子井戸層、 15・・・p型1nGaP層
、16・=n型TnGaP層、 18−・・キ+7プ層
、 19・・・p型電極、 20・・・n型電極。FIG. 1 is an explanatory sectional view of one embodiment of a semiconductor laser device according to the present invention, FIG. 2 is an explanatory sectional view of another embodiment and a conventional example, and FIG. 3 is a partially enlarged view of FIG. 2. , 1,
11-G a As substrate, 2, 12... buffer layer, 3. 5.13.17...Clad layer, 4.1
4... Active layer and light confinement layer, 6... Contact layer, 7... Light confinement layer, 8... Barrier layer,
9...Strained quantum well layer, 15...p-type 1nGaP layer, 16...=n-type TnGaP layer, 18-...k+7 layer, 19...p-type electrode, 20...n-type electrode .
Claims (1)
Asを障壁層とする歪量子井戸構造の活性層と、この活
性層の上下に配置されるクラッド層とが、GaAs基板
上にエピタキシャル成長によって形成された半導体レー
ザ素子において、前記クラッド層はIn_zGa_1_
−_zAs_yP_1_−_yより構成されていること
を特徴とする半導体レーザ素子。Ga with In_xGa_1_-_xAs as quantum well layer
In a semiconductor laser device in which an active layer having a strained quantum well structure with As as a barrier layer and cladding layers disposed above and below this active layer are formed by epitaxial growth on a GaAs substrate, the cladding layer is In_zGa_1_
A semiconductor laser device comprising: -_zAs_yP_1_-_y.
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1284535A JPH03145787A (en) | 1989-10-31 | 1989-10-31 | Semiconductor laser element |
ES90311854T ES2109231T3 (en) | 1989-10-31 | 1990-10-30 | LASER ELEMENTS OF SEMI-CONDUCTORS AND MANUFACTURING METHOD. |
EP90311854A EP0426419B1 (en) | 1989-10-31 | 1990-10-30 | Semiconductor laser elements and method for the production thereof |
CA002028899A CA2028899C (en) | 1989-10-31 | 1990-10-30 | Semiconductor laser elements and method for the production thereof |
DE69031415T DE69031415T2 (en) | 1989-10-31 | 1990-10-30 | Semiconductor laser elements and process for their manufacture |
US07/606,812 US5155738A (en) | 1989-10-31 | 1990-10-31 | Semiconductor laser elements |
KR1019900017624A KR940005001B1 (en) | 1989-10-31 | 1990-10-31 | Semiconductor laser device and its manufacturing method |
US07/777,910 US5173447A (en) | 1989-10-31 | 1991-10-17 | Method for producing strained quantum well semiconductor laser elements |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1284535A JPH03145787A (en) | 1989-10-31 | 1989-10-31 | Semiconductor laser element |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03145787A true JPH03145787A (en) | 1991-06-20 |
Family
ID=17679721
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1284535A Pending JPH03145787A (en) | 1989-10-31 | 1989-10-31 | Semiconductor laser element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03145787A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5394417A (en) * | 1992-11-19 | 1995-02-28 | Mitsubishi Denki Kabushiki Kaisha | Semiconductor laser producing visible light |
CN108346556A (en) * | 2011-07-12 | 2018-07-31 | 纳斯普Ⅲ/Ⅴ有限责任公司 | Single-slice integrated semiconductor structure |
-
1989
- 1989-10-31 JP JP1284535A patent/JPH03145787A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5394417A (en) * | 1992-11-19 | 1995-02-28 | Mitsubishi Denki Kabushiki Kaisha | Semiconductor laser producing visible light |
CN108346556A (en) * | 2011-07-12 | 2018-07-31 | 纳斯普Ⅲ/Ⅴ有限责任公司 | Single-slice integrated semiconductor structure |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6352792B2 (en) | ||
JPS6218082A (en) | Semiconductor laser device | |
JP2724827B2 (en) | Infrared light emitting device | |
JPH05145178A (en) | Strained quantum well semiconductor laser element | |
US4769821A (en) | High power semiconductor laser by means of lattice mismatch stress | |
JPH02130988A (en) | Quantum well semiconductor laser element | |
JPH0632340B2 (en) | Semiconductor light emitting element | |
JPH0722696A (en) | Semiconductor laser element | |
JP2786276B2 (en) | Semiconductor laser device | |
JPH0416032B2 (en) | ||
JPH03145787A (en) | Semiconductor laser element | |
JP3033333B2 (en) | Semiconductor laser device | |
JPH1084170A (en) | Quantum well semiconductor laser element | |
JPH10247756A (en) | Semiconductor laser device | |
JP2003124569A (en) | Edge window semiconductor laser | |
JP3193087B2 (en) | AlGaInP semiconductor light emitting device | |
JPH04320082A (en) | Semiconductor laser element | |
JP3138503B2 (en) | Semiconductor laser device | |
JPH0334591A (en) | Quantum well semiconductor laser element | |
JP2855887B2 (en) | Semiconductor laser and method of manufacturing the same | |
JPH05343813A (en) | Quantum-well-structure semiconductor laser and manufacture thereof | |
JP2908125B2 (en) | Semiconductor laser device and method of manufacturing the same | |
JP2908124B2 (en) | Semiconductor laser device and method of manufacturing the same | |
JP2000082862A (en) | Modulation-doped multiple quantum well semiconductor laser | |
JPH0992926A (en) | Semiconductor laser and its manufacture |