JPH03145720A - Compound semiconductor growth method and silicon substrate to be used thereon - Google Patents
Compound semiconductor growth method and silicon substrate to be used thereonInfo
- Publication number
- JPH03145720A JPH03145720A JP28417889A JP28417889A JPH03145720A JP H03145720 A JPH03145720 A JP H03145720A JP 28417889 A JP28417889 A JP 28417889A JP 28417889 A JP28417889 A JP 28417889A JP H03145720 A JPH03145720 A JP H03145720A
- Authority
- JP
- Japan
- Prior art keywords
- silicon substrate
- compound semiconductor
- silicon
- grown
- region
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910052710 silicon Inorganic materials 0.000 title claims abstract description 84
- 239000010703 silicon Substances 0.000 title claims abstract description 84
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 title claims abstract description 80
- 239000000758 substrate Substances 0.000 title claims abstract description 72
- 239000004065 semiconductor Substances 0.000 title claims abstract description 61
- 150000001875 compounds Chemical class 0.000 title claims abstract description 60
- 238000000034 method Methods 0.000 title claims abstract description 41
- 230000001681 protective effect Effects 0.000 claims abstract description 23
- 229910001218 Gallium arsenide Inorganic materials 0.000 abstract description 23
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 10
- 229910052814 silicon oxide Inorganic materials 0.000 abstract description 10
- 239000000463 material Substances 0.000 abstract description 3
- 239000010408 film Substances 0.000 description 29
- 150000003376 silicon Chemical class 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 238000001534 heteroepitaxy Methods 0.000 description 1
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical group I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 1
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
この発明は、シリコン(Si)基板上に化合物半導体を
成長する方法及びこれに使用するシリコン基板に関する
ものである。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for growing a compound semiconductor on a silicon (Si) substrate and a silicon substrate used in the method.
(従来の技術)
シリコン基板上にGaAsをはじめとする化合物半導体
を成長させることかできれば、従来にない大面積な化合
物半導体基板が得られるばかりでなく、シリコンが有す
る特徴と、化合物半導体が有する特徴とを生かした有益
な半導体装置を得ることが期待できる。そこで、シリコ
ン基板上に化合物半導体を成長させるための研究か従来
から精力的に行なわれている。(Prior art) If it is possible to grow a compound semiconductor such as GaAs on a silicon substrate, it will not only be possible to obtain a compound semiconductor substrate with an unprecedented large area, but also to develop the characteristics of silicon and the characteristics of compound semiconductors. It is expected that a useful semiconductor device that takes advantage of this can be obtained. Therefore, research has been actively conducted to grow compound semiconductors on silicon substrates.
例えば文献(rMOCVDによるGaAs/Siのへテ
ロエピタキシー」 :第15回薄膜・表面物理セミナー
(19B?)pp、 181〜193)に(よ、シリコ
ン基板上にシングルドメインのGaAs7a成長させる
ことができる方法として、2つの代表的な成長方法が開
示されている。For example, in the literature "Heteroepitaxy of GaAs/Si by rMOCVD": 15th Thin Film and Surface Physics Seminar (19B?) pp. 181-193), there is a method for growing single-domain GaAs7a on a silicon substrate. Two typical growth methods are disclosed.
その1つは、まずシリコン基板表面のクリーングを図る
ために850″C以上の高温でシリコン基板を熱処理し
、次にこのシリコン基板上に低温てGaAsバッノア層
を成長させ、然る後高温で所望のGaAs層を成長させ
るいわゆる2段階成長法である。One method is to first heat-treat the silicon substrate at a high temperature of 850"C or higher in order to clean the surface of the silicon substrate, then grow a GaAs vanoa layer on the silicon substrate at a low temperature, and then heat it at a high temperature to form the desired layer. This is a so-called two-step growth method in which a GaAs layer of 200 nm is grown.
他の1つは、シリコン及び化合物半導体それぞれの格子
定数の違いによる格子不整合を緩和するために、シリコ
ン基板上にまず歪超格子を形成し、その後にGaAs%
成長させる方法である。The other method is to first form a strained superlattice on a silicon substrate and then use GaAs%
It's a way to grow.
また、成長中に化合物半導体層に発生する高田度の転位
を低減する目的で、上述のような成長方法の実施中に化
合物半導体層の成長を一時中断し高温度てのアニールを
行なういわゆる熱処理法もあった。In addition, in order to reduce Takada dislocations that occur in the compound semiconductor layer during growth, a so-called heat treatment method is used in which the growth of the compound semiconductor layer is temporarily interrupted during the growth method described above and annealing is performed at high temperatures. There was also.
これらいずれの方法においても、第3図(A)に断面図
を以って示すように、シリコン基板11を、前洗浄の工
程においてその全表面で清浄なシリコン面が露出される
ようにまず洗浄し、次に、第3図(B)に示すように、
基板11の、化合物半導体の被成長領域としての例えば
主面11a土に、2段階成長法或いは歪超格子バッファ
層を用いる方法により、化合物半導体13の成長を行な
っていた。In any of these methods, as shown in the cross-sectional view in FIG. Then, as shown in Figure 3 (B),
The compound semiconductor 13 has been grown on, for example, the main surface 11a of the substrate 11 as a region on which the compound semiconductor is grown, by a two-step growth method or a method using a strained superlattice buffer layer.
(発明か解決しようとする課題)
しかしなから、従来の方法は、シリコン基板を高温度で
熱処理する工程を含んでいるため、シリコン基板から化
合物半導体成長層中へシリコンかオートドーピングして
しまい、その結果、シリコン基板上に得られる化合物半
導体の品質を低下させてしまうという問題点かあった。(Problem to be solved by the invention) However, since the conventional method includes a step of heat-treating the silicon substrate at high temperature, silicon auto-dopes from the silicon substrate into the compound semiconductor growth layer. As a result, there was a problem in that the quality of the compound semiconductor obtained on the silicon substrate was degraded.
具体例でいえば、上述した2段階成長法によりシリコン
基板上に例えばアンドープのGaAs層を成長させたと
ころ、得られた層は電子濃度か1xlO16crrr3
のn型のGaAs層となってしまった。GaAs基板上
にアンドープのGaAs層を成長させた場合に得られる
GaAs層の電子濃度か、通常は、lX1014cm−
3以下であることを考えると、シリコン基板上に成長さ
せたGaAsの電子濃度かいかに大きいかかわかる。For example, when an undoped GaAs layer is grown on a silicon substrate by the two-step growth method described above, the resulting layer has an electron concentration of 1xlO16crrr3.
This resulted in an n-type GaAs layer. The electron concentration of the GaAs layer obtained when an undoped GaAs layer is grown on a GaAs substrate is usually lX1014 cm-
Considering that it is less than 3, it can be seen how high the electron concentration of GaAs grown on a silicon substrate is.
また、上述した熱処理法を用いて化合物半導体層中の転
位記度の低減を図った場合のGaAs層の電子濃度は、
熱処理を施した部分では10cm−3オーダーになった
。Furthermore, when the heat treatment method described above is used to reduce the number of dislocations in the compound semiconductor layer, the electron concentration in the GaAs layer is as follows:
In the heat-treated part, the thickness was on the order of 10 cm-3.
このようなP。1題の解決を図るため、この出願に係る
発明者は種々の検討を重ねた結果、シリコン基板の、化
合物半導体の被成長領域から化合物半導体成長層へのシ
リコンのオートドーピングの防止は困難としても、被成
長領域以外の領域からのシリコンのオートドーピングを
防止すれば、化合物半導体成長層の品質改善か図れると
いう結論に達した。P like this. In order to solve this problem, the inventor of this application has conducted various studies and found that it is difficult to prevent silicon autodoping from the compound semiconductor growth region of the silicon substrate to the compound semiconductor growth layer. It was concluded that the quality of compound semiconductor growth layers could be improved by preventing silicon autodoping from regions other than the growth region.
この発明は、このような結論に着目してなされたもので
あり、従ってこの発明の目的は、シリコン基板上に化合
物半導体を成長させている陣中に、シリコン基板から化
合物半導体へと行なわれるシリコンのオートド−どング
を従来より低減で)る方法と、この方法に使用するシリ
コン基板とを提1共すること(こある。This invention was made with attention to such a conclusion, and therefore, the purpose of this invention is to improve the growth of silicon from a silicon substrate to a compound semiconductor during the process of growing a compound semiconductor on a silicon substrate. The present invention provides a method for reducing autodoping compared to conventional methods, and a silicon substrate for use in this method.
(課題を解決するための手段)
この目的の達成を図るため、この出願の第一発明によれ
ば、シリコン基板上に化合物半導体を成長するに当たり
、
シリコン基板の、化合物半導体を成長させる領域以外の
所定領域に、この領域から当該化合物半導体へのシリコ
ンのオートドーピングを阻止する保護膜を設け、
この保護膜付きシリコン基板上に化合物半導体を成長す
ることを特徴とする。(Means for Solving the Problem) In order to achieve this object, according to the first invention of this application, when growing a compound semiconductor on a silicon substrate, the area of the silicon substrate other than the area where the compound semiconductor is grown is The present invention is characterized in that a protective film is provided in a predetermined region to prevent autodoping of silicon from this region to the compound semiconductor, and a compound semiconductor is grown on the silicon substrate with this protective film.
また、この出願の第二発明によれば、表面に化合物半導
体が成長されるシリコン基板においで、化合物半導体の
被成長領域以外の所定領域にこの領域から当該化合物半
導体層へのシリコンのオートドーピングを阻止する保護
膜を具えて成ることを特徴とする。Further, according to the second invention of this application, in a silicon substrate on which a compound semiconductor is grown, autodoping of silicon from this region to the compound semiconductor layer is performed in a predetermined region other than the region where the compound semiconductor is grown. It is characterized by comprising a protective film that prevents
なお、上述の第−及び第二発明の実施に当たり、前述の
保護膜をシリコン酸化膜とするのが好適である。なお、
ここでいう保護膜としてのシリコン酸化膜とは、シリコ
ン基板に通常形成されている自然酸化膜とは異なり、化
合物半導体の成長前に行なわれるシリコン基板のクリー
ニング処理等によって除去されることがないような膜厚
のものを意味する。一般1こ自然酸化膜の膜厚は最大で
も数10人といわれていることを考えると、この発明で
いう保護膜としてのシリコン酸化膜の膜厚は、例えば1
00Å以上好ましくは数100Å以上とするのが好適で
ある。In carrying out the above-mentioned first and second inventions, it is preferable to use a silicon oxide film as the above-mentioned protective film. In addition,
The silicon oxide film used here as a protective film is different from the natural oxide film that is normally formed on silicon substrates, and is designed so that it will not be removed by the cleaning process of the silicon substrate that is performed before the growth of compound semiconductors. It means a film with a thickness of Considering that the thickness of the general natural oxide film is said to be several tens of layers at most, the thickness of the silicon oxide film as the protective film in this invention is, for example, 1.
The thickness is preferably 00 Å or more, preferably several 100 Å or more.
また、第−及び第二発明でいうシリコン基板とは、シリ
コン基板上にエピタキシャルシリコン層を臭えるもの等
も含む。Moreover, the silicon substrate referred to in the first and second inventions also includes those having an epitaxial silicon layer on the silicon substrate.
(作用)
この出願の第−及び第二発明の構成によれば、化合物半
導体の成長工程中に、保護膜の作用によって、シリコン
基板の化合物半導体が成長される領域(被成長領域)以
外の領域からの化合物半導体成長層へのシリコンのオー
トドーピングを防止できるため、後述する実験結果から
も明らかなように、化合物半導体成長層の品質向上が図
れる。(Function) According to the configurations of the first and second inventions of this application, during the compound semiconductor growth process, the area other than the area on the silicon substrate where the compound semiconductor is grown (growth area) due to the effect of the protective film. Since autodoping of silicon into the compound semiconductor growth layer can be prevented, the quality of the compound semiconductor growth layer can be improved, as is clear from the experimental results described later.
(実施例)
以下、図面を参照してこの発明の化合物半導体の成長方
法の実施例及びこれに使用するシリコン基板の実施例に
つき説明する。なお、以下の説明に用いる図面はこの発
明を理解できる程度に各構成成分の寸法、形状及び配置
関係を概略的に示しである。(Example) Hereinafter, an example of the compound semiconductor growth method of the present invention and an example of a silicon substrate used therein will be described with reference to the drawings. Note that the drawings used in the following description schematically show the dimensions, shapes, and arrangement relationships of each component to the extent that the present invention can be understood.
辰五1μト列睨朋
まず、第一発明である化合物半導体の成長方法の実施例
の説明を行なう。第1図(A)〜(E)はその説明に供
する工程図であり、各図は工程中の主な段階1こおける
試料の様子を断面図を以って示したものである。First, an embodiment of the method for growing a compound semiconductor, which is the first invention, will be explained. FIGS. 1A to 1E are process diagrams for explaining the process, and each figure shows a cross-sectional view of the sample at one of the main steps in the process.
ます、シリコン基板の、化合物半導体を成長させる領域
(この領域を以下、被成長領域と称する)以外の所定領
域に、この領域から当該化合物半導体層へのシリコンの
オートドーピングを阻止する保護膜を設ける。First, a protective film is provided in a predetermined region of the silicon substrate other than the region where the compound semiconductor is grown (hereinafter referred to as a growth region) to prevent autodoping of silicon from this region to the compound semiconductor layer. .
はじめに、シリコン基板21を用意する(第1図(A)
)。First, a silicon substrate 21 is prepared (Fig. 1(A)
).
次に、このシリコン基板21を例えば熱酸化法により酸
化してシリコン基板21の全表面に、膜厚が100Å以
上例えば4700人のシリコン酸化膜23ヲ、保護膜2
3として形成する(第1図(B))。Next, this silicon substrate 21 is oxidized by, for example, a thermal oxidation method to form a silicon oxide film 23 and a protective film 2 on the entire surface of the silicon substrate 21 to a thickness of 100 Å or more.
3 (FIG. 1(B)).
次に、この実施例では、シリコン基板21の、化合物半
導体を成長させたい領域(被成長領域)以外の所定領域
をシリコン基板21の裏面21bとし、この裏面2Ib
上に、シリコン酸化膜除去手段(例えばフッM)Iこ対
し耐性を示す材料例えばレジスト25を形成する(第1
図(C))。Next, in this embodiment, a predetermined region of the silicon substrate 21 other than the region where the compound semiconductor is to be grown (growth region) is defined as the back surface 21b of the silicon substrate 21, and this back surface 2Ib
A resist 25, for example, is formed on the silicon oxide film removing means (for example, fluorine M), which is resistant to I (the first
Figure (C)).
次に、保護膜(シリコン酸化膜)23の、レジスト25
から露出している部分を公知のシリコン酸化膜除去手段
によって除去してシリコン基板21の主面21aを露出
する(第1図(D))。Next, the resist 25 of the protective film (silicon oxide film) 23 is
The exposed portion is removed by a known silicon oxide film removing means to expose the main surface 21a of the silicon substrate 21 (FIG. 1(D)).
次に、このシリコン基板21に化合物半導体としてGa
As層27を成長させる。この場合の成長方法としては
、従来のいずれの成長方法を用いでもよい。この成長に
より得られた構造体を第1図(E)に示す。Next, Ga is added to this silicon substrate 21 as a compound semiconductor.
An As layer 27 is grown. In this case, any conventional growth method may be used. The structure obtained by this growth is shown in FIG. 1(E).
次に、上述の如く成長させたGaAs層27の品質を表
わす特性を測定した。なお、この測定のための試料の作
製に当たっでは、GaAs層の成長を前述した2段階成
長法を用いて行ない、しがもGaAs層27を半絶縁性
とするためにバナジウム(V)tドープしながら行なっ
た。そして、GaAs層27の膜厚が2umとなった時
に成長を停止した。Next, characteristics representing the quality of the GaAs layer 27 grown as described above were measured. In preparing the sample for this measurement, the GaAs layer was grown using the two-step growth method described above, and in order to make the GaAs layer 27 semi-insulating, it was doped with vanadium (V) t. I did it while doing so. The growth was then stopped when the thickness of the GaAs layer 27 reached 2 um.
測定は次のようにして行なった。The measurements were carried out as follows.
シリコン基板21の裏面21bにある保護膜の一部を除
去して裏面21bの一部を露出させる。この露出面及び
GaAs層27表面それぞれにオーミック電極を形成す
る。次に、これらオーミック電極間に電圧を印加しこの
電圧を徐々に上げてゆき、オーミック電極間に流れる電
流が10uAになった時の電圧(以下、耐圧電圧と略称
する)を求めた。この結果、耐圧電圧は、約40Vてあ
った。A portion of the protective film on the back surface 21b of the silicon substrate 21 is removed to expose a portion of the back surface 21b. Ohmic electrodes are formed on this exposed surface and on the surface of the GaAs layer 27, respectively. Next, a voltage was applied between these ohmic electrodes and this voltage was gradually increased, and the voltage when the current flowing between the ohmic electrodes reached 10 uA (hereinafter abbreviated as withstand voltage) was determined. As a result, the breakdown voltage was approximately 40V.
一方、オートドーピング防止用の保護膜を設けないこと
以外は実施例と全く同様な手順(すなわち従来の2段階
成長法により)によりシリコン基板上にGaAsの成長
を行なって比較例の試料を得、この試料の耐圧電圧を測
定したところ、数Vてあり、実施例に比し非常に低いこ
とかわかった。On the other hand, a sample of a comparative example was obtained by growing GaAs on a silicon substrate by the same procedure as in the example (i.e., by the conventional two-step growth method) except that a protective film for preventing autodoping was not provided. When the withstand voltage of this sample was measured, it was found to be several volts, which was much lower than that of the example.
上述した実験結果から、この発明の成長方法に従ってシ
リコン基板上に作製したGaAs層は従来の成長方法で
シリコン基板上に作製したGaAS層よりも品質か向上
しでいることかわかる。From the above experimental results, it can be seen that the quality of the GaAs layer formed on a silicon substrate according to the growth method of the present invention is improved over that of the GaAs layer formed on a silicon substrate using the conventional growth method.
之ツ≦v)基層【Σ淀朋
次に、第二発明であるシリコン基板の実施例につき説明
する。〉≦v) Base layer [ΣTomo Yodo Next, an embodiment of the silicon substrate, which is the second invention, will be described.
く第1実施例〉
第1実施例として、化合物半導体の被成長領域をシリコ
ン基板の主面とし、被成長領域以外の所定領域を裏面と
したシリコン基板の例を示す。この第1実施例のシリコ
ン基板は、第1図(D)に示したシリコン基板に相当す
る。First Example> As a first example, an example of a silicon substrate is shown in which a compound semiconductor growth region is the main surface of the silicon substrate and a predetermined region other than the growth region is the back surface. The silicon substrate of this first embodiment corresponds to the silicon substrate shown in FIG. 1(D).
〈第2実施例〉
第2図(ハ)は、第2実施例のシリコン基板21の構成
を概略的に示した断面図である。この第2実施例のシリ
コン基板21は、化合物半導体の被成長領域をシリコン
基板の主面21aとし、被成長領域以外の所定領域を裏
面21b及び側面21cとした例である。従って、保護
膜23はシリコン基板21の裏面21b及び側面21C
に形成しである。<Second Example> FIG. 2(c) is a cross-sectional view schematically showing the structure of a silicon substrate 21 of a second example. The silicon substrate 21 of the second embodiment is an example in which a compound semiconductor growth region is the main surface 21a of the silicon substrate, and predetermined regions other than the growth region are the back surface 21b and side surfaces 21c. Therefore, the protective film 23 is formed on the back surface 21b and the side surface 21C of the silicon substrate 21.
It is formed.
〈第3実施例〉
第2図(8)は、第3実施例のシリコン基板の構成を概
略的に示した断面図である。この第3実施例のシリコン
基板21は、化合物半導体の被成長領域をシリコン基板
の主面の一部21aaとし、被成長領域以外の所定領域
を全表面の、主面の一部21aa以外の領域とした例で
ある。従って、保護膜23はシリコン基板21の全表面
から主面の一部21aaを除いた表面に形成しである。<Third Example> FIG. 2(8) is a cross-sectional view schematically showing the structure of a silicon substrate of a third example. In the silicon substrate 21 of the third embodiment, a region on which a compound semiconductor is grown is a part 21aa of the main surface of the silicon substrate, and a predetermined region other than the region to be grown is a region other than the part 21aa on the main surface of the entire surface. This is an example. Therefore, the protective film 23 is formed on the entire surface of the silicon substrate 21 excluding a portion 21aa of the main surface.
上述においては、この出願の化合物半導体の成長方法及
びこれに使用するシリコン基板の実施例につき説明した
か、これら発明は上述の実施例のみに限定されるもので
はなく、以下に説明するような種々の変更または変形を
加えることができる。In the above, examples of the compound semiconductor growth method of this application and the silicon substrate used therein have been described, but the present invention is not limited to the above-mentioned examples only, and can be applied to various methods as described below. changes or transformations may be made.
上述の成長方法の発明の実施例では、化合物半導体!G
aAsとしたか、この発明は、GaAs以外の他の化合
物半導体の成長にも適用できる。In an embodiment of the invention of the growth method described above, a compound semiconductor! G
Although aAs is used, the present invention can also be applied to the growth of other compound semiconductors than GaAs.
また、上述の各実施例ては、シリコンのオートドーピン
グを阻止する保護膜をシリコン酸化膜で構成した例につ
き説明したか、この保護膜を、他の材料で構成してもよ
い。このような材料としては例えばシリコン窒化膜等を
挙げることができる。Further, in each of the above-mentioned embodiments, an example has been described in which the protective film for preventing silicon autodoping is made of a silicon oxide film, but this protective film may be made of other materials. Such a material may include, for example, a silicon nitride film.
(発明の効果)
上述した説明からも明らかなように、この出願の化合物
半導体の成長方法及びこれに使用するシリコン基板によ
れば、シリコン基板の化合物半導体か成長される領域(
被成長領域)以外の領域からの化合物半導体成長層への
シリコンのオートドーピングを防止できるため、化合物
半導体成長層の品質の向上を図ることかできる。(Effects of the Invention) As is clear from the above description, according to the method of growing a compound semiconductor of this application and the silicon substrate used therein, the region of the silicon substrate where the compound semiconductor is grown (
Since autodoping of silicon into the compound semiconductor growth layer from a region other than the region to be grown can be prevented, the quality of the compound semiconductor growth layer can be improved.
第1図(A)〜(E)は、化合物半導体の成長方法の実
施例を示す工程図、
第2図(A)及び(B)は、シリコン基板の実施例の説
明に供する図、
第3図(A)及びCB)は、従来技術の説明に供する図
である。
21・・・シリコン基板、 21a・・・主面21b
・・・裏面、 21c・・・側面21aa・・
・主面の一部
23・・・オートド−どング開止用保護膜25・・・レ
ジスト、 27・・・GaAs層。FIGS. 1(A) to (E) are process diagrams showing an example of a method for growing a compound semiconductor; FIGS. 2(A) and (B) are views for explaining an example of a silicon substrate; Figures (A) and CB) are diagrams for explaining the conventional technology. 21...Silicon substrate, 21a...Main surface 21b
...back side, 21c...side surface 21aa...
- Part of main surface 23...Protective film for autodoping opening 25...Resist, 27...GaAs layer.
Claims (2)
り、 シリコン基板の、化合物半導体を成長させる領域以外の
所定領域に、該領域から当該化合物半導体へのシリコン
のオートドーピングを阻止する保護膜を設け、 該保護膜付きシリコン基板上に化合物半導体を成長する
こと を特徴とする化合物半導体の成長方法。(1) When growing a compound semiconductor on a silicon substrate, a protective film is provided in a predetermined region of the silicon substrate other than the region where the compound semiconductor is grown to prevent autodoping of silicon from the region to the compound semiconductor, A method for growing a compound semiconductor, comprising growing a compound semiconductor on the silicon substrate with a protective film.
おいて、 化合物半導体の被成長領域以外の所定領域に該領域から
当該化合物半導体へのシリコンのオートドーピングを阻
止する保護膜を具えて成ることを特徴とするシリコン基
板。(2) In a silicon substrate on which a compound semiconductor is grown, a protective film is provided in a predetermined region other than the region on which the compound semiconductor is grown to prevent autodoping of silicon from the region to the compound semiconductor. silicon substrate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28417889A JPH03145720A (en) | 1989-10-31 | 1989-10-31 | Compound semiconductor growth method and silicon substrate to be used thereon |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28417889A JPH03145720A (en) | 1989-10-31 | 1989-10-31 | Compound semiconductor growth method and silicon substrate to be used thereon |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03145720A true JPH03145720A (en) | 1991-06-20 |
Family
ID=17675188
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP28417889A Pending JPH03145720A (en) | 1989-10-31 | 1989-10-31 | Compound semiconductor growth method and silicon substrate to be used thereon |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03145720A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20010070005A (en) * | 1999-07-28 | 2001-07-25 | 이자와 다츠오 | Preparation of silicon substrate |
KR101022567B1 (en) * | 2009-02-02 | 2011-03-16 | 주식회사 엘지실트론 | Epitaxial Wafer Manufacturing Method |
WO2011034154A1 (en) | 2009-09-17 | 2011-03-24 | 株式会社日本ステントテクノロジー | Stent |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62128520A (en) * | 1985-11-29 | 1987-06-10 | Kyushu Denshi Kinzoku Kk | Semiconductor wafer and manufacture thereof |
JPH01246822A (en) * | 1988-03-29 | 1989-10-02 | Shin Etsu Handotai Co Ltd | Semiconductor wafer and manufacture thereof |
JPH0334535A (en) * | 1989-06-27 | 1991-02-14 | Intel Corp | Manufacture of high-resistance gallium arsenide on silicon substrate |
-
1989
- 1989-10-31 JP JP28417889A patent/JPH03145720A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62128520A (en) * | 1985-11-29 | 1987-06-10 | Kyushu Denshi Kinzoku Kk | Semiconductor wafer and manufacture thereof |
JPH01246822A (en) * | 1988-03-29 | 1989-10-02 | Shin Etsu Handotai Co Ltd | Semiconductor wafer and manufacture thereof |
JPH0334535A (en) * | 1989-06-27 | 1991-02-14 | Intel Corp | Manufacture of high-resistance gallium arsenide on silicon substrate |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20010070005A (en) * | 1999-07-28 | 2001-07-25 | 이자와 다츠오 | Preparation of silicon substrate |
KR101022567B1 (en) * | 2009-02-02 | 2011-03-16 | 주식회사 엘지실트론 | Epitaxial Wafer Manufacturing Method |
WO2011034154A1 (en) | 2009-09-17 | 2011-03-24 | 株式会社日本ステントテクノロジー | Stent |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5122130B2 (en) | Method for forming a stress relaxation layer structure on a substrate that is not lattice matched | |
JP2006522469A5 (en) | ||
JPH0484418A (en) | Method of heteroepitaxial development of iii-v group compound semiconductor for different types of substrates | |
EP0064829B1 (en) | High electron mobility semiconductor device and process for producing the same | |
JPH08191140A (en) | Manufacture of soi substrate | |
WO2007032214A1 (en) | Process for producing silicon carbide semiconductor device | |
JPH0787187B2 (en) | Method for manufacturing GaAs compound semiconductor substrate | |
JPH03145720A (en) | Compound semiconductor growth method and silicon substrate to be used thereon | |
JPH04233277A (en) | Transistor provided with layer of cubic boron nitride | |
JPH03278542A (en) | semiconductor equipment | |
JP2004273658A (en) | Method of manufacturing nitride semiconductor element | |
JP3924628B2 (en) | Method for manufacturing SiC Schottky diode | |
JP2000106350A (en) | Manufacture of ohmic electrode and semiconductor element | |
JP4329211B2 (en) | Silicon carbide semiconductor device using silicon carbide single crystal and method for manufacturing the same | |
JP3525150B2 (en) | Method for manufacturing silicon carbide semiconductor substrate | |
EP0108910B1 (en) | Method of forming a passivated compound semiconductor substrate | |
Sochinskii et al. | VPE of the Hg1− xCdx Te ohmic contact layers on p‐CdTe | |
JP3180501B2 (en) | Method of forming ohmic electrode | |
JP2555885B2 (en) | Germanium / gallium arsenide junction manufacturing method | |
Von Neida et al. | Activation characteristics of implanted dopants in InAs, GaSb and GaP after rapid thermal annealing | |
JPS63192227A (en) | Epitaxial growth method of compound semiconductor | |
JP3400085B2 (en) | Method for forming compound semiconductor layer | |
JP2972230B2 (en) | Joint structure | |
JPS63158836A (en) | Manufacture of semiconductor element | |
Künzel et al. | MBE overgrowth of implanted regions in InP: Fe substrates |