[go: up one dir, main page]

JPH03138323A - Manufacture of mg-containing ni-cu base alloy ingot - Google Patents

Manufacture of mg-containing ni-cu base alloy ingot

Info

Publication number
JPH03138323A
JPH03138323A JP27491289A JP27491289A JPH03138323A JP H03138323 A JPH03138323 A JP H03138323A JP 27491289 A JP27491289 A JP 27491289A JP 27491289 A JP27491289 A JP 27491289A JP H03138323 A JPH03138323 A JP H03138323A
Authority
JP
Japan
Prior art keywords
ingot
slag
yield
added
mgo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27491289A
Other languages
Japanese (ja)
Inventor
Tomoo Takenouchi
竹之内 朋夫
Yoshiaki Ichinomiya
一宮 義昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Original Assignee
Japan Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd filed Critical Japan Steel Works Ltd
Priority to JP27491289A priority Critical patent/JPH03138323A/en
Publication of JPH03138323A publication Critical patent/JPH03138323A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To transfer and incorporate Mg into the ingot at high yield by adding MgO to slag constituted of CaF2, CaO and Al2O3 as a fundamental compsn. and subjecting it to electroslag remelting. CONSTITUTION:By weight, 0.5 to 1.5% MgO is added to slag constituted of 40 to 65% CaF2, 20 to 35% CaO and 15 to 25% Al2O3 as a fundamental compsn., which is subjected to electroslag remelting and is refined into an ingot. In this way, the yield of Mg transferred and incorporated into the ingot comes to nearly 100%, and the surface of the obtd. ingot is made excellent as well. Furthermore, the forgeability of the ingot is made satisfactory.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、超電導発電材料など極超低温下で使用され
るNi −Cu基合金の鋳塊のエレクトロスラグ再溶解
(ESR)による製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing a Ni--Cu based alloy ingot used at extremely low temperatures, such as a superconducting power generation material, by electroslag remelting (ESR).

[従来の技術] 一般に、Ni −Cu基合金は鋳塊の内部性状を改善す
るために、ESRにより鋳塊が製造されているが、この
合金はその熱間加工性が悪し)ため、鍛造中に割れを発
生し材料歩留りが低下し、極端な場合には、所望の形状
を得ること自体が不可能となり、廃却とされる場合さえ
あった。
[Prior art] Generally, ingots of Ni-Cu-based alloys are manufactured by ESR in order to improve the internal properties of the ingots, but this alloy has poor hot workability. Cracks occur, reducing material yield, and in extreme cases, it becomes impossible to obtain the desired shape, and there are even cases where the product is discarded.

この対応手段として熱間加工性を改善するためにMg 
 あるいはZrの微量を本合金に添加する場合が多い。
As a countermeasure to this problem, Mg
Alternatively, a trace amount of Zr is often added to the present alloy.

 この両光素中で、Zrに関しては通常、この合金中に
は多量のAtが含有されているために、電極に含有する
Z「が略々全量、ESR中に鋳塊中へ移行するので、特
に、支障は生じないが、Mgは高活性であり、同時に高
揮発性の元素であるために、ESR中に逸散して減少し
、合金中の含有量を、所望の範囲内に調整することが極
めて困難である。
Regarding Zr in both of these elements, since this alloy usually contains a large amount of At, almost all of the Z contained in the electrode migrates into the ingot during ESR. In particular, although this does not cause any problems, Mg is a highly active and at the same time highly volatile element, so it dissipates and decreases during ESR, adjusting the content in the alloy within the desired range. It is extremely difficult to do so.

[発明が解決しようとする課題] 電極中にMgを含有させてESRを行っても、スラグの
基本組成と、このスラグへのMg Oの適正な添加量が
明確にされていないために、合金中のMg含有量を精度
よく制御することが不可能であるという問題を抱えてい
た。
[Problems to be Solved by the Invention] Even if ESR is performed with Mg contained in the electrode, the basic composition of the slag and the appropriate amount of Mg O to be added to this slag are not clarified. There was a problem in that it was impossible to precisely control the Mg content therein.

しかるに、本発明はVIM、VODなどによる−次溶解
に当り、電極中にMgの所望量を含有させて、二次溶解
のESRにおいては、電極中のMg含有量をそのままE
SR鋳塊中に移行含有させることを目的とするものであ
る。
However, in the present invention, a desired amount of Mg is contained in the electrode during the secondary melting by VIM, VOD, etc., and in the ESR of the secondary melting, the Mg content in the electrode is directly converted into E.
The purpose is to incorporate it into the SR ingot.

[課題を解決するための手段] 本発明は、上記問題点を解決するためのものであり、そ
の具体的手段はMgを微量含有するNi−Cu基合金鋳
塊を溶製するに当り、重量%基準において、Ca F2
40〜65%、CaO20〜35%、A120.15〜
25% を主成分とするスラグ中に、Mg Oを0.5
 〜1.5  %添加して、エレクトロスラグ再溶解を
行って鋳塊を製造することである。
[Means for Solving the Problems] The present invention is intended to solve the above-mentioned problems, and its specific means is to reduce the weight when melting a Ni-Cu base alloy ingot containing a trace amount of Mg. On a % basis, Ca F2
40-65%, CaO20-35%, A120.15-
0.5% MgO in slag mainly composed of 25%
~1.5% is added and electroslag remelting is performed to produce an ingot.

[作用] Ca F2− Ca O−A1203を基本組成とする
スラグへMg Oの添加量を変化させて、重量%基準に
おいて、C(15〜20%、Ti  O,1〜1.0%
、AIo、5〜7.0%、C095%以下、ZrO,1
%以下、Mg0.1%以下を含有し、残部がNiからな
る組成の範囲内にある電極を、ESRL、得られた鋳塊
中のMgの含有量を測定して、第1図に示す関係を得た
。 第1図において、スラグAは高Ca O、低A1□
01組成系であって、少量のMg Oを添加することの
みにより、急激にMgの歩留りが向上する。 このスラ
グは融点も低く、このスラグを使用して得られた鋳塊の
肌も良好であるが、スラグ中へのMg O添加量を僅か
に変化させても、Mgの歩留りが大きく変動するために
、Mgの歩留りの制御が困難である。
[Function] By changing the amount of MgO added to the slag whose basic composition is CaF2-CaO-A1203, C (15 to 20%, TiO, 1 to 1.0%) on a weight percent basis.
, AIo, 5-7.0%, C095% or less, ZrO, 1
% or less, Mg 0.1% or less, and the balance is Ni, by measuring the Mg content in the obtained ingot using ESRL, and the relationship shown in Figure 1. I got it. In Figure 1, slag A has high CaO and low A1□
01 composition system, and the yield of Mg is rapidly improved only by adding a small amount of Mg 2 O. This slag has a low melting point, and the skin of the ingot obtained using this slag is good, but even if the amount of MgO added to the slag is slightly changed, the Mg yield fluctuates greatly. Furthermore, it is difficult to control the Mg yield.

スラグCは中Ca O、低A1g Os組成系であり、
多量のMg Oを添加しなければ、鋳塊中のMgの高い
歩留りが得られない、 このスラグも融点は低いが、M
gの高い歩留りを得るために、Mg Oを多量に添加す
れば鋳塊肌が悪化する欠点がある。
Slag C has a medium CaO, low AlgOs composition system,
Unless a large amount of MgO is added, a high yield of Mg in the ingot cannot be obtained.This slag also has a low melting point, but Mg
If a large amount of Mg 2 O is added in order to obtain a high yield of g, there is a drawback that the ingot surface deteriorates.

また、スラグDは低Ca Ll 、高A12 Os組成
系であって、Mg Oを多量に添加してもMgの高い歩
留りが得られないことのみならず、スラグの融点も高く
なるため、鋳塊肌が著しく悪化する欠点がある。
In addition, slag D has a low Ca Ll and high A12 Os composition system, and even if a large amount of Mg O is added, a high yield of Mg cannot be obtained, and the melting point of the slag also becomes high. It has the disadvantage that the skin deteriorates significantly.

これらスラグA、C,およびDに対1.、スラグBはC
a F240〜65%、CaO20〜35%、A1□0
,15〜25%を基本組成とし、これに0.5〜1.5
%のMg Oを添加すれば、Mgの歩留りが略々 10
0%となり、また、スラグBの融点は比較的低いため、
鋳塊の肌も良好である。
For these slags A, C, and D, 1. , slag B is C
a F240-65%, CaO20-35%, A1□0
, 15-25% as the basic composition, and 0.5-1.5% as the basic composition.
If %MgO is added, the Mg yield will be approximately 10%.
0%, and since the melting point of slag B is relatively low,
The skin of the ingot is also good.

次に、スラグ中のCa F2、Ca OlおよびAl2
O3の組成範囲の限定の理由を述べる。
Next, CaF2, CaOl and Al2 in the slag
The reason for limiting the composition range of O3 will be described.

まず、Ca F2の配合量を40%未満にすれば、スラ
グの流動性が悪化し、65%を超えれば、A1203配
合量を減少させなければならず、発熱が少なくなるため
、鋳塊肌が不良となるので、スラグ中の Ca Fzの
配合量を240〜60%の範囲内に限定した。
First, if the content of CaF2 is less than 40%, the fluidity of the slag will deteriorate, and if it exceeds 65%, the content of A1203 must be reduced, which will reduce heat generation and cause the ingot skin to deteriorate. Since this would result in defects, the amount of Ca Fz in the slag was limited to a range of 240 to 60%.

Ca Oが20%未満ではMgの歩留りが悪くなり、ま
た、35%を超えると、Mgの歩留りが良過ぎてMgの
歩留りの制御が難しいため、スラグ中のCa Oの配合
量を、 20〜35%の範囲内に限定した。
If CaO is less than 20%, the Mg yield will be poor, and if it exceeds 35%, the Mg yield will be too good and it will be difficult to control the Mg yield. It was limited to a range of 35%.

Alz O3の配合量を15%未満にすると、発熱がJ
、=、 4; <、鋳塊肌が悪くなり、また、25%を
超えると、Mgの歩留りが悪くなるので、スラグ中のA
lz 03の配合量は15〜25%の範囲内に限定した
When the amount of Alz O3 blended is less than 15%, the heat generation decreases to J
,=, 4;
The blending amount of lz 03 was limited within the range of 15 to 25%.

[実施例] 微量のMgを含有するNi −Cu基合金を一次溶解し
て、ESR用の電極を溶製した。
[Example] An electrode for ESR was produced by primary melting of a Ni-Cu-based alloy containing a trace amount of Mg.

この電極と、50%Ca F、 −30%Ca O−2
0%A1203の基本組成にMg Oを1%添加したス
ラグを用いて、260 mmφと600 mn+$のE
SR鋳塊を溶製した。
This electrode, 50% Ca F, -30% Ca O-2
Using slag with 1% MgO added to the basic composition of 0% A1203, E of 260 mmφ and 600 mn + $
The SR ingot was melted.

第1表に使用した電極と溶製したESR鋳塊のMg含有
量を示す。 いずれの場合も、電極から鋳塊へ移行し含
有されるMgの歩留りは100%に近く、また、得られ
た鋳塊の肌も極めて良好であり、その後の鍛造工程にお
いても全く問題は[発明の効果] 上述の通り、本発明によれば、Ni −Cu系合金中に
熱間加工性を改善するために、添加した微量のMgを高
い歩留りでESR鋳塊の中に含有させることが可能であ
り、このことによって、得られた鋳塊の鍛造性も極めて
良好となる。
Table 1 shows the Mg content of the electrodes used and the ESR ingots produced. In either case, the yield of Mg transferred from the electrode to the ingot was close to 100%, and the skin of the obtained ingot was also extremely good, and there were no problems in the subsequent forging process. [Effect] As described above, according to the present invention, it is possible to incorporate a small amount of Mg added into the ESR ingot at a high yield in order to improve the hot workability of the Ni-Cu alloy. Therefore, the forgeability of the obtained ingot is also extremely good.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、Ca Fz −Ca O−Ab 03系スラ
グにMg Oを添加した場合のESR鋳塊中のMgの歩
留りを示す図である。 図中の記号のリス A: スラグA B: スラグB C: スラグC D: スラグD ト
FIG. 1 is a diagram showing the yield of Mg in an ESR ingot when Mg O is added to Ca Fz -Ca O-Ab 03 system slag. List of symbols in the diagram A: Slag A B: Slag B C: Slag C D: Slag D

Claims (1)

【特許請求の範囲】[Claims] Mgを微量含有するNi−Cu基合金の鋳塊を溶製する
に当り、重量%基準においてCaF_240〜65%、
CaO20〜35%、Al_2O_315〜25%を基
本組成とするスラグに、MgOを0.5〜1.5%添加
して、エレクトロスラグ再溶解することを特徴とするM
g含有Ni−Cu基合金鋳塊の製造方法。
When melting an ingot of Ni-Cu-based alloy containing a small amount of Mg, CaF_240 to 65% on a weight percent basis,
M is characterized by adding 0.5 to 1.5% of MgO to slag whose basic composition is 20 to 35% of CaO and 315 to 25% of Al_2O_3, and redissolving the electroslag.
A method for producing a g-containing Ni-Cu-based alloy ingot.
JP27491289A 1989-10-24 1989-10-24 Manufacture of mg-containing ni-cu base alloy ingot Pending JPH03138323A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27491289A JPH03138323A (en) 1989-10-24 1989-10-24 Manufacture of mg-containing ni-cu base alloy ingot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27491289A JPH03138323A (en) 1989-10-24 1989-10-24 Manufacture of mg-containing ni-cu base alloy ingot

Publications (1)

Publication Number Publication Date
JPH03138323A true JPH03138323A (en) 1991-06-12

Family

ID=17548265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27491289A Pending JPH03138323A (en) 1989-10-24 1989-10-24 Manufacture of mg-containing ni-cu base alloy ingot

Country Status (1)

Country Link
JP (1) JPH03138323A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100371477C (en) * 2003-10-24 2008-02-27 中原特钢股份有限公司 Copper alloy electroslag remelting process
WO2009078467A1 (en) * 2007-12-18 2009-06-25 The Japan Steel Works, Ltd. Slag for electroslag remelting of coppoer alloys and process for manufacturing copper alloy products
CN104195348A (en) * 2014-09-18 2014-12-10 刘天成 Low-silicon and low-impurity pre-melting slag for electro-slag remelting and preparing method and application thereof
CN104561569A (en) * 2015-01-14 2015-04-29 中原特钢股份有限公司 Preparation and use process for electroslag remelting slag
CN110331301A (en) * 2019-06-25 2019-10-15 河钢股份有限公司 A kind of method of electroslag remelting Hastelloy
CN114672657A (en) * 2022-04-20 2022-06-28 成都先进金属材料产业技术研究院股份有限公司 Electroslag remelting method for smelting high-cleanliness hot work die steel

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100371477C (en) * 2003-10-24 2008-02-27 中原特钢股份有限公司 Copper alloy electroslag remelting process
WO2009078467A1 (en) * 2007-12-18 2009-06-25 The Japan Steel Works, Ltd. Slag for electroslag remelting of coppoer alloys and process for manufacturing copper alloy products
JP2009167525A (en) * 2007-12-18 2009-07-30 Japan Steel Works Ltd:The Electroslag remelting slag for copper alloy and method for producing copper alloy material
US8083830B2 (en) 2007-12-18 2011-12-27 The Japan Steel Works Ltd. Slag for electroslag remelting for copper alloy and method for producing copper alloy material
CN104195348A (en) * 2014-09-18 2014-12-10 刘天成 Low-silicon and low-impurity pre-melting slag for electro-slag remelting and preparing method and application thereof
CN104561569A (en) * 2015-01-14 2015-04-29 中原特钢股份有限公司 Preparation and use process for electroslag remelting slag
CN110331301A (en) * 2019-06-25 2019-10-15 河钢股份有限公司 A kind of method of electroslag remelting Hastelloy
CN110331301B (en) * 2019-06-25 2021-03-09 河钢股份有限公司 Method for remelting hastelloy by electroslag
CN114672657A (en) * 2022-04-20 2022-06-28 成都先进金属材料产业技术研究院股份有限公司 Electroslag remelting method for smelting high-cleanliness hot work die steel

Similar Documents

Publication Publication Date Title
CA1146380A (en) Ceramic substrate alloy
JPH01298127A (en) Intermetallic compound tial-base lightweight heat-resisting alloy
GB2158461A (en) Nickel-chromium-iron-aluminum alloy
JPS6115135B2 (en)
JPH03138323A (en) Manufacture of mg-containing ni-cu base alloy ingot
US5730931A (en) Heat-resistant platinum material
JPH0321622B2 (en)
US4620961A (en) Aluminum alloy having a high electrical resistance and an excellent formability
JPH02205293A (en) Stainless steel coated arc welding rod for cryogenic temperatures
JPS5721793A (en) Brazed aluminum heat exchanger
US3169857A (en) Free machining steel with improved hot workability
JPH05271815A (en) Production of ni-fe based superheat resistant alloy ingot
JPS5554548A (en) High strength, low expansion alloy
JPS5814375B2 (en) Glass for sealing
SU629175A1 (en) Glass
JPS57126928A (en) Fluxing agent and production of alloy
JPH0222435A (en) Heat-resistant titanium alloy
JPS60228632A (en) Manufacture of titanium alloy
SU668364A1 (en) Alluminium-based alldy
JPS61153251A (en) Nickel alloy having high hot workability
DE69317489D1 (en) Process for the production of soft magnetic alloys of high permeability and alloys
JPS5620152A (en) Manufacture of erosion resistant alloy
SU451768A1 (en) Nickel based alloy
JPH02258938A (en) Heat-resistant material
EP0656330A1 (en) Low iron spinel by aluminothermic fusion