JPH031377B2 - - Google Patents
Info
- Publication number
- JPH031377B2 JPH031377B2 JP60185827A JP18582785A JPH031377B2 JP H031377 B2 JPH031377 B2 JP H031377B2 JP 60185827 A JP60185827 A JP 60185827A JP 18582785 A JP18582785 A JP 18582785A JP H031377 B2 JPH031377 B2 JP H031377B2
- Authority
- JP
- Japan
- Prior art keywords
- cubic boron
- film
- reaction gas
- gas introduction
- bias voltage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000000034 method Methods 0.000 claims description 24
- 229910052582 BN Inorganic materials 0.000 claims description 16
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 claims description 16
- 239000012495 reaction gas Substances 0.000 claims description 14
- 238000007740 vapor deposition Methods 0.000 claims description 7
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 6
- 229910052796 boron Inorganic materials 0.000 claims description 6
- 230000005684 electric field Effects 0.000 claims description 6
- 238000001704 evaporation Methods 0.000 claims description 4
- 230000008020 evaporation Effects 0.000 claims description 3
- 239000007789 gas Substances 0.000 description 9
- 150000002500 ions Chemical class 0.000 description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 5
- 239000010949 copper Substances 0.000 description 5
- 229910052802 copper Inorganic materials 0.000 description 5
- QDMRQDKMCNPQQH-UHFFFAOYSA-N boranylidynetitanium Chemical compound [B].[Ti] QDMRQDKMCNPQQH-UHFFFAOYSA-N 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 239000013078 crystal Substances 0.000 description 3
- 238000000151 deposition Methods 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 238000000862 absorption spectrum Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 238000005468 ion implantation Methods 0.000 description 2
- 238000001659 ion-beam spectroscopy Methods 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 239000000376 reactant Substances 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 239000012776 electronic material Substances 0.000 description 1
- 230000005281 excited state Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000010849 ion bombardment Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- YWCYJWYNSHTONE-UHFFFAOYSA-O oxido(oxonio)boron Chemical compound [OH2+][B][O-] YWCYJWYNSHTONE-UHFFFAOYSA-O 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
Landscapes
- Physical Vapour Deposition (AREA)
Description
[産業上の利用分野]
本発明は、中空陰極放電を利用した反応蒸着に
よる立方晶チツ化ホウ素膜の形成方法に関するも
のである。
[従来の技術]
従来、立方晶チツ化ホウ素(c−BN)は、高
温高圧法や気相法を用いて合成することが試みら
れている。高温高圧法では、完全性の高い結晶を
得ることができる。また、気相法では、イオンビ
ームスパツタ法、イオン注入と真空蒸着とを組合
せた方法および活性化反応蒸着法を用いて立方晶
チツ化ホウ素膜を作ることが試みられている。
一方、中空陰極放電を利用した反応蒸着による
化合物膜の形成方法として、先に特願昭60−
43617号(特開昭 − 号公報)において中
空陰極放電によつて生じるプラズマ中に大量に存
在する電子の一部を電界により反応ガス導入口に
引き込み、反応ガスを活性化して化成蒸着におけ
る反応性を高める方法を提案した。この方法によ
り、DCおよびRFグロー放電に比較して一桁以上
大きな電流を得ることができ、しかも反応ガス導
入口付近に電流が集中するため、プラズマ密度は
飛躍的に増大することが認められた。
[発明が解決しようとする問題点]
ところで、高温高圧法で立方晶チツ化ホウ素
(c−BN)を形成する場合には、完全性の高い
結晶を得ることができるが、大きさや形状の制御
が困難であり、製造コストも高くつく。一方、イ
オン注入と真空蒸着とを組合せた方法を用いて作
られた膜には六方晶チツ化ホウ素(h−BN)相
が混在しており、また装置が大がかりの割りには
処理面積が小さいため、生産性が悪いだけでなく
再現性の点でも問題がある。イオンビームスパツ
タ法においては、プラズマ密度が低いため、速い
析出速度で大面積のコーテイングはできない。ま
た活性化反応蒸着法による立方晶チツ化ホウ素の
形成については、従来詳細な報告がなされてな
い。
イオンを加速するために、メツシユ状の電極を
用いることがあるが、立方晶チツ化ホウ素は絶縁
体であるため、メツシユ状の電極に絶縁体が付着
し、それによりバイアス電圧が変動し、コーテイ
ング膜の再現性を得ることは困難である。またメ
ツシユ状の電極にイオン化した原子の一部が奪わ
れるために、イオンの基板への入射量が低下し、
このため生成したプラズマを有効に使うことがで
きなくなる。さらに、メツシユ状の電極に印加さ
れる電力は大きくなる場合には、メツシユ状の電
極自体がイオンによつてスパツタされ、膜中に含
まれる不純物汚染の原因となる。また、立方晶チ
ツ化ホウ素膜を形成すべき被処理物にDCバイア
スを印加する場合には、100Å程度BN膜が形成
されると、基板電流は流れなくなる。
そこで、本発明の目的は、先に提案した中空陰
極放電を利用した反応蒸着による化合物膜の形成
方法を応用して量産性に優れ、結晶性のよい立方
晶チツ化ホウ素膜の形成方法を提供することにあ
る。
[問題点を解決するための手段]
上記の目的を達成するために、本発明による立
方晶チツ化ホウ素膜の形成方法は、反応ガス導入
ノズルに直流または交流のバイアス電圧を印加し
て高密度のプラズマを生成し、立方晶チツ化ホウ
素膜を形成すべき被処理物に高周波電圧を印加し
て上記被処理物の表面近傍に高周波電界を形成
し、蒸発源および反応ガス導入ノズル前面の上記
高密度プラズマに対して有効なバイアス電圧が上
記被処理物にかかるようにしたことを特徴として
いる。
反応ガス導入ノズルに印加される正のバイアス
電圧は、直流または交流電源から供給され得る。
また反応ガスとしてはN2またはNH3を用いる
ことができる。
[作用]
本発明による立方晶チツ化ホウ素膜の形成方法
では、立方晶チツ化ホウ素膜を形成すべき被処理
物に印加される高周波バイアス電圧により、イオ
ン衝撃に必要である有効なイオンエネルギを得る
ことができ、これにより、反応ガス導入ノズルに
直流または交流のバイアス電圧を印加することに
よつて生成された高密度のプラズマ中に大量に存
在するイオンは、被処理物に有効に入射し、被処
理物上に立方晶チツ化ホウ素膜が効果的に形成さ
れ得る。
[実施例]
以下、添附図面を参照して本発明の実施例につ
いて説明する。
第1図には、本発明による立方晶チツ化ホウ素
膜の形成方法を実施している装置の一例を概略的
に示し、真空容器1内には、蒸発源であるホウ素
の入つた水冷銅製ハース2と、この水冷銅製ハー
ス2に対向した立方晶チツ化ホウ素膜を形成すべ
き被処理物3と、中空陰極型電子銃4と、N2ま
たはNH3を真空容器1内に導入する反応ガス導
入ノズル5と、被処理物3に対するヒータ6とが
配置されている。水冷銅製ハース2と中空陰極型
電子銃4との間にはそれらの間に中空熱陰極放電
を起すための直流電源7が図示した極性で接続さ
れている。直流または交流電源8は、中空陰極放
電空間内の電子の一部を反応ガス導入ノズル5に
引き込む電界を発生するため反応ガス導入ノズル
5と中空陰極型電子銃4との間に接続され、直流
正または交流の数十〜数百ボルトの電圧を印加す
る。また、被処理物3には容量結合型マツチング
要素を介して高周波電源9が接続されている。
水冷銅製ハース2と中空陰極型電子銃4との間
に発生される中空熱陰極放電は、低電圧、大電流
であり、また、直流または交流電源8によつて反
応ガス導入ノズル5と中空陰極型電子銃4との間
に印加される正のバイアス電圧により、中空陰極
放電空間内の電子の一部は反応ガス導入ノズル5
に引き込まれ、それにより電子と反応ガス分子と
の間で衝突が起り、高密度な放電状態となる。そ
の結果、反応ガスは一部イオン化されると共に中
性の励起状態に活性化される。
高周波電源9によつて、被処理物3に高周波電
圧を印加することにより、被処理物3の近傍に高
周波電界が発生され、水冷銅製ハース2の前面お
よび反応ガス導入ノズル5の前面の高密度プラズ
マに対して有効なバイアス電圧が被処理物3に掛
るようにされる。この高周波バイアス電圧によつ
て、高密度のプラズマ中に多量に存在するイオン
は被処理物3に有効に入射され得る。
次に、図示装置を用いて本発明の方法を実施し
た具体例を例示する。
蒸着条件として中空陰極型電子銃4を通してア
ルゴンガスを圧力0.13Paで供給し、反応ガス導入
ノズル5にチツ素ガスを圧力0.05Paで導入し、中
空熱陰極放電を30V、150Aに設定し、析出速度
を0.05μm/minとし、直流または交流電源8によ
つて反応ガス導入ノズル5に印加される正のバイ
アス電圧を80V、2Aとし、被処理物3に印加す
る高周波電力を80Wとし、被処理物3として石
英、シリコンウエハおよびMo(モリブデン)基
板を使用し、その温度を500℃に設定し、基板上
に立方晶チツ化ホウ素膜を形成した。こうして形
成した立方晶チツ化ホウ素膜の赤外線吸収スペク
トルを第2図に示す。
第2図のグラフから認られるように、c−BN
固有の1045cm-1の吸収が示されており、1350cm
-1750cm-1付近のh−BNの吸収は観察されない。
また、電子線回析によつて求めた立方晶チツ化
ホウ素膜の格子面間隔とASTM回折(X線回折)
データカードとの比較を下表に示す。
[Industrial Application Field] The present invention relates to a method for forming a cubic boron titanium film by reactive vapor deposition using hollow cathode discharge. [Prior Art] Conventionally, attempts have been made to synthesize cubic boron nitride (c-BN) using a high temperature/high pressure method or a gas phase method. The high-temperature, high-pressure method can yield highly perfect crystals. Furthermore, in the vapor phase method, attempts have been made to produce a cubic boron nitride film using an ion beam sputtering method, a method combining ion implantation and vacuum evaporation, and an activated reaction evaporation method. On the other hand, as a method for forming compound films by reactive vapor deposition using hollow cathode discharge, a patent application was filed in 1980-
43617 (Japanese Unexamined Patent Publication No. 43617), a part of the electrons present in large quantities in the plasma generated by hollow cathode discharge is drawn into the reactive gas inlet by an electric field, and the reactive gas is activated to improve reactivity in chemical vapor deposition. proposed a method to increase With this method, it was possible to obtain a current that was more than an order of magnitude larger than that of DC and RF glow discharge, and because the current was concentrated near the reactant gas inlet, it was observed that the plasma density increased dramatically. . [Problems to be solved by the invention] By the way, when cubic boron nitride (c-BN) is formed by a high temperature and high pressure method, highly perfect crystals can be obtained, but it is difficult to control the size and shape. is difficult and the manufacturing cost is high. On the other hand, films made using a method that combines ion implantation and vacuum deposition contain a hexagonal boron titanium (h-BN) phase, and the processing area is small considering the large scale of the equipment. Therefore, there are problems not only in productivity but also in reproducibility. In the ion beam sputtering method, since the plasma density is low, it is not possible to coat a large area with a high deposition rate. Furthermore, there have been no detailed reports regarding the formation of cubic boron nitride by activated reaction vapor deposition. A mesh-shaped electrode is sometimes used to accelerate ions, but since cubic boron nitride is an insulator, the insulator adheres to the mesh-shaped electrode, which changes the bias voltage and causes the coating to Obtaining membrane reproducibility is difficult. In addition, some of the ionized atoms are taken away by the mesh-shaped electrode, so the amount of ions incident on the substrate decreases.
For this reason, the generated plasma cannot be used effectively. Furthermore, when the electric power applied to the mesh-shaped electrode becomes large, the mesh-shaped electrode itself is spattered by ions, causing contamination with impurities contained in the film. Furthermore, when applying a DC bias to a processing object on which a cubic boron dioxide film is to be formed, the substrate current stops flowing once a BN film of about 100 Å is formed. Therefore, an object of the present invention is to provide a method for forming a cubic boron nitride film with excellent mass productivity and good crystallinity by applying the previously proposed method for forming a compound film by reactive vapor deposition using hollow cathode discharge. It's about doing. [Means for Solving the Problems] In order to achieve the above object, the method for forming a cubic boron nitride film according to the present invention applies a DC or AC bias voltage to a reaction gas introduction nozzle to form a high-density film. A high frequency voltage is applied to the object to be processed to form a cubic boron nitride film to form a high frequency electric field near the surface of the object. It is characterized in that a bias voltage effective for high-density plasma is applied to the object to be processed. The positive bias voltage applied to the reaction gas introduction nozzle can be supplied from a DC or AC power source. Furthermore, N 2 or NH 3 can be used as the reaction gas. [Function] In the method for forming a cubic boron nitride film according to the present invention, effective ion energy necessary for ion bombardment is generated by a high-frequency bias voltage applied to the workpiece on which a cubic boron nitride film is to be formed. As a result, ions present in large quantities in the high-density plasma generated by applying a DC or AC bias voltage to the reaction gas introduction nozzle can effectively enter the workpiece. , a cubic boron nitride film can be effectively formed on the object to be treated. [Embodiments] Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. FIG. 1 schematically shows an example of an apparatus for carrying out the method for forming a cubic boron titanium film according to the present invention. Inside the vacuum vessel 1, there is a water-cooled copper hearth containing boron, which is an evaporation source. 2, a workpiece 3 on which a cubic boron nitride film is to be formed, which faces the water-cooled copper hearth 2, a hollow cathode electron gun 4, and a reaction gas for introducing N 2 or NH 3 into the vacuum vessel 1. An introduction nozzle 5 and a heater 6 for the object to be processed 3 are arranged. A DC power supply 7 is connected between the water-cooled copper hearth 2 and the hollow cathode type electron gun 4 with the polarity shown in the figure for generating a hollow hot cathode discharge therebetween. A DC or AC power supply 8 is connected between the reactive gas introduction nozzle 5 and the hollow cathode electron gun 4 to generate an electric field that draws some of the electrons in the hollow cathode discharge space into the reactive gas introduction nozzle 5. Apply positive or alternating current voltage of several tens to hundreds of volts. Further, a high frequency power source 9 is connected to the workpiece 3 via a capacitively coupled matching element. The hollow hot cathode discharge generated between the water-cooled copper hearth 2 and the hollow cathode type electron gun 4 has a low voltage and a large current, and is also connected to the reaction gas introduction nozzle 5 and the hollow cathode by a DC or AC power source 8. Due to the positive bias voltage applied between the mold electron gun 4 and the hollow cathode discharge space, some of the electrons are transferred to the reaction gas introduction nozzle 5.
As a result, collisions occur between electrons and reactive gas molecules, resulting in a high-density discharge state. As a result, the reactant gas is partially ionized and activated to a neutral excited state. By applying a high frequency voltage to the workpiece 3 by the high frequency power supply 9, a high frequency electric field is generated in the vicinity of the workpiece 3, and a high density electric field is generated in the front surface of the water-cooled copper hearth 2 and the front surface of the reaction gas introduction nozzle 5. A bias voltage effective for plasma is applied to the object 3 to be processed. Due to this high frequency bias voltage, ions present in large quantities in the high-density plasma can be effectively incident on the object 3 to be processed. Next, a specific example of implementing the method of the present invention using the illustrated apparatus will be illustrated. As the deposition conditions, argon gas was supplied at a pressure of 0.13 Pa through the hollow cathode electron gun 4, nitrogen gas was introduced at a pressure of 0.05 Pa into the reaction gas introduction nozzle 5, and the hollow hot cathode discharge was set at 30 V and 150 A. The speed was set to 0.05 μm/min, the positive bias voltage applied to the reaction gas introduction nozzle 5 by the DC or AC power source 8 was set to 80 V, 2 A, and the high frequency power applied to the object to be processed 3 was set to 80 W. A quartz, silicon wafer, and Mo (molybdenum) substrate were used as material 3, and the temperature was set at 500° C. to form a cubic boron titanide film on the substrate. FIG. 2 shows the infrared absorption spectrum of the cubic boron titanium film thus formed. As seen from the graph in Figure 2, c-BN
A specific absorption of 1045 cm -1 is shown and 1350 cm
-1 No absorption of h-BN near 750 cm -1 is observed. In addition, the lattice spacing of the cubic boron titanide film determined by electron beam diffraction and ASTM diffraction (X-ray diffraction)
A comparison with the data card is shown in the table below.
【表】【table】
【表】
上記の表から、電子線回折によつて求めた立方
晶チツ化ホウ素膜の格子面間隔は、ASTM回折
(X線回折)データカードと一致していることが
わかる。得られた膜の組成はX線マイクロアナラ
イザによると、N/B=1であつた。
[発明の効果]
以上説明してきたように、本発明の方法によれ
ば、中空陰極放電を利用した反応蒸着において高
密度プラズマと高周波バイアスとを用いることに
よつて結晶性のよい立方晶チツ化ホウ素を被処理
物に対して速い析出速度でしかも大きな面積に容
易に成膜することができる。従つて、本発明の方
法は、切削工具等に被覆して寿命を伸すのに応用
したり、高い電気絶縁性および高い熱伝導性を利
用して電子材料等にも応用され得る。[Table] From the above table, it can be seen that the lattice spacing of the cubic boron titanide film determined by electron beam diffraction agrees with the ASTM diffraction (X-ray diffraction) data card. The composition of the obtained film was determined by an X-ray microanalyzer to be N/B=1. [Effects of the Invention] As explained above, according to the method of the present invention, cubic crystal formation with good crystallinity is achieved by using high-density plasma and high-frequency bias in reactive vapor deposition using hollow cathode discharge. Boron can be easily deposited on a workpiece at a high deposition rate over a large area. Therefore, the method of the present invention can be applied to coat cutting tools and the like to extend their lifespan, and can also be applied to electronic materials and the like by taking advantage of their high electrical insulation and high thermal conductivity.
第1図は本発明による方法を実施している中空
陰極放電を利用した反応蒸着装置の一例を示す概
略線図、第2図は第1図の装置を用いて形成した
立方晶チツ化ホウ素膜の赤外線吸収スペクトルを
示すグラフである。
図中、1:真空容器、2:蒸発源、3:立方晶
チツ化ホウ素膜を形成すべき被処理物、4:中空
陰極型電子銃、5:反応ガス導入ノズル、6:ヒ
ータ、7:直流電源、8:直流または交流電源、
9:高周波電源。
Fig. 1 is a schematic diagram showing an example of a reactive vapor deposition apparatus using hollow cathode discharge in which the method according to the present invention is carried out, and Fig. 2 is a cubic boron nitride film formed using the apparatus shown in Fig. 1. It is a graph showing an infrared absorption spectrum of. In the figure, 1: vacuum container, 2: evaporation source, 3: object to be processed on which cubic boron nitride film is to be formed, 4: hollow cathode electron gun, 5: reaction gas introduction nozzle, 6: heater, 7: DC power supply, 8: DC or AC power supply,
9: High frequency power supply.
Claims (1)
晶チツ化ホウ素膜の形成方法において、反応ガス
導入ノズルに直流または交流のバイアス電圧を印
加して高密度のプラズマを生成し、立方晶チツ化
ホウ素膜を形成すべき被処理物に高周波電圧を印
加して上記被処理物の表面近傍に高周波電界を形
成し、蒸発源および反応ガス導入ノズル前面の上
記高密度プラズマに対して有効なバイアス電圧が
上記被処理物にかかるようにしたことを特徴とす
る立方晶チツ化ホウ素膜の形成方法。1. In a method for forming a cubic boron nitride film by reactive vapor deposition using hollow cathode discharge, a direct current or alternating current bias voltage is applied to the reaction gas introduction nozzle to generate high-density plasma, and the cubic boron nitride film is formed by applying a DC or AC bias voltage to the reaction gas introduction nozzle. A high-frequency electric field is formed near the surface of the workpiece by applying a high-frequency voltage to the workpiece to be processed, and the effective bias voltage for the high-density plasma in front of the evaporation source and the reaction gas introduction nozzle is set as above. A method for forming a cubic boron titanide film, characterized in that the film is coated on an object to be treated.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60185827A JPS6247472A (en) | 1985-08-26 | 1985-08-26 | Formation of cubic boron nitride film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60185827A JPS6247472A (en) | 1985-08-26 | 1985-08-26 | Formation of cubic boron nitride film |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6247472A JPS6247472A (en) | 1987-03-02 |
JPH031377B2 true JPH031377B2 (en) | 1991-01-10 |
Family
ID=16177565
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60185827A Granted JPS6247472A (en) | 1985-08-26 | 1985-08-26 | Formation of cubic boron nitride film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6247472A (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5277939A (en) * | 1987-02-10 | 1994-01-11 | Semiconductor Energy Laboratory Co., Ltd. | ECR CVD method for forming BN films |
JPS63274762A (en) * | 1987-05-01 | 1988-11-11 | Ulvac Corp | Device for forming reaction vapor-deposited film |
US4824544A (en) * | 1987-10-29 | 1989-04-25 | International Business Machines Corporation | Large area cathode lift-off sputter deposition device |
DE59007568D1 (en) * | 1990-04-06 | 1994-12-01 | Siemens Ag | Process for the production of microcrystalline cubic boron nitride layers. |
-
1985
- 1985-08-26 JP JP60185827A patent/JPS6247472A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS6247472A (en) | 1987-03-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4749587A (en) | Process for depositing layers on substrates in a vacuum chamber | |
US5096740A (en) | Production of cubic boron nitride films by laser deposition | |
JPH02285072A (en) | Coating of surface of workpiece and workpiece thereof | |
AU2002332200B2 (en) | Method for carrying out homogeneous and heterogeneous chemical reactions using plasma | |
JPH031377B2 (en) | ||
JPH0568541B2 (en) | ||
JPH03122266A (en) | Production of thin nitride film | |
JPS6395200A (en) | Method for manufacturing hard boron nitride film | |
EP0280198B1 (en) | Method of forming diamond film | |
JP2617539B2 (en) | Equipment for producing cubic boron nitride film | |
JPH0417669A (en) | Film forming method using plasma and rf ion plating device | |
JPS63277767A (en) | Vapor phase synthesis method of high pressure phase boron nitride | |
JP2680574B2 (en) | Method for producing cubic boron nitride film | |
JP2504426B2 (en) | Method and apparatus for forming cBN thin film | |
JPH05147908A (en) | Production of cubic boron nitride powder | |
JPH04318162A (en) | Formation of cubic boron nitride film and forming device therefor | |
JPH01246357A (en) | Production of cubic boron nitride film | |
JP2687468B2 (en) | Thin film forming equipment | |
JPH01201481A (en) | Method and apparatus for vapor phase synthesis of high-pressure phase boron nitride | |
JPH0733580B2 (en) | Method for producing cubic boron nitride film | |
JP2567843B2 (en) | Hybrid ion plating method and apparatus | |
JPH0649635B2 (en) | Diamond synthesis method | |
JPH07110995B2 (en) | Thin film forming method and thin film forming apparatus | |
JPS6396266A (en) | Device for producing amorphous silicon solar cell | |
JPH04116155A (en) | Formation of thin film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |