JPH03137224A - Electroconductive conjugate fiber and its production - Google Patents
Electroconductive conjugate fiber and its productionInfo
- Publication number
- JPH03137224A JPH03137224A JP26922089A JP26922089A JPH03137224A JP H03137224 A JPH03137224 A JP H03137224A JP 26922089 A JP26922089 A JP 26922089A JP 26922089 A JP26922089 A JP 26922089A JP H03137224 A JPH03137224 A JP H03137224A
- Authority
- JP
- Japan
- Prior art keywords
- melting point
- fibers
- spinning
- polyester
- cuprous iodide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000835 fiber Substances 0.000 title claims abstract description 63
- 238000004519 manufacturing process Methods 0.000 title claims description 7
- 238000009987 spinning Methods 0.000 claims abstract description 26
- 229910021595 Copper(I) iodide Inorganic materials 0.000 claims abstract description 24
- LSXDOTMGLUJQCM-UHFFFAOYSA-M copper(i) iodide Chemical compound I[Cu] LSXDOTMGLUJQCM-UHFFFAOYSA-M 0.000 claims abstract description 24
- 239000008358 core component Substances 0.000 claims abstract description 24
- 239000002245 particle Substances 0.000 claims abstract description 22
- 239000000306 component Substances 0.000 claims abstract description 21
- 238000002844 melting Methods 0.000 claims abstract description 19
- 230000008018 melting Effects 0.000 claims abstract description 19
- 229920000728 polyester Polymers 0.000 claims abstract description 17
- 239000000843 powder Substances 0.000 claims abstract description 16
- 229920001169 thermoplastic Polymers 0.000 claims abstract description 8
- 239000002131 composite material Substances 0.000 claims description 27
- -1 polyethylene Polymers 0.000 abstract description 11
- 239000004698 Polyethylene Substances 0.000 abstract description 3
- 239000004744 fabric Substances 0.000 abstract description 3
- 229920000573 polyethylene Polymers 0.000 abstract description 3
- 229920001707 polybutylene terephthalate Polymers 0.000 abstract description 2
- 229920005989 resin Polymers 0.000 abstract 1
- 239000011347 resin Substances 0.000 abstract 1
- 229920005992 thermoplastic resin Polymers 0.000 abstract 1
- 229920000642 polymer Polymers 0.000 description 13
- 230000007423 decrease Effects 0.000 description 6
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical group OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 description 6
- 229920000139 polyethylene terephthalate Polymers 0.000 description 5
- 239000005020 polyethylene terephthalate Substances 0.000 description 5
- 239000006229 carbon black Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 230000000704 physical effect Effects 0.000 description 4
- 239000002253 acid Substances 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000007747 plating Methods 0.000 description 3
- 238000004062 sedimentation Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 239000004952 Polyamide Substances 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 229920002647 polyamide Polymers 0.000 description 2
- 229920000098 polyolefin Polymers 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- ISPYQTSUDJAMAB-UHFFFAOYSA-N 2-chlorophenol Chemical compound OC1=CC=CC=C1Cl ISPYQTSUDJAMAB-UHFFFAOYSA-N 0.000 description 1
- WSQZNZLOZXSBHA-UHFFFAOYSA-N 3,8-dioxabicyclo[8.2.2]tetradeca-1(12),10,13-triene-2,9-dione Chemical compound O=C1OCCCCOC(=O)C2=CC=C1C=C2 WSQZNZLOZXSBHA-UHFFFAOYSA-N 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000007822 coupling agent Substances 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000002845 discoloration Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000002612 dispersion medium Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000009940 knitting Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000006224 matting agent Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 229920001748 polybutylene Polymers 0.000 description 1
- 229920006149 polyester-amide block copolymer Polymers 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- GCLGEJMYGQKIIW-UHFFFAOYSA-H sodium hexametaphosphate Chemical compound [Na]OP1(=O)OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])O1 GCLGEJMYGQKIIW-UHFFFAOYSA-H 0.000 description 1
- 235000019982 sodium hexametaphosphate Nutrition 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000012209 synthetic fiber Substances 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
- 239000001577 tetrasodium phosphonato phosphate Substances 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 238000009941 weaving Methods 0.000 description 1
- 230000002087 whitening effect Effects 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Landscapes
- Artificial Filaments (AREA)
- Multicomponent Fibers (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野]
本発明は、衣料用に好適に用いられる導電性繊維、さら
に詳細には特定の沃化第1銅粉体を用いる導電性芯鞘型
複合繊維およびその製造方法に関する。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to conductive fibers suitable for use in clothing, and more specifically conductive core-sheath type composites using a specific cuprous iodide powder. It relates to fibers and their manufacturing methods.
合成繊維、例えばポリエステル系繊維、ポリアミド系繊
維などは、導電性が低いため、摩擦により静電気が発生
し、塵埃が付着し、放電に伴い各種の障害が発生する。Synthetic fibers, such as polyester fibers and polyamide fibers, have low conductivity and therefore generate static electricity due to friction, attract dust, and cause various problems due to discharge.
かかる問題を解決するため、繊維製品に金属繊維、金属
メツキを施した繊維、導電性物質を配合したポリマード
ープを塗布した繊維、カーボンブラックを配合した繊維
などの導電性繊維を混合したものが知られている。しか
しながら、これらの導電性繊維は、いずれも欠点があり
、満足できるものではなかった。To solve this problem, textile products are mixed with conductive fibers such as metal fibers, metal-plated fibers, fibers coated with polymer dope containing conductive substances, and fibers containing carbon black. It is being However, all of these conductive fibers had drawbacks and were not satisfactory.
例えば、金属繊維は、使用時または加工時の屈折により
導電性能が低下すること、他繊維との混合、交編、交織
が容易でないこと、金属特有の色調を呈することなどの
欠点がある。For example, metal fibers have drawbacks such as reduced conductivity due to refraction during use or processing, difficulty in mixing with other fibers, inter-knitting, or inter-weaving, and exhibiting a color tone unique to metals.
金属メツキを施した繊維は、メツキ処理」−1繊維表面
の平滑性が要求され、適用できる繊維が制限されるうえ
、製造コストが高くなること、使用時または加工時にメ
ツキ層が剥離し易く耐久性が低いこと、金属色を呈する
ことなどの欠点がある。Fibers with metal plating require "plating treatment" -1 smoothness of the fiber surface, which limits the types of fibers that can be applied, increases manufacturing costs, and makes the plating layer easy to peel off during use or processing, resulting in poor durability. It has disadvantages such as low elasticity and metallic color.
導電性物質を配合したポリマードープを塗布した繊維も
、製造コスト、剥離等について金属メツキ繊維と同様の
欠点がある。Fibers coated with a polymer dope containing a conductive substance also have the same drawbacks as metal-plated fibers in terms of manufacturing cost, peeling, etc.
さらに、カーボンブラック含有繊維は、黒色を呈するた
め外観が損なわれ、その使用分野が制限されるという欠
点を有している。Furthermore, carbon black-containing fibers exhibit a black color, which impairs their appearance and limits their field of use.
このようなカーボンブラック含有繊維の欠点を改良すべ
く白色の導電性物質を含有させた繊維の研究もなされて
おり、なかでも沃化第1銅を含有させた導電性繊維は、
白皮が高く物性面でも優れている。In order to improve the drawbacks of carbon black-containing fibers, research has been carried out on fibers containing white conductive substances, and among them, conductive fibers containing cuprous iodide,
It has a high white skin and excellent physical properties.
しかしながら、このような沃化第1銅含有繊維は、カー
ボンブラック含有繊維に比べると確かに白色系であるが
、通常のルートの繊維に比較してまだ白皮が不充分であ
り、特に白色、淡色系布帛での使用は依然制限されてい
るのが実状である。However, although such cuprous iodide-containing fibers are certainly white in color compared to carbon black-containing fibers, they still have insufficient white skin compared to fibers from the normal route, and are particularly white. The reality is that its use on light-colored fabrics is still restricted.
また、通常のポリエチレンテレフタレートに沃化第1銅
を含有させた組成物からは性能と製糸性の優れた繊維を
得ることは困難であった。Further, it has been difficult to obtain fibers with excellent performance and spinnability from a composition containing cuprous iodide in ordinary polyethylene terephthalate.
本発明の目的は、沃化第1銅を含有し、優れた白皮を有
し、かつ安定に製糸しうる導電性複合繊維およびその製
造方法を提供することにある。An object of the present invention is to provide a conductive composite fiber that contains cuprous iodide, has an excellent white skin, and can be stably spun, and a method for producing the same.
本発明は、芯成分が融点90〜150℃の熱可塑性重合
体と平均粒径が0.6〜1.2μmの沃化第1銅粉体と
から成り、鞘成分が融点200〜240℃のポリエステ
ルよりなる導電性複合繊維である。In the present invention, the core component consists of a thermoplastic polymer with a melting point of 90 to 150°C and cuprous iodide powder with an average particle size of 0.6 to 1.2 μm, and the sheath component has a melting point of 200 to 240°C. It is a conductive composite fiber made of polyester.
本発明の導電性複合繊維の芯成分は、沃化第1銅粉体と
熱可塑性重合体とからなる。ここで使用される熱可塑゛
性重合体は、融点が90〜150℃の範囲のものを使用
する必要がある。融点が90℃未満では、熱安定性が悪
く良好な糸にならない。The core component of the conductive composite fiber of the present invention consists of cuprous iodide powder and a thermoplastic polymer. The thermoplastic polymer used here must have a melting point in the range of 90 to 150°C. If the melting point is less than 90°C, the thermal stability will be poor and it will not be possible to form a good thread.
150″Cを超えるものでは、低温度では、粘度が高く
なり紡糸することができず、粘度を下げるべく紡糸温度
を上げると沃化第1銅を含む芯成分が熱劣化してガスが
発生し、やはり製糸性が低下する。この芯成分は、ポリ
オレフィン、ポリエステルを主たる対象とするが、これ
らの一部を共重合で置き換えたものでもよく、また融点
が90〜150℃の熱可塑性重合体であれば目的に応じ
上記以外の重合体を使用してもよく、さらに必要に応じ
てそれらの2種以上を混合したものであってもよい。芯
成分としては、該芯成分の流動性および熱安定性の観点
よりポリオレフィンが好ましく、就中ポリエチレンが特
に好適に用いられる。If the temperature exceeds 150"C, the viscosity becomes high and spinning is impossible at low temperatures. If the spinning temperature is increased to lower the viscosity, the core component containing cuprous iodide will thermally deteriorate and gas will be generated. However, the core components are mainly polyolefins and polyesters, but some of these may be replaced by copolymers, and thermoplastic polymers with a melting point of 90 to 150°C may also be used. Polymers other than the above may be used depending on the purpose, and two or more of them may be mixed if necessary.As the core component, the fluidity and heat of the core component From the viewpoint of stability, polyolefins are preferred, and polyethylene is particularly preferred.
また、前記沃化第1銅粉体は、その平均粒径が0.6〜
1.2μmであることが必要である。Further, the cuprous iodide powder has an average particle size of 0.6 to
It is necessary that the thickness is 1.2 μm.
沃化第1銅の平均粒径が0. 6μm未満では、二次凝
集がおこり易くなり、二次凝集粒子の中にとりこまれた
不純物は洗浄によっても容易に除去されないため、沃化
第1銅の粒径が0.6μm未満になると粉体白皮は急激
に悪くなる。そのため、沃化第1銅粉体含有導電性複合
繊維の白皮を向上させるには、平均粒径0.6μm以上
の沃化第1銅粉体を使用することが必要となる。The average grain size of cuprous iodide is 0. If the particle size is less than 6 μm, secondary agglomeration tends to occur, and impurities trapped in the secondary agglomerated particles cannot be easily removed even by washing. Therefore, if the particle size of cuprous iodide is less than 0.6 μm, powder The white skin deteriorates rapidly. Therefore, in order to improve the white skin of the conductive composite fiber containing cuprous iodide powder, it is necessary to use cuprous iodide powder having an average particle size of 0.6 μm or more.
一方、沃化第1銅粉体の平均粒径があまり大きくなりす
ぎると複合繊維中での粒子の連続性の効率が悪くなり、
特に延伸後の繊維の導電性能の低下を引き起こすため、
沃化第1銅粉体の平均粒径は1. 2μm以下であるこ
とが必要である。On the other hand, if the average particle size of the cuprous iodide powder becomes too large, the efficiency of particle continuity in the composite fiber will deteriorate;
Especially since it causes a decrease in the conductive performance of the fiber after stretching.
The average particle size of the cuprous iodide powder is 1. It is necessary that the thickness is 2 μm or less.
上記芯成分中の重合体と沃化第1銅粉体とを混合するに
は、良好に分散混合できるものであれば任意の方法が採
用できる。沃化第1銅の混合量は、導電性能と成形性と
のかねあいから、芯成分の重合体の重量の1.0〜3.
4倍が適当である。To mix the polymer in the core component and the cuprous iodide powder, any method can be used as long as it allows good dispersion and mixing. The amount of cuprous iodide to be mixed is 1.0 to 3.0% of the weight of the core component polymer due to the trade-off between electrical conductivity and formability.
4 times is appropriate.
また、芯成分中には、必要に応じて任意の添加剤、例え
ばカップリング剤、艶消し剤、着色剤、酸化安定剤を含
有させることができる。Further, the core component may contain arbitrary additives, such as a coupling agent, a matting agent, a coloring agent, and an oxidation stabilizer, if necessary.
本発明の複合繊維の芯成分の断面形状は、任意の形をと
ることができ、その数も1以上の任意の数をとることが
できる。The cross-sectional shape of the core component of the composite fiber of the present invention can be any shape, and the number thereof can be any number greater than or equal to 1.
繊維横断面に占める芯成分の面積割合は、広い範囲にす
ることができるが、3〜50%が好ましい。芯成分の面
積割合が3%未満では、繊維軸方向および各ホール間に
芯ポリマーを分配することが実質上困難で、導電性が低
下し易く、一方50%を超えると、芯の流動性が影響し
紡糸延伸調子が低下し、得られる導電性繊維の強度が低
下するようになる。The area ratio of the core component to the cross section of the fiber can be within a wide range, but is preferably 3 to 50%. If the area ratio of the core component is less than 3%, it is practically difficult to distribute the core polymer in the fiber axis direction and between each hole, and the conductivity tends to decrease. On the other hand, if it exceeds 50%, the fluidity of the core decreases. As a result, the spinning and drawing tension deteriorates, and the strength of the resulting conductive fibers decreases.
本発明の導電性複合繊維の鞘成分を構成する重合体は、
安定紡糸可能な繊維形成性重合体である必要があり、融
点が200〜240℃のポリエステルが用いられる。鞘
成分の融点が200℃未満では、力学物性が低下し易く
、一方240℃を超えると芯成分が熱劣化してガスが発
生し紡糸不良となり満足な糸が得られない。The polymer constituting the sheath component of the conductive composite fiber of the present invention is
It needs to be a fiber-forming polymer that can be stably spun, and polyester with a melting point of 200 to 240°C is used. If the melting point of the sheath component is less than 200°C, the mechanical properties tend to deteriorate, while if it exceeds 240°C, the core component will be thermally degraded and gas will be generated, leading to poor spinning and making it impossible to obtain a satisfactory yarn.
鞘成分に用いられるポリエステルとしては、好適な例と
して融点が225℃のポリブチレンチレフクレートが挙
げられる。この場合、その繰り返し単位の80モル%以
上がブチレンテレフタレートであればよく、これを主成
分とする共重合体または混合重合体であってもよい。ま
た、融点が200〜240℃のポリエステルとして、酸
成分の10〜20モル%がイソフタル酸であるポリエチ
レンテレフタレート共重合体が挙げられる。A preferable example of the polyester used for the sheath component is polybutylene lenticulate having a melting point of 225°C. In this case, it is sufficient that 80 mol% or more of the repeating units are butylene terephthalate, and a copolymer or mixed polymer containing this as a main component may be used. Further, examples of polyesters having a melting point of 200 to 240°C include polyethylene terephthalate copolymers in which 10 to 20 mol% of the acid component is isophthalic acid.
ポリエステルの極限粘度は、得られる繊維の力学物性お
よび導電性を確保するために0.5以上が好ましい。極
限粘度が0.5未満であると、通常の糸質を得るために
延伸倍率を高く設定する必要があり、このため導電性が
低下し易いので好ましくない。極限粘度の上限は高い程
、力学物性が発現し易いが、紡糸温度として270℃を
超える温度を必要とするポリマーは製糸性が悪くなり好
ましくない。The intrinsic viscosity of the polyester is preferably 0.5 or more in order to ensure the mechanical properties and conductivity of the resulting fiber. If the intrinsic viscosity is less than 0.5, it is necessary to set a high draw ratio in order to obtain a normal yarn quality, which is not preferable because the conductivity tends to decrease. The higher the upper limit of the intrinsic viscosity, the easier the mechanical properties will be exhibited, but polymers that require a spinning temperature of over 270°C are undesirable because their spinning properties deteriorate.
なお、ポリエステルの極限粘度は、オルソクロルフェノ
ール溶液中35℃で測定した溶液粘度から算出した値で
ある。Note that the intrinsic viscosity of polyester is a value calculated from the solution viscosity measured at 35° C. in an orthochlorophenol solution.
本発明の鞘成分に用いられるポリエステルには、必要に
応じて任意の添加剤、例えば艷消剤、着色剤、酸化安定
剤等を含有させてもよい。The polyester used in the sheath component of the present invention may contain arbitrary additives, such as a quenching agent, a coloring agent, an oxidation stabilizer, etc., as necessary.
本発明は、また前記芯成分と鞘成分を複合紡糸機を用い
て200〜240℃で紡糸する導電性複合繊維の製造方
法である。The present invention also provides a method for producing conductive composite fibers, in which the core component and sheath component are spun at 200 to 240°C using a composite spinning machine.
芯成分に用いる沃化第1銅粉体は、N2雰囲気下であれ
ば300℃以下では充分安定であり、また芯成分の熱可
塑性重合体に分散させた状態でも300℃以下では安定
であるが、複合繊維とじて紡糸する際には、驚くべきこ
とに250〜270℃の紡糸温度で紡糸してはじめて白
変、導電性、製糸性とも良好な導電性繊維が得られる。The cuprous iodide powder used for the core component is sufficiently stable at temperatures below 300°C in an N2 atmosphere, and is stable at temperatures below 300°C even when dispersed in the thermoplastic polymer of the core component. Surprisingly, when spinning composite fibers, conductive fibers with good white discoloration, conductivity, and spinnability can only be obtained by spinning at a spinning temperature of 250 to 270°C.
その原因については不明であるが、芯成分の重合体の粘
度と熱安定性が変化するためか、紡糸温度が250℃未
満では、鞘ポリマーが弱糸になり、製糸性が低下すると
共に得られる導電性繊維の力学物性が低下する。一方、
270℃を超えると、製糸性が大巾に低下するとともに
導電性および力学物性が低下する。すなわち、できる限
り低温で紡糸することが好ましい。The reason for this is unknown, but it may be due to changes in the viscosity and thermal stability of the core component polymer.If the spinning temperature is below 250℃, the sheath polymer becomes weak yarn, resulting in a decrease in spinnability. The mechanical properties of the conductive fiber deteriorate. on the other hand,
When the temperature exceeds 270° C., the spinning properties are greatly reduced, and the electrical conductivity and mechanical properties are also reduced. That is, it is preferable to perform spinning at as low a temperature as possible.
さらに好ましくは、複合紡糸機として、スピンブロック
の直前に芯/鞘ポリマーを個別に温度設定できる導管部
を有する設備を用い、芯成分を導管温度180〜250
℃で輸送し、鞘成分を250〜290℃で輸送したのち
、スピンブロック内に導き、250〜270℃で紡糸す
ることが好ましい。芯成分側の導管温度が180℃未満
または250℃を超えると、製糸性が低下する。More preferably, as a composite spinning machine, equipment having a conduit part that can individually set the temperature of the core/sheath polymer immediately before the spin block is used, and the core component is heated to a conduit temperature of 180 to 250.
It is preferable that the sheath component is transported at 250 to 290°C, then guided into a spin block and spun at 250 to 270°C. If the temperature of the conduit on the core component side is less than 180°C or more than 250°C, the spinning properties will be reduced.
また、鞘成分側の導管温度が250 ’C未満または2
90℃を超えると、鞘成分の弱糸限界以下または極限粘
度の低下のために糸の力学物性が低下するので好ましく
ない。Also, if the conduit temperature on the sheath component side is less than 250'C or 2
If the temperature exceeds 90° C., the mechanical properties of the yarn deteriorate due to the sheath component being below the weak yarn limit or decreasing the intrinsic viscosity, which is not preferable.
また、本発明においては、紡糸して得られる繊維を直接
延伸してもよいし、別途、延伸機を用い延伸してもよい
が、導電性の観点からは、直接延伸した方が好ましい。Further, in the present invention, the fibers obtained by spinning may be directly drawn, or may be drawn using a separate drawing machine, but direct drawing is preferable from the viewpoint of electrical conductivity.
以下、実施例を挙げて本発明の導電性複合繊維について
、さらに詳述する。Hereinafter, the conductive composite fiber of the present invention will be described in further detail with reference to Examples.
なお、実施例における導電性複合繊維の電気抵抗値の測
定条件は20℃130%RH1]、KV直流電圧である
。In addition, the conditions for measuring the electrical resistance value of the conductive composite fiber in the examples are 20° C., 130% RH1], and KV DC voltage.
また、沃化第1銅の平均粒径測定法は、遠心沈降式光透
過法により、遠心粒径測定器を用い、得られた遠心沈降
曲線を基にして算出した。In addition, the average particle size of cuprous iodide was calculated by centrifugal sedimentation light transmission method using a centrifugal particle size measuring device based on the obtained centrifugal sedimentation curve.
すなわち、遠心沈降曲線を基にして粒径と全粒子重量に
対する沈降粒子重量を表した累積重量粒度分布曲線から
、沈降粒子重量が全粒子重量に対して50重量%に相当
する粒径を読み取りこの稙0
を平均粒径とした。That is, based on the centrifugal sedimentation curve, the particle size at which the sedimented particle weight corresponds to 50% by weight with respect to the total particle weight is read from the cumulative weight particle size distribution curve that expresses the sedimented particle weight with respect to the particle diameter and the total particle weight. The average particle size was defined as 0.
なお、測定装置にCAPA−500(堀場製作所製)を
使用し、上記操作はマイコンで処理した。Note that CAPA-500 (manufactured by Horiba, Ltd.) was used as the measuring device, and the above operations were processed by a microcomputer.
測定条件は、下記のとおりである。The measurement conditions are as follows.
分散媒;ヘキサメタリン酸ナトリウム 0. 1重量%
水溶液
回転数;1500rpm
測定範囲;O〜2.0μm
また、延伸糸の強度、伸度はJIS L1023に従
い、白皮(L値)は以下のように測定した。Dispersion medium; sodium hexametaphosphate 0. 1% by weight
Aqueous solution rotation speed: 1500 rpm Measurement range: O to 2.0 μm The strength and elongation of the drawn yarn were determined according to JIS L1023, and the white skin (L value) was measured as follows.
すなわち、日本重色工業■製のΣ80カラー測定機を使
用し、標準板と比較して試料の反射光を計測する方法に
よる。That is, a Σ80 color measuring machine manufactured by Nippon Heavy Industries, Ltd. is used and the reflected light of the sample is measured by comparing it with a standard plate.
実施例1〜5および比較例1〜4
ポリエチレン100重量部と沃化第1銅粉体300重量
部とを混練機で充分加熱混合して得られた組成物を芯成
分とし、融点が225℃のポリブチレンテレフタレート
を鞘成分として用い、熔融紡糸した。すなわち、スピン
ブロック直前に個別に温度設定可能な導管部を有する紡
糸機と、同心円形芯鞘型パックを用い、第1表に示す導
管温度および紡糸温度条件で紡糸し、1,200m/分
で巻き取った。このものを10.5℃で2.8倍に延伸
し、200℃で熱固定して複合繊維を得た。Examples 1 to 5 and Comparative Examples 1 to 4 The core component was a composition obtained by sufficiently heating and mixing 100 parts by weight of polyethylene and 300 parts by weight of cuprous iodide powder in a kneader, and the melting point was 225 ° C. Polybutylene terephthalate was used as the sheath component and melt-spun. That is, using a spinning machine with a conduit part whose temperature can be set individually just before the spin block and a concentric circular core-sheath type pack, spinning was carried out under the conduit temperature and spinning temperature conditions shown in Table 1, and at a speed of 1,200 m/min. I rolled it up. This material was stretched 2.8 times at 10.5°C and heat-set at 200°C to obtain a composite fiber.
紡糸ならびに延伸後の完捲率を第1表に示す。Table 1 shows the complete winding rate after spinning and stretching.
この複合繊維の横断面における芯部、鞘部の面積比は1
:6であり、繊維構成は30デニール/3フイラメント
であった。The area ratio of the core and sheath in the cross section of this composite fiber is 1
:6, and the fiber composition was 30 denier/3 filaments.
得られた複合繊維の力学物性、白皮および断面電気抵抗
値を第1表に示す。Table 1 shows the mechanical properties, white skin, and cross-sectional electrical resistance values of the composite fibers obtained.
比較例5
鞘成分のポリエステルとして、ポリエチレンテレフタレ
ート(融点265℃)を使用する以外は、実施例1と全
く同様にして複合繊維を得た。Comparative Example 5 A composite fiber was obtained in exactly the same manner as in Example 1, except that polyethylene terephthalate (melting point: 265° C.) was used as the polyester of the sheath component.
得られた複合繊維の各種物性を第1表に示す。Table 1 shows various physical properties of the obtained composite fiber.
実施例6
構成、分のポリエステルとして、酸成分の12モル%が
イソフタル酸であるポリエチレンテレフタレート共重合
体(融点228℃)を使用する以外は実施例1と全く同
様にして複合繊維を得た。Example 6 A composite fiber was obtained in exactly the same manner as in Example 1, except that a polyethylene terephthalate copolymer (melting point: 228° C.) in which 12 mol% of the acid component was isophthalic acid was used as the polyester.
1 2 得られた複合繊維の各種物性を第1表に示す。1 2 Table 1 shows various physical properties of the obtained composite fiber.
比較例6
鞘成分のポリエステルとして、酸成分の25モル%がイ
ソフタル酸であるポリエチレンテレフタレート共重合体
(融点195℃)を使用する以外は、実施例1と全く同
様にして複合繊維を得た。Comparative Example 6 A composite fiber was obtained in exactly the same manner as in Example 1, except that a polyethylene terephthalate copolymer (melting point: 195° C.) in which 25 mol% of the acid component was isophthalic acid was used as the polyester of the sheath component.
得られた複合繊維の各種物性を第1表に示す。Table 1 shows various physical properties of the obtained composite fiber.
(以下余白)
3
〔発明の効果]
本発明の導電性複合繊維は、白変に優れかつ安定に製糸
しうるので、ポリエステル、ポリアミドなど他繊維と混
合、交編または交織して白色、淡色系布帛に導電性を付
与することができる。(The following is a blank space) 3 [Effects of the Invention] The conductive composite fiber of the present invention has excellent resistance to whitening and can be stably spun, so it can be mixed, interlaced or interwoven with other fibers such as polyester and polyamide to produce white or light colored fibers. Conductivity can be imparted to the fabric.
Claims (2)
平均粒径が0.6〜1.2μmの沃化第1銅粉体とから
なり、鞘成分が融点200〜240℃のポリエステルよ
りなる導電性複合繊維。(1) The core component consists of a thermoplastic polymer with a melting point of 90 to 150°C and cuprous iodide powder with an average particle size of 0.6 to 1.2 μm, and the sheath component is a polyester with a melting point of 200 to 240°C. A conductive composite fiber made of
平均粒径が0.6〜1.2μmの沃化第1銅粉体を用い
、鞘成分に融点200〜240℃のポリエステルを用い
、複合紡糸機を使用して紡糸温度250〜270℃で紡
糸することを特徴とする導電性複合繊維の製造方法。(2) A thermoplastic polymer with a melting point of 90 to 150°C and cuprous iodide powder with an average particle size of 0.6 to 1.2 μm are used as the core component, and a polyester with a melting point of 200 to 240°C is used as the sheath component. A method for producing conductive composite fibers, which comprises spinning at a spinning temperature of 250 to 270°C using a composite spinning machine.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26922089A JPH03137224A (en) | 1989-10-18 | 1989-10-18 | Electroconductive conjugate fiber and its production |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26922089A JPH03137224A (en) | 1989-10-18 | 1989-10-18 | Electroconductive conjugate fiber and its production |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03137224A true JPH03137224A (en) | 1991-06-11 |
Family
ID=17469341
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP26922089A Pending JPH03137224A (en) | 1989-10-18 | 1989-10-18 | Electroconductive conjugate fiber and its production |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03137224A (en) |
-
1989
- 1989-10-18 JP JP26922089A patent/JPH03137224A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3958066A (en) | Conductive synthetic fibers | |
US4207376A (en) | Antistatic filaments having an internal layer comprising carbon particles and process for preparation thereof | |
KR100429481B1 (en) | Core-sheath composite conductive fiber | |
US4085182A (en) | Process for producing electrically conductive synthetic fibers | |
JP2004143659A (en) | Sheath-core fiber having high chemical-resistance, electroconductivity and stain repellency, method for manufacturing the same, and usage of the same | |
US5213892A (en) | Antistatic core-sheath filament | |
CN106894225A (en) | Graphene coated composite construction conductive fiber and preparation method thereof | |
JPH03137224A (en) | Electroconductive conjugate fiber and its production | |
JP5254532B2 (en) | Conductive polyester fiber | |
JPS61102474A (en) | Production of conductive composite fiber | |
JPH0977961A (en) | Far infrared emitting polyester composition | |
JPS6240444B2 (en) | ||
JPS6385114A (en) | Electrically conductive yarn and production thereof | |
JPS5860015A (en) | Preparation of electrically conductive composite fiber | |
JPS58149329A (en) | Production of electroconductive conjugated fiber | |
JP7340183B1 (en) | Core-sheath type polyester composite fiber and its manufacturing method | |
JPH02200827A (en) | Electroconductive combined filament yarn and production thereof | |
JPH01306616A (en) | Electro-conductive conjugate fiber | |
JP2019026991A (en) | Black spun-dyed polyester fiber | |
JPS60444B2 (en) | conductive fiber | |
JPS63270811A (en) | Electrically conductive composite fiber | |
JPS6211086B2 (en) | ||
JPS5831168A (en) | White conductive fiber | |
JPS6346171B2 (en) | ||
JPH06136619A (en) | Electrically conductive conjugate fiber |