[go: up one dir, main page]

JPH03137138A - Foamed heat insulating material - Google Patents

Foamed heat insulating material

Info

Publication number
JPH03137138A
JPH03137138A JP27532089A JP27532089A JPH03137138A JP H03137138 A JPH03137138 A JP H03137138A JP 27532089 A JP27532089 A JP 27532089A JP 27532089 A JP27532089 A JP 27532089A JP H03137138 A JPH03137138 A JP H03137138A
Authority
JP
Japan
Prior art keywords
heat insulating
insulating material
foamed heat
thermal conductivity
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27532089A
Other languages
Japanese (ja)
Inventor
Hideo Nakamoto
中元 英夫
Kazuto Uekado
一登 上門
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP27532089A priority Critical patent/JPH03137138A/en
Publication of JPH03137138A publication Critical patent/JPH03137138A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

PURPOSE:To obtain a foamed heat insulating material having excellent thermal conductivity by mixing polyether polyol, foam stabilizer, catalyst, specific blowing agent, graphite powder and zeolite powder to give a component, blending the component with organic polyisocyanate component and expanding to form foam. CONSTITUTION:(A) A polyol component obtained by blending polyether polyol with a foam stabilizer, a catalyst, 1,1-dichloro-1-fluoroethane or 2,2-dichloro-1,1,1- trifluoroethane having little influence of ozone destruction as a blowing agent, graphite powder and zeolite powder is blended with (B) and isocyanate component comprising an organic polyisocyanate in a given ration and expanded by a high-pressure foaming machine to give a foamed heat insulating material. Even though the prepared foamed heat insulating material uses a blowing agent having high thermal expansion of gas, the foamed heat insulating material has excellent thermal conductivity by effects of graphite powder and zeolite powder.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、冷蔵庫や冷凍庫等に用いる発泡断熱材に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a foamed heat insulating material used in refrigerators, freezers, and the like.

従来の技術 近年、クロロフルオロカーボン(以下CFCと称する)
の影響によるオゾン層破壊及び地球の温暖化等の環境問
題が注目されている。このような観点よシ、発泡剤であ
るCFCの使用量削減が、極めて重要なテーマとなって
きている。
Prior art In recent years, chlorofluorocarbons (hereinafter referred to as CFCs)
Environmental problems such as ozone layer depletion and global warming due to the effects of environmental pollution are attracting attention. From this point of view, reducing the amount of CFC used as a blowing agent has become an extremely important theme.

このため、代表的な発泡断熱材である硬質ウレタンフオ
ームの製造にあたっては、有機ポリイソシアネートと水
の反応によって得られる炭酸ガスを発泡剤の一部として
用いる方法や、CFCの代替物質であシ、オゾン破壊に
対する影響の少ない1.1−ジクロロ−1−フルオロエ
タン(以下HCFC−141bと称する)及び、2,2
−ジクロロ−1,1,1−)リン/L/オロエタン(以
下HCFC−123と称する)による発泡等、種々の改
善取組みが検討されている。
For this reason, in the production of rigid urethane foam, which is a typical foam insulation material, there are methods that use carbon dioxide gas obtained by the reaction of organic polyisocyanate and water as part of the blowing agent, or alternative materials for CFC. 1,1-dichloro-1-fluoroethane (hereinafter referred to as HCFC-141b), which has little effect on ozone depletion, and 2,2
-Dichloro-1,1,1-) phosphorus/L/oloethane (hereinafter referred to as HCFC-123) and other various improvement efforts are being considered.

例えば、昭和63年7月16日に開催された、(社)産
業公害防止協会「特定物質の規制等によるオゾン層の保
護に関する法律」における説明会で発表されたように、
HCFC−141b及びHCFC−123を発泡剤とし
て用いた場合、硬質ウレタンフオームの熱伝導率は、C
FC−11で発泡した硬質ウレタンフオームの熱伝導率
に比べて7〜12%悪化することが述べられている。
For example, as announced at the briefing session held on July 16, 1988, at the Industrial Pollution Control Association's ``Act on the Protection of the Ozone Layer through the Regulation of Specified Substances,''
When HCFC-141b and HCFC-123 are used as blowing agents, the thermal conductivity of the rigid urethane foam is C
It is stated that the thermal conductivity is 7 to 12% worse than that of rigid urethane foam foamed with FC-11.

このように、オゾン破壊に対する影響の少ないHCFC
−141b及び、HCFC−123を現行の硬質ウレタ
ンフオーム用の発泡剤として代替することは断熱箱体の
性能を維持する上で極めて困難であり、断熱箱体の断熱
壁厚を厚くするなど構造面の対応や、新規原料系の開発
が個々に取り組まれているのが現状である。
In this way, HCFCs with less impact on ozone depletion
-141b and HCFC-123 as a blowing agent for current rigid urethane foams is extremely difficult to maintain the performance of the insulating box, and structural aspects such as increasing the thickness of the insulating walls of the insulating box are required. At present, individual efforts are being made to address these issues and develop new raw material systems.

発明が解決しようとする課題 発泡剤であるHCFC−141b及び、HCFC−12
3は、CFC−11に比べ、オゾン破壊力が1/10〜
115Qとされ、環境保護には必要不可欠であるが、そ
の気体熱伝導率は、CFC−11の気体熱伝導率に比べ
1oチ程度大きいとされている。このため、従来の発泡
処方に代替し発泡した場合、硬質ウレタンフオームの熱
伝導率は、悪化することは明白であシ、断熱箱体に適用
する場合、断熱壁厚を厚くするなどの対応により容積効
率が低下し、庫内容積向上といった市場のニーズに対応
できない問題が生じている。
Problems to be solved by the invention HCFC-141b and HCFC-12 which are blowing agents
3 has ozone depletion power of 1/10 to 1/10 compared to CFC-11.
115Q and is essential for environmental protection, but its gas thermal conductivity is said to be about 10 times higher than that of CFC-11. For this reason, it is obvious that the thermal conductivity of rigid urethane foam deteriorates when it is foamed instead of the conventional foaming formulation, and when applied to a heat-insulating box, measures such as increasing the thickness of the heat-insulating wall are necessary. The volumetric efficiency has decreased, resulting in the inability to meet market needs such as increased internal volume.

このように、HCFC−141b及び、HCFC−12
3の適用にあたっては、CFC−11に比べ気体ハ伝導
率の大きいことに対する新規原料系の適用開発が課題と
なっている。
In this way, HCFC-141b and HCFC-12
In applying No. 3, the challenge is to develop a new raw material system to deal with the fact that the gas conductivity is higher than that of CFC-11.

本発明は、上記課題を鑑み発泡断熱材の熱伝導率を悪化
させることなく、オゾン層破壊といった環境問題を解決
する発泡防熱材を提供するものである。
In view of the above problems, the present invention provides a foamed heat insulating material that solves environmental problems such as ozone layer destruction without deteriorating the thermal conductivity of the foamed heat insulating material.

課題を解決するだめの手段 本発明は、上記課題を解決するために、ポリエーテルポ
リオ−/L/、整泡剤、触媒1発泡剤としてHCFC−
141bまたは)iCFC−123、黒鉛粉末及びゼオ
ライト粉末を混合したポリオール成分と、有機ポリイソ
シアネートから成るイソシアネート成分を混合撹拌し、
発泡断熱材を得るものである。
Means for Solving the Problems In order to solve the above problems, the present invention uses polyether polyol/L/, a foam stabilizer, and a catalyst as a blowing agent.
141b or) iCFC-123, a polyol component mixed with graphite powder and zeolite powder, and an isocyanate component consisting of an organic polyisocyanate are mixed and stirred,
A foamed insulation material is obtained.

作   用 上記構成によって、黒鉛粉末は、熱伝達のメカニズムに
おいて赤外線の吸収を行ない、ウレタンフオームにおけ
る輻射熱伝導率の低減に寄与するものである。また、具
備する効果として、ゼオライト粉末は、黒鉛粉末に付着
する水分等、原料プレミックス中の水分を吸着し、水分
とイソシアネートとの反応を阻害するため、気泡中炭酸
ガス分圧を小さくし、セル内混合ガスの気体熱伝導率の
低減が図れるものである。このため、気体熱伝導率の大
きいHCFC−141bまたは、HCFC−123を発
泡剤として用いた場合においても、硬質ウレタンフオー
ムの熱伝導率を悪化させることなく、優れた発泡断熱材
が得られるものである。
Function With the above configuration, the graphite powder absorbs infrared rays in the heat transfer mechanism, and contributes to reducing the radiant heat conductivity of the urethane foam. In addition, as an effect, zeolite powder adsorbs moisture in the raw material premix, such as moisture adhering to graphite powder, and inhibits the reaction between moisture and isocyanate, thereby reducing the partial pressure of carbon dioxide in the bubbles. This makes it possible to reduce the gas thermal conductivity of the mixed gas within the cell. Therefore, even when HCFC-141b or HCFC-123, which has high gas thermal conductivity, is used as a foaming agent, an excellent foam insulation material can be obtained without deteriorating the thermal conductivity of the rigid urethane foam. be.

実施例 以下、実施例を挙げて本発明の発泡断熱材を説明する。Example EXAMPLES Hereinafter, the foamed heat insulating material of the present invention will be explained with reference to Examples.

表1に一実施例の原料処方を示した。Table 1 shows the raw material formulation of one example.

ポリエーテルAは、芳香族アミン系ポリエーテルポリオ
ールで水酸基価4609KOH/f 、整泡剤Aは信越
化学■製F−335.触媒Aは花王■製カオライザー扁
1.発泡剤AはCFC−141b。
Polyether A is an aromatic amine polyether polyol with a hydroxyl value of 4609 KOH/f, and foam stabilizer A is F-335 manufactured by Shin-Etsu Chemical. Catalyst A is Kao's Kaolizer Flat 1. Blowing agent A is CFC-141b.

発泡剤BはHCFC−123,発泡剤CはCFC−11
、黒鉛粉末Aは東海カーボン■製2粒度分布D p (
5゜% ): 1.5μm、ゼオライト粉末Aは東ソー
■製合成ゼオライ)5A(粉末タイプ)である。
Blowing agent B is HCFC-123, blowing agent C is CFC-11
, graphite powder A is manufactured by Tokai Carbon ■ with 2 particle size distribution D p (
Zeolite powder A is synthetic zeolite 5A (powder type) manufactured by Tosoh Corporation.

各原料は所定の配合部数で混合し、プレミックス成分と
して構成する。
Each raw material is mixed in a predetermined number of parts to form a premix component.

一方、イソシアネート成分は、アミン描量135のりμ
mドMDIからなる有機ポリイソシアネートAである。
On the other hand, the isocyanate component has an amine drawing amount of 135 glue μ
This is an organic polyisocyanate A consisting of m-do MDI.

このようにして調合したプレミックス成分とイソシアネ
ート成分を所定の配合部数で混合し、高圧発泡機にて発
泡し、発泡断熱材を得た。このときの発泡断熱材の熱伝
導率及び、気泡中の炭酸ガス濃度を表1に示した。
The thus prepared premix component and isocyanate component were mixed in a predetermined number of parts and foamed using a high-pressure foaming machine to obtain a foamed heat insulating material. Table 1 shows the thermal conductivity of the foamed heat insulating material and the carbon dioxide concentration in the bubbles.

なお、同時に比較例として、黒鉛粉末及び、ゼオライト
粉末を添加しない場合のHCFC−141b処方(比較
例A)、HCFC−123処方(比較例B)、CFC−
11処方(比較例C)と、ゼオライト粉末を添加しない
場合のHCFC−141b処方(比較例D)、HCFC
−123処方(比較例E)についても同様に表1に示し
た。
At the same time, as comparative examples, HCFC-141b formulation (Comparative Example A), HCFC-123 formulation (Comparative Example B), and CFC-123 formulation (Comparative Example B) without adding graphite powder and zeolite powder
11 formulation (Comparative Example C), HCFC-141b formulation without adding zeolite powder (Comparative Example D), HCFC
-123 formulation (Comparative Example E) is also shown in Table 1.

このように本発明の発泡断熱材は、気体熱伝導率の高い
発泡剤、HCFC−141bまたは、HCFC−123
を用いた場合においても、得られる発泡断熱材の熱伝導
率は、CFC−11を発泡剤として用いた場合と同等の
断熱性能が得られることが判った。これは、黒鉛粉末が
、熱伝達のメカニズムにおいて赤外線の吸収を行ない、
ウレタンフオームにおける輻射熱伝導率の低減に寄与す
るためであると思われる。また、具備する効果として、
ゼオライト粉末は、黒鉛粉末に付着した水分等、原料プ
レミックス中の水分を吸着し、水分とイソシアネートと
の反応を阻害するため、気泡中の炭酸ガス分圧を小さく
し、セル内混合ガスの気体熱伝導率の低減するものであ
る。このため、気体熱伝導率の大きいHCFC−141
bまたは、HCFC−123を発泡剤として用いた場合
においても、硬質ウレタンフオームの熱伝導率が悪化す
るといった弊害もなく優れた発泡断熱材が得られるもの
である。
In this way, the foamed heat insulating material of the present invention uses a foaming agent with high gas thermal conductivity, HCFC-141b or HCFC-123.
It was found that even when CFC-11 was used as the foaming agent, the thermal conductivity of the resulting foamed heat insulating material was equivalent to that when CFC-11 was used as the foaming agent. This is because graphite powder absorbs infrared rays in the heat transfer mechanism.
This seems to be because it contributes to reducing the radiant heat conductivity of the urethane foam. In addition, as an effect,
Zeolite powder adsorbs moisture in the raw material premix, such as moisture adhering to graphite powder, and inhibits the reaction between moisture and isocyanate, thereby reducing the partial pressure of carbon dioxide in the bubbles and reducing the gas mixture in the cell. It reduces thermal conductivity. For this reason, HCFC-141, which has a high gas thermal conductivity,
Alternatively, even when HCFC-123 is used as a foaming agent, an excellent foamed heat insulating material can be obtained without the adverse effect of deterioration of the thermal conductivity of the rigid urethane foam.

なお、比較例において、黒鉛粉末及び、ゼオライト粉末
を添加しなかった場合(比較例A及び、B)では、HC
FC−141b及び、HCFC−123の熱伝導率が高
いため、CFC−11処方(比較例C)と比較しても、
発泡断熱材の熱伝導率は高いものとなる。また、ゼオラ
イト粉末を添加しなかった場合においては、黒鉛粉末に
付着した水分とイソシアネートが反応し、炭酸ガスを発
生するためセル内混合ガスにおける炭酸ガスの割合が増
加し、気体熱伝導率が大きくなるため、フオーム熱伝導
率は大きなものとなる。
In addition, in the comparative example, in the case where graphite powder and zeolite powder were not added (comparative examples A and B), HC
Because the thermal conductivity of FC-141b and HCFC-123 is high, even when compared with the CFC-11 formulation (Comparative Example C),
The thermal conductivity of the foam insulation material is high. In addition, when zeolite powder is not added, the water adhering to graphite powder reacts with isocyanate and generates carbon dioxide gas, which increases the proportion of carbon dioxide gas in the mixed gas in the cell and increases the gas thermal conductivity. Therefore, the foam thermal conductivity becomes large.

発明の効果 以上のように本発明は、ポリエーテルポリオール、整泡
剤、触媒、HCFC−141bまたは、HCFC−12
3から成る発泡剤、黒鉛粉末及びゼオライト粉末を混合
したポリオール成分と、有機ポリイソシアネートから成
るイソシアネート成分を混合撹拌し、発泡断熱材として
生成しているため、黒鉛粉末が、熱伝達のメカニズムに
おいて赤外線の吸収を行ない、ウレタンフオームにおけ
る輻射熱伝導率の低減に寄与することにより、気体熱伝
導率の大きいHCFC−141bまたは、HCFC−1
23を発泡剤として用いた場合においても、硬質ウレタ
ンフオームの熱伝導率が悪化するといった弊害もなく優
れた発泡断熱材が得られるものである。また、具備する
効果として、ゼオライト粉末は、黒鉛粉末に付着した水
分等、原料プレミックス中の水分を吸着し、水分とイソ
シアネートとの反応を阻害するため、気泡中の炭酸ガス
分圧を小さくし、セル内混合ガスの気体熱伝導率の低減
するものである。この結果、CFCの影響によるオゾン
層破壊及び地球の温暖化等の環境問題の解決に対して、
寄与することができるものである。
Effects of the Invention As described above, the present invention provides a polyether polyol, a foam stabilizer, a catalyst, HCFC-141b or HCFC-12.
The polyol component, which is a mixture of a foaming agent, graphite powder, and zeolite powder, and the isocyanate component, which is an organic polyisocyanate, are mixed and stirred to produce a foamed insulation material. HCFC-141b or HCFC-1, which has high gas thermal conductivity, absorbs
Even when No. 23 is used as a foaming agent, an excellent foamed heat insulating material can be obtained without any adverse effects such as deterioration of the thermal conductivity of the rigid urethane foam. Zeolite powder also has the effect of adsorbing moisture in the raw material premix, such as moisture adhering to graphite powder, and inhibiting the reaction between moisture and isocyanate, thereby reducing the partial pressure of carbon dioxide in the bubbles. , which reduces the gas thermal conductivity of the mixed gas in the cell. As a result, in order to solve environmental problems such as ozone layer depletion and global warming caused by the effects of CFCs,
It is something that can be contributed.

Claims (1)

【特許請求の範囲】[Claims] ポリエーテルポリオール、整泡剤、触媒、1,1−ジク
ロロ−1−フルオロエタンまたは、2,2−ジクロロ−
1,1,1−トリフルオロエタンから成る発泡剤、黒鉛
粉末及びゼオライト粉末を混合したポリオール成分と、
有機ポリイソシアネートから成るイソシアネート成分と
を混合撹拌し発泡生成した発泡断熱材。
Polyether polyol, foam stabilizer, catalyst, 1,1-dichloro-1-fluoroethane or 2,2-dichloro-
A polyol component mixed with a blowing agent consisting of 1,1,1-trifluoroethane, graphite powder, and zeolite powder,
A foamed insulation material made by mixing and stirring an isocyanate component made of organic polyisocyanate.
JP27532089A 1989-10-23 1989-10-23 Foamed heat insulating material Pending JPH03137138A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27532089A JPH03137138A (en) 1989-10-23 1989-10-23 Foamed heat insulating material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27532089A JPH03137138A (en) 1989-10-23 1989-10-23 Foamed heat insulating material

Publications (1)

Publication Number Publication Date
JPH03137138A true JPH03137138A (en) 1991-06-11

Family

ID=17553805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27532089A Pending JPH03137138A (en) 1989-10-23 1989-10-23 Foamed heat insulating material

Country Status (1)

Country Link
JP (1) JPH03137138A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5254601A (en) * 1991-09-20 1993-10-19 Miles Inc. HCEC blown rigid foams with low thermal conductivity
US5272183A (en) * 1991-09-20 1993-12-21 Miles Inc. HCFC blown rigid foams with low thermal conductivity
US5308885A (en) * 1991-09-20 1994-05-03 Miles Inc. HCFC blown rigid foams with low thermal conductivity
WO1995022175A1 (en) * 1994-02-14 1995-08-17 W.L. Gore & Associates, Inc. Improved thermally conductive interface
US5591034A (en) * 1994-02-14 1997-01-07 W. L. Gore & Associates, Inc. Thermally conductive adhesive interface
US5738936A (en) * 1996-06-27 1998-04-14 W. L. Gore & Associates, Inc. Thermally conductive polytetrafluoroethylene article
US6617368B2 (en) 2001-11-13 2003-09-09 Bayer Corporation Isotropic rigid foams

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5254601A (en) * 1991-09-20 1993-10-19 Miles Inc. HCEC blown rigid foams with low thermal conductivity
US5272183A (en) * 1991-09-20 1993-12-21 Miles Inc. HCFC blown rigid foams with low thermal conductivity
US5276067A (en) * 1991-09-20 1994-01-04 Miles Inc. HCFC blown rigid foams with low thermal conductivity
US5308885A (en) * 1991-09-20 1994-05-03 Miles Inc. HCFC blown rigid foams with low thermal conductivity
WO1995022175A1 (en) * 1994-02-14 1995-08-17 W.L. Gore & Associates, Inc. Improved thermally conductive interface
US5545473A (en) * 1994-02-14 1996-08-13 W. L. Gore & Associates, Inc. Thermally conductive interface
US5591034A (en) * 1994-02-14 1997-01-07 W. L. Gore & Associates, Inc. Thermally conductive adhesive interface
US5738936A (en) * 1996-06-27 1998-04-14 W. L. Gore & Associates, Inc. Thermally conductive polytetrafluoroethylene article
US6617368B2 (en) 2001-11-13 2003-09-09 Bayer Corporation Isotropic rigid foams

Similar Documents

Publication Publication Date Title
EP0695322A1 (en) Process for preparing rigid polyurethane foams
JPH03137138A (en) Foamed heat insulating material
EP3725829B1 (en) Azeotropic and azeotrope-like composition
CA2115547C (en) Blowing agent and process for preparing polyurethane foam
JP3025221B2 (en) In-situ spraying method of rigid polyurethane foam and heat insulating structure using rigid polyurethane foam
JP2879848B1 (en) Insulation gas consisting of fluorinated ketone and insulation material filled with it
CN108586792A (en) The new application of hexafluoro-isobutene
JPH03244644A (en) Foamed thermal insulation material
JPH03244645A (en) Foamed thermal insulation material
US6117917A (en) Blowing agent blends and use thereof
WO2002083810A1 (en) Azeotrope-like compositions of pentafluoropropane
JPH03137137A (en) Foamed heat insulating material
EP1629033A1 (en) Azeotrope-like compositions of pentafluoropropane and chloropropane
JPH03244621A (en) Foamed heat insulation material
JP2718985B2 (en) Foam insulation
JPH0493335A (en) Thermal insulation foam thermally insulated box filled therewith
JP2005523362A (en) Composition of pentafluoropropane, pentafluorobutane and water
JPH0797472A (en) Thermal insulation foam and thermal insulation box
JPH04224834A (en) Foamed insulation material
JPH0782405A (en) Heat-insulating foamed material
JP3350150B2 (en) Foam insulation and insulation box
JPH11140305A (en) refrigerator
JPH04143582A (en) Adiabatic wall
JPH069816A (en) Foamed heat insulating material and heat insulating box material
JPH11300201A (en) Carbonic acid gas adsorbent, from heat insulating material and heat insulating box body