JPH03136637A - Non-observing type blood component concentration measuring device - Google Patents
Non-observing type blood component concentration measuring deviceInfo
- Publication number
- JPH03136637A JPH03136637A JP1274888A JP27488889A JPH03136637A JP H03136637 A JPH03136637 A JP H03136637A JP 1274888 A JP1274888 A JP 1274888A JP 27488889 A JP27488889 A JP 27488889A JP H03136637 A JPH03136637 A JP H03136637A
- Authority
- JP
- Japan
- Prior art keywords
- light
- attenuation
- blood
- different wavelengths
- component concentration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
- Measuring And Recording Apparatus For Diagnosis (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
[発明の目的]
(産業上の利用分野)
本発明は、医学や医療の分野において、動脈血の酸素飽
和度の測定や、血液中の色素インドシアニングリンなど
光吸収性物質の相対濃度を測定のための非観血2大皿中
成分濃度測定装置に関し、特に血液以外の純組織の脈動
による影響を受けずに血中成分の濃度を高精度に測定す
ることができる非観血式血中成分濃度測定装置に関する
。[Detailed Description of the Invention] [Purpose of the Invention] (Industrial Application Field) The present invention is useful in the field of medicine and medical care, for measuring the oxygen saturation level of arterial blood and for measuring light-absorbing pigments such as indocyanine phosphorus in blood. Regarding a non-invasive two-plate component concentration measuring device for measuring the relative concentration of substances, we have developed a non-invasive device that can measure the concentration of components in blood with high precision without being affected by pulsation of pure tissues other than blood. The present invention relates to an invasive blood component concentration measuring device.
(従来の技術)
従来の非観血式血中成分濃度測定装置は、生体組織に異
なる複数個の波長の光を入射させたときに、これら入射
光の生体組織中における減光度の脈動変動分の比または
差を求め、この結果から血中成分の濃度を非観血式に測
定するものである。(Prior art) Conventional non-invasive blood component concentration measurement devices detect pulsating fluctuations in the degree of attenuation of the incident light in the living tissue when light of a plurality of different wavelengths is incident on the living tissue. The ratio or difference between the two is determined, and the concentration of the blood component is measured non-invasively from this result.
この種の装置としては、本発明者等が先に提案した特公
昭53−26437号や特願昭61−257668号に
示されるものなど種々のものが従来から知られている。Various devices of this kind have been known in the past, such as those shown in Japanese Patent Publication No. 53-26437 and Japanese Patent Application No. 61-257668, both of which were proposed by the present inventors.
この種の装置を血液の酸素飽和度の測定に応用したもの
は、パルスオキシメータとして広く知られている。ここ
で、酸素飽和度は酸化ヘモグロビンと還元ヘモグロビン
の和に対する酸化ヘモグロビンの濃度比である。A device of this type applied to the measurement of blood oxygen saturation is widely known as a pulse oximeter. Here, oxygen saturation is the concentration ratio of oxyhemoglobin to the sum of oxyhemoglobin and deoxyhemoglobin.
非観血式血中成分濃度測定装置の原理については、上述
した公報にも詳しく述べられているが、酸素飽和度を測
定する場合を例に取り、以下簡単に説明する。Although the principle of the non-invasive blood component concentration measuring device is described in detail in the above-mentioned publication, it will be briefly explained below using the case of measuring oxygen saturation as an example.
第5図に示すように、生体組織Rを血液層R1と血液を
除いた組織(以下、純組織と呼ぶ)の層R2との2つに
模式的に分け、血液層R1の厚みが脈動し純組織層R2
の厚みは一定であるとする。As shown in FIG. 5, the living tissue R is schematically divided into two layers: a blood layer R1 and a layer R2 of tissue excluding blood (hereinafter referred to as pure tissue), and the thickness of the blood layer R1 is pulsating. Pure tissue layer R2
Assume that the thickness of is constant.
この生体組織Rに光を照射したとき、入射光量IOは、
生体組織Rによって減光し、生体組織Rを透過する透過
光量は工となる。また、脈動により血液層R1の厚みが
ΔDbだけ増加したときの透過光量は(■−ΔI)に減
少する。このとき、血液層R1の厚みの変化分ΔDbに
おける減光度ΔAは、つぎのように書ける。When this living tissue R is irradiated with light, the amount of incident light IO is
The light is attenuated by the living tissue R, and the amount of transmitted light that passes through the living tissue R is 1. Further, when the thickness of the blood layer R1 increases by ΔDb due to pulsation, the amount of transmitted light decreases to (■-ΔI). At this time, the degree of light attenuation ΔA in the thickness change ΔDb of the blood layer R1 can be written as follows.
ΔA=lOQ [I/(I−ΔI)]また、透過光量
の対数の脈動分をΔlog Iとすれば減光度ΔAはつ
ぎのように書ける。ΔA=lOQ [I/(I-ΔI)] Furthermore, if the pulsation of the logarithm of the amount of transmitted light is Δlog I, the degree of attenuation ΔA can be written as follows.
ΔA=Δlog I
また、相異なる2つの波長λ1.λ2の光を生体組1t
IRに入射させたとき、各波長λ1.λ2における脈動
分の減光度ΔA1.ΔA2の比Φは、近似的につぎの式
で示されることが、理論および実験によって確認されて
いる。ΔA=Δlog I Also, two different wavelengths λ1. 1 t of biological assembly with λ2 light
When incident on the IR, each wavelength λ1. Attenuation of pulsation component at λ2 ΔA1. It has been confirmed by theory and experiment that the ratio Φ of ΔA2 is approximately expressed by the following formula.
Φ=八へ /AA = 2 E2+F2 /1
alTl下行口 ・・・・・・(1〉ここで
、E・はヘモグロビンの吸光係数、Fは血液における散
乱係数、i=1.2は光波長λ1.λ2を示すものとす
る。To Φ=8 /AA = 2 E2+F2 /1 alTl descending entrance... (1> Here, E is the extinction coefficient of hemoglobin, F is the scattering coefficient in blood, and i=1.2 is the light wavelength λ1 .λ2 shall be indicated.
また、血液中の光吸収物置が、血球中の酸化ヘモグロビ
ンと還元ヘモグロビンとのみであるとするとヘモグロビ
ンの吸光係数は次の式で示される。Furthermore, assuming that the only light absorption components in blood are oxyhemoglobin and deoxyhemoglobin in blood cells, the extinction coefficient of hemoglobin is expressed by the following equation.
E・=SE・+(1−3)E・ ・・・・・・(2)
+ 01 1’ま
ただし、Sは酸素飽和度、Eoi、Eriはそれぞれ酸
化ヘモグロビン、還元ヘモグロビン吸光係数である。E・=SE・+(1-3)E・・・・・・・(2)
+ 01 1' However, S is oxygen saturation, and Eoi and Eri are oxyhemoglobin and deoxyhemoglobin extinction coefficients, respectively.
ここで、波長λ1を805 nmに選び、波長λ2を6
60 nmに選ぶと、
Eo1=E、1=E1
である。また、
F1=F2=F
であることがわかっている。したがって、(1)式はつ
ぎのように書き表わすことができる。Here, the wavelength λ1 is chosen to be 805 nm, and the wavelength λ2 is chosen to be 605 nm.
If 60 nm is chosen, Eo1=E, 1=E1. It is also known that F1=F2=F. Therefore, equation (1) can be written as follows.
Φ=ΔA2/ΔA1
・・・・・・(3)
この(3)式で、El、Eo2、Er2、Fは既知の値
であるから、Φ=ΔA2/ΔA1を実測して(3)式に
代入して、これをSについて解けば、酸素飽和度Sを求
めることができる。Φ=ΔA2/ΔA1 ......(3) In this equation (3), El, Eo2, Er2, and F are known values, so Φ=ΔA2/ΔA1 is actually measured and used in equation (3). By substituting and solving this for S, the oxygen saturation S can be determined.
つぎに、従来の血中成分濃度測定装置の構成を第6図に
基づき説明する。Next, the configuration of a conventional blood component concentration measuring device will be explained based on FIG. 6.
この図で、波長λ1の光を発する発光ダイオード31と
波長λ2の光を発する発光ダイオード32とは、オシレ
ータ(O8C)33の出力を受けて交互に点灯し、これ
ら発光ダイオード31.32の光(入射光量はそれぞれ
IOl 、IO2>が耳朶などの生体組織Rに入射され
る。In this figure, a light emitting diode 31 that emits light of wavelength λ1 and a light emitting diode 32 that emits light of wavelength λ2 are turned on alternately in response to the output of an oscillator (O8C) 33, and the light of these light emitting diodes 31 and 32 ( The amounts of incident light are IOl and IO2>, respectively, which are incident on the living tissue R such as the earlobe.
生体組織Rに入射した光は、生体組織R中の純組織や血
中成分によって吸収、散乱されて減光し、生体組織Rを
通過したその透過光がフォトダイオード34によって受
光される。フォトダイオード34の受光出力は、増幅器
35で増幅され、対数変換器36に供給される。The light incident on the living tissue R is absorbed and scattered by the pure tissues and blood components in the living tissue R and is attenuated, and the transmitted light that has passed through the living tissue R is received by the photodiode 34. The light receiving output of the photodiode 34 is amplified by an amplifier 35 and supplied to a logarithmic converter 36.
この対数変換器(LOG>36では、入力される受光信
号が対数変換されることにより、その対数変換出力の脈
動振幅は、血液層R1の厚みの脈動による減光度の変化
分に対応したものとなる。This logarithmic converter (LOG>36) logarithmically converts the input light reception signal, so that the pulsation amplitude of the logarithmically converted output corresponds to the change in the degree of attenuation due to the pulsation of the thickness of the blood layer R1. Become.
対数変換器36の変換出力信号は、マルチプレクサ(M
PX>37に供給されて、各波長λ1.λ2毎の信号に
振り分けられたあと、ローパスフィルタ(LPF)38
.39にそれぞれ供給され、ここにおいてノイズ成分が
取り除かれた信号は、バイパスフィルタ(HPF)40
.41にそれぞれ供給され、脈動分の減光度に相当する
脈動信号が取り出される。The converted output signal of the logarithmic converter 36 is sent to a multiplexer (M
PX>37, each wavelength λ1. After being distributed into signals for each λ2, a low pass filter (LPF) 38
.. 39, the signals from which noise components have been removed are passed through a bypass filter (HPF) 40.
.. 41, and a pulsation signal corresponding to the degree of attenuation of the pulsation is extracted.
各HPF40.41の出力信号は、次段の検出回路(D
ET>42.43にそれぞれ供給されて検波されること
により、減光度の脈動変動分(振幅値)ΔA1.ΔA2
に相当する信号が検出される。The output signal of each HPF40.41 is sent to the next stage detection circuit (D
ET>42.43 and are detected, the pulsating fluctuation of the degree of attenuation (amplitude value) ΔA1. ΔA2
A signal corresponding to is detected.
ここで、脈動変動分ΔA1は、
ΔAl =log II log(Ii−Δ11)=
Δ1Oc111
であり、脈動変動分ΔA2は、
Δ、A2=IO(] II I(XI (I2−Δ
I2)=Δ100I2
である。Here, the pulsation variation ΔA1 is as follows: ΔAl =log II log(Ii-Δ11)=
Δ1Oc111, and the pulsation fluctuation ΔA2 is Δ, A2=IO(] II I(XI (I2−Δ
I2)=Δ100I2.
各検出回路42.43からの検出出力信号(ΔA1゜A
2 >は、減光度比演算回路44にそれぞれ供給されて
、上述した(1)式に対応する脈動変動分ΔA1.ΔA
2の比Φを求める演算、
Φ=ΔA2/ΔA1=Δl0CII2/Δ10(Ill
が行なわれる。Detection output signal from each detection circuit 42.43 (ΔA1゜A
2> are respectively supplied to the light attenuation ratio calculation circuit 44, and the pulsation fluctuations ΔA1. ΔA
Calculation to find the ratio Φ of 2, Φ=ΔA2/ΔA1=Δl0CII2/Δ10(Ill
will be carried out.
この変動比演算回路44の出力信号は、(3)式をSに
ついて解いて求めた、
S=f (Φ)
なる式に従って演算を行なう酸素飽和度演算回路45に
供給され、係数回路46から入力されるヘモグロビンの
各吸光係数E1 ’ E02’ Er2、および血液の
散乱係数Fのデータを基に変動比Φから酸素飽和度Sを
求める演算が行なわれる。The output signal of this variation ratio calculation circuit 44 is supplied to the oxygen saturation calculation circuit 45 which performs calculation according to the formula S=f (Φ) obtained by solving the formula (3) for S, and is inputted from the coefficient circuit 46. Based on the data of the extinction coefficients E1'E02'Er2 of hemoglobin and the scattering coefficient F of blood, an operation is performed to obtain the oxygen saturation S from the fluctuation ratio Φ.
(発明が解決しようとする課題)
ところで、上述した従来の血中成分濃度測定装置では、
たとえば酸素飽和度Sを測定する場合に、ある程度の測
定誤差を伴い、特に高精度の要求される、酸素飽和度が
高い領域では充分な精度が得られないという問題があっ
た。この問題は、またパルスオキシメータの原理を他に
広く応用してゆく上でも支障になるものである。本発明
者等は、非観血式の血中成分濃度測定装置の理論付けと
生体組織のシミュレーションの研究を行なった結果、純
組織層R2が血液の脈動とは逆位相の脈動をしているこ
とを見出した。そして、従来この純組織層R2の脈動分
を含めて考えていなかった点が測定誤差の主要な原因で
あると確信するに到つた。(Problems to be Solved by the Invention) By the way, in the above-mentioned conventional blood component concentration measuring device,
For example, when measuring the oxygen saturation S, there is a problem that a certain degree of measurement error occurs and sufficient accuracy cannot be obtained especially in a region where high oxygen saturation is required and high accuracy is required. This problem also poses a hindrance to the widespread application of the pulse oximeter principle to other areas. As a result of theorizing a non-invasive blood component concentration measuring device and researching simulations of biological tissue, the inventors found that the pure tissue layer R2 pulsates in the opposite phase to the pulsation of blood. I discovered that. We have come to believe that the main cause of the measurement error is that the pulsation of the pure tissue layer R2 has not been considered in the past.
本発明は、このような課題を解決するために提案された
ものであり、血液の脈動によって厚さが変化する純組織
の影響を受けることなく高精度に血中成分の濃度を測定
することが可能な非観血式血中成分濃度測定装置を提供
することを目的とする。The present invention was proposed to solve these problems, and it is possible to measure the concentration of blood components with high precision without being affected by pure tissue whose thickness changes due to blood pulsation. The purpose of the present invention is to provide a non-invasive blood component concentration measuring device.
[発明の構成]
(課題を解決するための手段)
第2図に模式的に示すように血液の脈動により、生体組
織R中の血液層R1の厚さがΔDbだけ増加するとき、
純組織層R2は、血液に圧迫されて逃げ、厚さがΔDt
だけ減少する。[Structure of the Invention] (Means for Solving the Problems) As schematically shown in FIG. 2, when the thickness of the blood layer R1 in the biological tissue R increases by ΔDb due to blood pulsation,
Pure tissue layer R2 is compressed by blood and escapes, and has a thickness of ΔDt.
only decreases.
このΔDtはΔDbに等しいか、ΔDbよりも小さな値
となる。This ΔDt is equal to or smaller than ΔDb.
この純組織層R2の逆位相の脈動をも考えて、生体組織
における脈動に基づく減光度の変動分の比を求める式を
書くとつぎのようになる。Taking into consideration the pulsation of the opposite phase in the pure tissue layer R2, an equation for determining the ratio of the variation in the degree of light attenuation based on the pulsation in the living tissue is written as follows.
Φ21ミΔA2 /ΔA1=(F−「η巧−酉1)(G
2/H)・(△Dt/ΔDb))/(a了T]耳丁−一
(Gi /H)
(ΔDt/△Db)) ・・・・・・(4)
ここで、G1.G2は光波長λ1.λ2における純組織
の減光係数を含む定数であり、Hは血液中に占める赤血
球の容積比(ヘマトクリット)である。ここに示すよう
に、ΔAの比を取ることにより、純組織の脈動を考慮し
た場合に新たに生ずる3つの未知数H1ΔDt、ΔDb
は結合されて一つの未知数になるので、未知数が一つだ
け増加したことに相当する。Φ21 mi ΔA2 / ΔA1 = (F - "η Takumi - Tori 1) (G
2/H)・(△Dt/△Db))/(aRyoT] Ear-first (Gi/H) (△Dt/△Db)) ・・・・・・(4)
Here, G1. G2 is the optical wavelength λ1. It is a constant including the extinction coefficient of pure tissue at λ2, and H is the volume ratio of red blood cells in the blood (hematocrit). As shown here, by taking the ratio of ΔA, three new unknowns H1ΔDt, ΔDb are calculated when considering the pulsation of pure tissue.
are combined into one unknown quantity, so this corresponds to an increase in the number of unknown quantities by one.
(4)式に示されるように、血液層R1の厚みの変動Δ
Dbに比べて純組織層R2の厚みの変動ΔDtが大であ
る程、またへマドクリットHが小である程、純組織の変
動の寄与率が大きくなり、従来の(1)式に基づいた測
定では誤差が大きくなることがわかる。したがって、純
組織の項である( Gi /H) ・(ΔD、/ΔD
b)の影響を適当な手段を用いて消去することできれば
、測定精度を高めることが可能となる。As shown in equation (4), the variation Δ in the thickness of blood layer R1
The larger the variation ΔDt in the thickness of the pure tissue layer R2 compared to Db, and the smaller the hemadcrit H, the greater the contribution rate of the variation in the pure tissue, and the conventional measurement based on equation (1) It can be seen that the error becomes larger. Therefore, (Gi /H) ・(ΔD, /ΔD
If the influence of b) can be eliminated using appropriate means, measurement accuracy can be improved.
そこで、880nm程度に選んだ新たな第3の光波長λ
3を生体組織に入射して透過光1工3を測定し、生体組
織中における減光度の脈動変動分ΔA3を求めて、第1
の光波長λ1における減光度の脈動変動分ΔA1との比
Φ31を取る。このλ3の波長域は、第3図に示すよう
にヘモグロビン吸光係数の酸素飽和度の依存性が充分小
である。Therefore, a new third optical wavelength λ of approximately 880 nm was selected.
3 is incident on living tissue, the transmitted light 1 part 3 is measured, and the pulsating variation ΔA3 of the degree of light attenuation in the living tissue is determined.
The ratio Φ31 to the pulsating variation ΔA1 of the degree of attenuation at the light wavelength λ1 is taken. In this wavelength range of λ3, as shown in FIG. 3, the dependence of the hemoglobin extinction coefficient on oxygen saturation is sufficiently small.
したがってこの脈動変動分の比Φ31は、近似的につぎ
の式で与えることができる。Therefore, the ratio Φ31 of this pulsation variation can be approximately given by the following equation.
O=△A /△A =(33+F3
1−31
−(G3/H)・(△Dt/△Db>)/(a〒「行+
F、ゴ
ー(a1/H)値ΔDt/ΔDb))
・・・・・・(5)
ここで、F3、F3、G3は光波長λ3に関する前記し
たE、 、Fi 、G、である。O=△A /△A = (33+F3 1-31 - (G3/H)・(△Dt/△Db>)/(a〒"row+
F, go (a1/H) value ΔDt/ΔDb)) (5) Here, F3, F3, and G3 are the above-mentioned E, , Fi, and G regarding the optical wavelength λ3.
これら(4)式と(5)式において、
Fi ”F2 ”F3 =F
とし、純組織の項を
(1/H) ・(ΔDt/ΔDb) 二Tとして、
式を書き改めればつぎのようになる。In these equations (4) and (5), Fi ``F2 ''F3 =F, and the pure structure term is (1/H) ・(ΔDt/ΔDb) 2T,
Rewriting the formula, it becomes as follows.
Φ=ΔA/ΔA=<Jπ「α丁三門
1−21
−G T)/(α〒]1T日−G1T)・・・・・・(
6)
O=ΔA /△A =(3E3+F)
1−31
−G T)/I E +F)−GlT)3
1 1
・・・・・・(7)
ここで、波長^ のヘモグロビンの吸光係数E2は前述
したように、
E2=SEo2+(1−8) Er2 −−−−・=
(8)であり、ヘモグロビンの吸光係数E1.E3は
酸素飽和度Sによらないものとする。(8)式を(6)
式に代入して連立方程式の(6)式、(7)式をSに2
(Eo2 E、2> ”・・(9>こ
の(9)式において、ヘモグロビンの各吸光係数E1.
Eo2.E、2.E3、赤血球の散乱係数F、純組織の
減光係数Gi (ただし、i=1.2.3>は個体差
なく事前に求めておくことのできる値であるから、Φ2
1.Φ31を実測し、(9)′式に代入すれば、酸素飽
和度Sを求めることができる。Φ=ΔA/ΔA=<Jπ ``αDingsanmon 1-21-G T)/(α〒]1T day-G1T)・・・・・・(
6) O=ΔA/ΔA=(3E3+F) 1-31 -G T)/I E +F)-GlT)3
1 1 ......(7) Here, as mentioned above, the extinction coefficient E2 of hemoglobin at wavelength ^ is E2=SEo2+(1-8) Er2 -----・=
(8), and the extinction coefficient of hemoglobin is E1. It is assumed that E3 does not depend on the oxygen saturation S. (8) to (6)
By substituting equations into the equations, equations (6) and (7) of the simultaneous equations are converted to S2.
(Eo2 E, 2>”...(9>) In this equation (9), each extinction coefficient E1 of hemoglobin.
Eo2. E, 2. E3, scattering coefficient F of red blood cells, extinction coefficient Gi of pure tissue (however, i = 1.2.3> is a value that can be determined in advance without individual differences, so Φ2
1. By actually measuring Φ31 and substituting it into equation (9)', the oxygen saturation degree S can be determined.
このように適当な3つの異なる光波長λ1〜λ3を用い
ることにより、測定過程(演算過程)で純組織の項Gi
Tの影響を消去し、2つの血中成分である酸化ヘモグロ
ビンと還元ヘモグロビンについての相対濃度を測定でき
る。したがって、この手法を以下、組織消去法と呼称す
る。By using three different appropriate optical wavelengths λ1 to λ3 in this way, the pure tissue term Gi
It is possible to eliminate the influence of T and measure the relative concentrations of two blood components, oxyhemoglobin and deoxyhemoglobin. Therefore, this method is hereinafter referred to as the tissue elimination method.
ところで、血漿中に自然に生ずる色素であるビリルビン
や、生体に関する測定のために人為的に注入する色素で
あるインドシアニングリン(ICG)、メチレンブルー
などのヘモグロビンに対する相対濃度も、パルスオキシ
メータの原理を用いて測定することができる。なお、人
為的に生体に注入されるこれらの色素は、心拍出量、循
環血流量、肝臓の異物排泄機能などの生体情報を得るた
めに用いられるものである。By the way, the relative concentration of bilirubin, which is a naturally occurring pigment in plasma, and the relative concentration of hemoglobin, such as indocyanine phosphorus (ICG) and methylene blue, which are artificially injected pigments for biological measurements, can also be determined based on the principle of a pulse oximeter. It can be measured using Note that these dyes that are artificially injected into a living body are used to obtain biological information such as cardiac output, circulating blood flow, and the liver's foreign body excretion function.
酸素飽和度Sと血漿中の色素の相対濃度とを同時に測定
するには、新たに第4の波長λ4の光を生体組織に入射
することが必要である。この場合、この光波長λ4にお
ける減光度の脈動変動分ΔA4を計測して、波長λ1の
脈動変動分ΔA1との比Φ41を求める。In order to simultaneously measure the oxygen saturation S and the relative concentration of the dye in plasma, it is necessary to newly make light of the fourth wavelength λ4 incident on the living tissue. In this case, the pulsating variation ΔA4 in the degree of attenuation at the light wavelength λ4 is measured, and the ratio Φ41 to the pulsating variation ΔA1 at the wavelength λ1 is determined.
酸素飽和度Sと1つの色素の相対濃度とを測定する場合
、脈動変動分の比Φ21.Φ31.Φ41は、次式で与
えられる。When measuring the oxygen saturation S and the relative concentration of one dye, the ratio of pulsation fluctuations Φ21. Φ31. Φ41 is given by the following equation.
Φ21ミ△A2/△A1=(ETK「王’r7匡]、/
Ch ))E2+Ed2 (cd /ch ) 十F)
a ’rl /[E1+Edi (cd /ch))
(E1十Edi (cd /ch ) +F) −01
’rl・・・・・・(10)
Φ31=ΔA3/ΔA1 =t r丁7可訂了―CE3
+Ed3 (Cd /Ch ) 十F)−G3T]/
[1+d1CC)
(E1+Ed1 (Cd /Ch ) 十F) Gi
’rl・・・・・・(11)
Φ41=ΔA4/△Ai =t r丁7可11ゴ/ C
1l ) HE4 +Ed4 (Cd /C1l )
十F )・・・・・・(12)
ここで、E は波長λ4におけるヘモグロビンの吸光係
数、Ed1〜Ed4は各波長における色素の吸光係数、
chは血中ヘモグロビン濃度、Cdは血中色素濃度、G
は波長λ4における純組織の減光係数を含む定数であ
る。Φ21mi△A2/△A1=(ETK "Wang'r7匡"), /
Ch))E2+Ed2 (cd/ch) 10F)
a 'rl / [E1+Edi (cd /ch))
(E10Edi (cd/ch) +F) -01
'rl...(10) Φ31=ΔA3/ΔA1 =t r7 correctable - CE3
+Ed3 (Cd /Ch) 10F)-G3T]/
[1+d1CC) (E1+Ed1 (Cd /Ch) 10F) Gi
'rl・・・・・・(11) Φ41=ΔA4/△Ai=tr 7 possible 11 go/C
1l) HE4 +Ed4 (Cd /C1l)
10F)...(12) Here, E is the extinction coefficient of hemoglobin at wavelength λ4, Ed1 to Ed4 are the extinction coefficients of dyes at each wavelength,
ch is blood hemoglobin concentration, Cd is blood pigment concentration, G
is a constant containing the attenuation coefficient of pure tissue at wavelength λ4.
これら(10)式、(11)式および(12)式の連立
方程式について、酸素飽和度Sと色素の相対濃度Cd/
Chのそれぞれについて解けば、その式に実測した脈動
変動分の比Φ21.Φ31.Φ41の値と各係数値とを
代入することにより、酸素飽和度Sと色素の相対濃度C
d/Chを求めることができる。Regarding these simultaneous equations (10), (11), and (12), the oxygen saturation S and the relative concentration of the dye Cd/
By solving for each of Ch, the ratio of the actually measured pulsation fluctuation component Φ21. Φ31. By substituting the value of Φ41 and each coefficient value, the oxygen saturation S and the relative concentration of the dye C
d/Ch can be calculated.
このように、異なる4つの光波長λ1〜λ4を用いるこ
とにより、組織消去法によって3つの血中成分である酸
化ヘモグロビン、還元へモグロビン、および他の1つの
色素についての相対濃度を測定することができる。In this way, by using four different light wavelengths λ1 to λ4, it is possible to measure the relative concentrations of three blood components, oxyhemoglobin, deoxyhemoglobin, and one other pigment, by the tissue elimination method. can.
これらの血中成分の他に、1酸化炭素ヘモグロビンを合
わせた4つの血中成分について相対濃度を測定する場合
は、5つの異なる光波長λ1〜λ5を用いればよい。When measuring the relative concentration of four blood components including carboxyhemoglobin in addition to these blood components, five different light wavelengths λ1 to λ5 may be used.
上述した前提から、上記目的を達成するための本発明に
よる非観血式血中成分濃度測定装置を構成すれば、
生体組織に照射する相異なるN個の波長の光を発する光
発生手段と、
この光発生手段から発せられた光の生体組織における透
過光または反射光を受光する受光手段と、この受光手段
からの受光出力信号に基づいて生体組織における減光度
の変化分をN個の異なる波長についてそれぞれ検出する
減光度変化分検出回路と、
この減光度変化分検出回路から出力されるN個の異なる
波長についての検出出力信号に基づいて減光度の変化分
の比を互いに異なる波長間についてN−1細末める減光
度比演算回路と、生体組織における減光度の変化分を血
液の厚みの変化と血液を含まない純組織の厚みの変化と
によるものとして互いに異なる波長間について立てたN
−1個の該減光度の変化分の比のN−1元連立方程式を
、血中成分の濃度について解いた演算式に対して、上記
減光度比演算回路から出力される減光度の変化分の比の
値とN個の異なる波長についてのN−1個の血中成分お
よび純組織のそれぞれの減光係数値とを基に演算を行な
い、N−1個の血中成分についての相対濃度を算出する
血中成分濃度演算回路とを備えたものとなる。Based on the above-mentioned premise, if the non-invasive blood component concentration measuring device according to the present invention is configured to achieve the above object, it will include: a light generating means that emits light of N different wavelengths to irradiate living tissue; A light receiving means for receiving the transmitted light or reflected light in the living tissue of the light emitted from the light generating means, and a light receiving means for receiving the transmitted light or the reflected light in the living tissue of the light emitted from the light generating means, and a change in the degree of light attenuation in the living tissue based on the received light output signal from the light receiving means. Based on the detection output signals for N different wavelengths output from the attenuation change detection circuit, the ratio of the change in attenuation is determined between N different wavelengths. -1 An attenuation ratio calculation circuit that narrows down the attenuation ratio calculation circuit and an N that is calculated between different wavelengths by assuming that the change in the attenuation in living tissue is due to the change in the thickness of blood and the change in the thickness of pure tissue that does not contain blood.
- The change in light attenuation outputted from the light attenuation ratio calculation circuit for the arithmetic expression obtained by solving the N-1 simultaneous equations of the ratio of the changes in the light attenuation for the concentration of the blood component. Calculation is performed based on the ratio value and the respective extinction coefficient values of N-1 blood components and pure tissue for N different wavelengths, and the relative concentration of N-1 blood components is calculated. The blood component concentration calculation circuit calculates the blood component concentration.
(作用)
上述した構成によれば、受光手段において各波長の組織
透過光量または反射光量に相当する受光出力信号を取り
出すことができる。透過光量または反射光量は血液と純
組織の脈動によって変動するので、この受光出力信号は
脈動によって変動したものとなっている。(Function) According to the above-described configuration, it is possible to extract a light reception output signal corresponding to the amount of tissue transmitted light or reflected light of each wavelength in the light receiving means. Since the amount of transmitted light or reflected light varies depending on the pulsation of blood and pure tissue, this received light output signal fluctuates due to the pulsation.
この受光出力信号の対数をとった対数変換信号は、脈動
によって変動しており、対数変換信号の脈動分を減光度
変化分検出回路で検出することにより、各波長について
の生体組織における減光度の脈動変化分に相当する信号
が得られる。The logarithmically converted signal obtained by taking the logarithm of this light reception output signal fluctuates due to pulsations, and by detecting the pulsations of the logarithmically converted signal with a light attenuation change detection circuit, it is possible to detect the light attenuation in living tissue for each wavelength. A signal corresponding to the pulsation change is obtained.
減光度比演算回路では、この検出回路からの出力信号を
受けて、互いに異なる波長間についてのN−1個の脈動
変化分の比を算出することができる。The attenuation ratio calculation circuit receives the output signal from the detection circuit and can calculate the ratio of N-1 pulsation changes between different wavelengths.
血中成分濃度演算回路では、純組織の脈動による影響を
も考慮したN−1個の脈動変化分の比の連立方程式を解
くことによって得たN−1個の血中成分の相対濃度を求
める式に対して、脈動変化分の比の実測値と各係数値と
を代入して演算が行なわれ、純組織の脈動による影響を
受けることなくN−1個の血中成分についての濃度(相
対濃度)を高い精度で測定できる。The blood component concentration calculation circuit calculates the relative concentrations of N-1 blood components obtained by solving simultaneous equations of the ratios of N-1 pulsation changes, taking into account the influence of pure tissue pulsation. Calculations are performed by substituting the measured value of the ratio of pulsation changes and each coefficient value into the equation, and the concentration (relative Concentration) can be measured with high accuracy.
(実施例) 以下、本発明の実施例を図面に基づき詳細に説明する。(Example) Hereinafter, embodiments of the present invention will be described in detail based on the drawings.
第1図のブロック図は、本発明による非観血式血中成分
濃度測定装置の一実施例を示し、λ1゜λ2.λ3の3
つの光波長を用いて純組織の脈動の影響を受けることな
く、酸素飽和度Sを測定する場合の例を示す。The block diagram in FIG. 1 shows an embodiment of the non-invasive blood component concentration measuring device according to the present invention, and shows an embodiment of the non-invasive blood component concentration measuring device according to the present invention. 3 of λ3
An example will be shown in which oxygen saturation S is measured using two light wavelengths without being affected by pulsation of pure tissue.
二の図で、波長λ1.λ2.λ3のそれぞれの光を発す
る発光ダイオード1,2,3.は、オシレータ4の出力
を受けて交互に点灯し、これら発光ダイオード1,2.
3の光(入射光量はそれぞれ■01.■02.l03)
が、耳朶などの生体組織Rに入射され、この生体組織R
を挟んで対向して配さhたフォトダイオード5によって
透過光が受光される。ここで、波長λ1.λ2.λ3は
前述したようにたとえば805 nm、 660 nm
、 880 nmにそれぞれ設定されている。In the second diagram, the wavelength λ1. λ2. Light emitting diodes 1, 2, 3 . . . each emit light of λ3. are lit alternately in response to the output of the oscillator 4, and these light emitting diodes 1, 2 .
3 light (incident light amount is respectively ■01.■02.l03)
is incident on a living tissue R such as an earlobe, and this living tissue R
The transmitted light is received by the photodiodes 5 which are arranged opposite to each other with the two sides in between. Here, the wavelength λ1. λ2. As mentioned above, λ3 is, for example, 805 nm or 660 nm.
, 880 nm, respectively.
フォ)−ダイオード5の各波長における受光出力は、生
体組織Rによって減光されたあとの透過光量11.I2
,1.に対応し、この受光出力が増幅器6で増幅された
のち、対数変換器7で対数変換されてマルチプレクサ8
に供給される。f) - The light receiving output at each wavelength of the diode 5 is the amount of transmitted light after being attenuated by the living tissue R. I2
,1. Corresponding to
is supplied to
マルチプレクサ8では、対数変換出力信号がλ1.λ2
.λ3の各波長に振り分けられ、LPF9.10.11
にそれぞれ供給される。LPF9゜10、11では、各
信号中に含まれる高周波のノイズ成分が除去され、その
出力信号がHPF12.1314にそれぞれ供給される
。HPF12.13.14では、生体組織R中における
各波長λ1.λ2.λ3についての減光度の脈動変動分
に相当する振幅信号がそれぞれ取り出され、その出力信
号が振幅検出回路15.16.17に供給される。なお
、LPF9゜10、11とHPF12.13.14とを
それぞれ単にバンドパスフィルタ(BPF)により構成
してもよい。In the multiplexer 8, the logarithmically converted output signal is λ1. λ2
.. Distributed to each wavelength of λ3, LPF9.10.11
are supplied respectively. The LPFs 9°10 and 11 remove high frequency noise components contained in each signal, and their output signals are supplied to the HPFs 12 and 1314, respectively. In HPF12.13.14, each wavelength λ1. λ2. Amplitude signals corresponding to pulsating fluctuations in the degree of attenuation with respect to λ3 are respectively taken out, and their output signals are supplied to amplitude detection circuits 15, 16, and 17. Incidentally, the LPFs 9°10 and 11 and the HPFs 12, 13, and 14 may each be configured simply by a bandpass filter (BPF).
振幅検出回路15.16.17では、HPF12.13
゜14からの各出力信号がそれぞれ検波されることによ
り、減光度の脈動分の振幅値に相当する信号が検出され
る。これら検出信号は、生体組織R中での各波長λ1.
λ2.λ3における減光度の脈動変動分ΔA1.ΔA2
.ΔA3に対応したものである。ここで、脈動変動分Δ
A 、ΔA2゜ΔA3は、それぞれ
ΔAl =log Ii −10(] (11−Δ1
1)=Δ10(111
ΔA2 =loc+ I2 !O’l (I2−Δ
■2)=Δ10(II2
ΔA3 =log l31Q(] (]I3−Δ工3=
Δl0gl3
である。なお、Iiの成分は透過光量の最大値に対応し
、(I・−ΔIi)成分は透過光量の最小値に対応する
。In amplitude detection circuit 15.16.17, HPF12.13
By detecting each output signal from 14, a signal corresponding to the amplitude value of the pulsation of the degree of attenuation is detected. These detection signals have wavelengths λ1.
λ2. The pulsating variation in the degree of attenuation at λ3 ΔA1. ΔA2
.. This corresponds to ΔA3. Here, the pulsation variation Δ
A, ΔA2゜ΔA3 are respectively ΔAl = log Ii -10(] (11-Δ1
1) = Δ10 (111 ΔA2 = loc + I2 !O'l (I2 - Δ
■2)=Δ10(II2 ΔA3 =log l31Q(] (]I3−ΔWork3=
Δl0gl3. Note that the Ii component corresponds to the maximum value of the amount of transmitted light, and the (I·-ΔIi) component corresponds to the minimum value of the amount of transmitted light.
各振幅検出回路15.16.17の出力信号は、減光度
比演算回路18.19それぞれ供給されて、(6)式お
よび(7)式に対応する脈動変動分ΔA1ΔA2の比Φ
21、およびΔA1.ΔA3の比Φ31を求める演算、
中21=Δ100I2/ΔIQg11
Φ31=ΔIQ(JI3/Δ10g11がそれぞれ行な
われる。The output signals of the amplitude detection circuits 15, 16, and 17 are respectively supplied to the attenuation ratio calculation circuits 18 and 19, and the ratio Φ of the pulsation variation ΔA1ΔA2 corresponding to equations (6) and (7) is
21, and ΔA1. Calculations for determining the ratio Φ31 of ΔA3 are performed as follows: 21=Δ100I2/ΔIQg11 Φ31=ΔIQ (JI3/Δ10g11).
減光度比演算回路18.19の出力信号は、上述した(
9)式の演算を行なう血中成分濃度演算回#120に供
給され、ここにおいて係数回路21から入力されるEl
’ EO2,Er2’ E3 ’ ” G1 ” 2
’G3の各係数値と実測値Φ21.Φ31とから酸素
飽和度Sを求める演算が行なわれる。The output signals of the attenuation ratio calculation circuits 18 and 19 are as described above (
9) El input from the coefficient circuit 21 is supplied to the blood component concentration calculation circuit #120 for calculating the equation.
' EO2, Er2' E3 ' ” G1 ” 2
'Each coefficient value of G3 and actual measured value Φ21. A calculation is performed to determine the oxygen saturation level S from Φ31.
ところで、他の実施例として酸素飽和度Sの他にインド
シアニングリン(ICG>などの色素の相対濃度を測定
する場合については、第4の光波長λ4を発する発光ダ
イオードを別に設け、この発光ダイオードの透過光量を
フォトダイオード5について検出する。ここで、λ4の
波長は、たとえば730nm程度に設定される(第4図
参照)。By the way, as another example, when measuring the relative concentration of a dye such as indocyanine phosphorus (ICG>) in addition to the oxygen saturation S, a light emitting diode that emits a fourth light wavelength λ4 is separately provided, and this light emitting diode The amount of transmitted light is detected by the photodiode 5. Here, the wavelength of λ4 is set to, for example, about 730 nm (see FIG. 4).
また、マルチプレクサ8で振り分けた光波長λ4につい
ての対数変換出力信号を処理するLPFとHPF、さら
に減光度の脈動変動分ΔA4を検出する検出回路を別途
設ける。In addition, an LPF and an HPF for processing the logarithmically converted output signal for the optical wavelength λ4 distributed by the multiplexer 8, and a detection circuit for detecting the pulsating variation ΔA4 in the degree of attenuation are separately provided.
そして、減光度比演算回路では、上述した(10)式、
(11)式および(12)式に対応する変動分の比Φ2
1.Φ31.Φ41を求める演算を行なえばよい。。Then, in the attenuation ratio calculation circuit, the above-mentioned equation (10),
Ratio of fluctuations Φ2 corresponding to equations (11) and (12)
1. Φ31. It is sufficient to perform an operation to obtain Φ41. .
また、血中成分濃度演算回路では、測定したΦ21.Φ
31.Φ41の値と各係数値を基に、(10)式、(1
1)式および(12)式の連立方程式を酸素飽和度Sと
色素の相対濃度Cd/Chについて解く演算をなえばよ
い。In addition, the blood component concentration calculation circuit calculates the measured Φ21. Φ
31. Based on the value of Φ41 and each coefficient value, formula (10), (1
It is only necessary to perform calculations to solve the simultaneous equations of equations (1) and (12) with respect to the oxygen saturation S and the relative concentration of the dye Cd/Ch.
なお、上述した実施例に限定されず、3つの異なる光波
長λ1〜λ3を用い、血液中のヘモグロビンがすべて酸
化ヘモグロビンであるとして血漿内の色素(インドシア
ニングリンなど)の酸化ヘモグロビンに対する相対濃度
を測定することもできる。Note that, without being limited to the above-mentioned example, by using three different light wavelengths λ1 to λ3 and assuming that all hemoglobin in the blood is oxyhemoglobin, the relative concentration of pigments (indocyanine, etc.) in plasma to oxyhemoglobin can be calculated. It can also be measured.
また、4つの異なる光波長λ1〜λ4を用いて、3つの
血中成分である酸化ヘモグロビン、還元ヘモグロビンお
よび血漿内色素(インドシアニングリン)のそれぞれの
相対濃度を測定することもできる。 さらに、5つの異
なる光波長λ1〜λ5を用いて、4つの血中成分である
酸化ヘモグロビン、還元ヘモグロビン、1酸化炭素ヘモ
グロビンおよび血漿内の色素(インドシアニングリンな
ど)それぞれの相対濃度を測定することもできる。Furthermore, the relative concentrations of three blood components, oxyhemoglobin, deoxyhemoglobin, and plasma pigment (indocyanine), can also be measured using four different light wavelengths λ1 to λ4. Furthermore, using five different light wavelengths λ1 to λ5, the relative concentrations of each of the four blood components oxyhemoglobin, deoxyhemoglobin, carboxyhemoglobin, and plasma pigments (indocyanine, etc.) are measured. You can also do it.
また、上述した実施例では、血液層R1と純組織層R2
の厚みが周期的に脈動する場合の透過光量の脈動の最高
値、最低値を求め、これから減光度変化分ΔAを求める
場合について説明したが、さらに、脈動の1周期以内の
短い時間の透過光量の変化に関して減光度変化分ΔAを
求める場合にも適用できるし、また不規則な変化に関し
ても適用できる。In addition, in the embodiment described above, the blood layer R1 and the pure tissue layer R2
We have explained the case where the maximum and minimum values of the pulsations in the amount of transmitted light are found when the thickness of This method can be applied to the case of determining the change in attenuation degree ΔA with respect to a change in , and can also be applied to irregular changes.
また、脈動により変動する透過光量工i。In addition, the amount of transmitted light varies due to pulsation.
(I・−ΔIi)を受光するのではなく、生体組織Rで
減光したあとの反射光量を計測することで血中成分の濃
度を測定する場合にも適用できる。It can also be applied to the case where the concentration of blood components is measured by measuring the amount of reflected light after the light is attenuated by the living tissue R instead of receiving (I·-ΔIi).
また、減光度比演算回路と血中成分濃度演算回路をマイ
クロプロセッサにより構成し、検出回路の出力信号を増
幅してA/D変換したのちマイクロプロセッサに供給し
て、各血中成分の濃度を計算するように構成することも
可能であることは明らかである。In addition, the attenuation ratio calculation circuit and the blood component concentration calculation circuit are configured by a microprocessor, and the output signal of the detection circuit is amplified and A/D converted, and then supplied to the microprocessor to calculate the concentration of each blood component. It is clear that it is also possible to configure it to calculate.
[発明の効果]
以上説明したように本発明によれば、N個の異なる光波
長を用いて生体組織内のN−1個の血中成分の濃度の測
定に関し、測定誤差の原因となる純組織の脈動による影
響を取り除くことができるので、高い精度で血中成分の
濃度測定を行なえる。[Effects of the Invention] As explained above, according to the present invention, when measuring the concentration of N-1 blood components in biological tissue using N different light wavelengths, the Since the influence of tissue pulsation can be removed, the concentration of blood components can be measured with high accuracy.
したがって、本発明によれば酸化ヘモグロビンと還元ヘ
モグロビンの濃度の他に、異常ヘモグロビンや人為的に
注入されるインドシアニングリンなどの色素濃度も精度
よく計測することができるため、医学、医療の場におい
て大変有効である。Therefore, according to the present invention, in addition to the concentration of oxyhemoglobin and deoxyhemoglobin, it is also possible to accurately measure the concentration of abnormal hemoglobin and artificially injected pigments such as indocyanine, which can be used in medical and medical settings. It is very effective.
第1図は本発明による非観血式血中成分濃度測定装置の
一実施例を示すブロック図、第2図は血液層とともに脈
動する純組織層の脈動の様子を模式的に示す説明図、第
3図は酸化ヘモグロビン(02Hb)と還元ヘモグロビ
ン(RHb)の波長に対する吸光係数を示す特性図、第
4図は色素インドシアニングリン(ICG)の波長に対
する吸光係数を示す特性図、第5図は従来の測定で前提
となっていた血液層の脈動モデルを示す説明図、第6図
は従来の非観血式血中成分濃度測定装置を示すブロック
図である。
1.2.3・・・発光ダイオード
4・・・オシレータ
5・・・フォトダイオード
6・・・増幅器
7・・・対数変換器
8・・・マルチプレクサ
9、10.11・・・ローパスフィルタ12、13.1
4・・・バイパスフィルタ15、16.17・・・振幅
検出回路
ia、 19・・・減光度比演算回路
20・・・血中成分濃度演算回路
21・・・係数回路FIG. 1 is a block diagram showing an embodiment of the non-invasive blood component concentration measuring device according to the present invention, and FIG. 2 is an explanatory diagram schematically showing the state of pulsation of a pure tissue layer that pulsates together with a blood layer. Figure 3 is a characteristic diagram showing the extinction coefficient of oxidized hemoglobin (02Hb) and deoxyhemoglobin (RHb) against wavelength, Figure 4 is a characteristic diagram showing the extinction coefficient of dye indocyanine phosphorus (ICG) against wavelength, and Figure 5 is FIG. 6 is an explanatory diagram showing a pulsation model of a blood layer, which is a premise for conventional measurement. FIG. 6 is a block diagram showing a conventional non-invasive blood component concentration measuring device. 1.2.3... Light emitting diode 4... Oscillator 5... Photodiode 6... Amplifier 7... Logarithmic converter 8... Multiplexer 9, 10.11... Low pass filter 12, 13.1
4... Bypass filter 15, 16.17... Amplitude detection circuit ia, 19... Attenuation ratio calculation circuit 20... Blood component concentration calculation circuit 21... Coefficient circuit
Claims (3)
する光発生手段と、 この光発生手段から発せられた光の生体組織における透
過光または反射光を受光する受光手段と、この受光手段
からの受光出力信号に基づいて生体組織における減光度
の変化分をN個の異なる波長についてそれぞれ検出する
減光度変化分検出回路と、 この減光度変化分検出回路から出力されるN個の異なる
波長についての検出出力信号に基づいて減光度の変化分
の比を互いに異なる波長間についてN−1個求める減光
度比演算回路と、 生体組織における減光度の変化分を血液の厚みの変化と
血液を含まない純組織の厚みの変化とによるものとして
互いに異なる波長間について立てたN−1個の該減光度
の変化分の比のN−1元連立方程式を、血中成分の濃度
について解いた演算式に対して、上記減光度比演算回路
から出力される減光度の変化分の比の値と、N個の異な
る波長についてのN−1個の血中成分および純組織のそ
れぞれの減光係数値とを基に演算を行ない、N−1個の
血中成分についての相対濃度を算出する血中成分濃度演
算回路とを備えたことを特徴とする非観血式血中成分濃
度測定装置。(1) A light generating means that emits light of N different wavelengths to be irradiated onto living tissue, a light receiving means that receives transmitted light or reflected light in the living tissue of the light emitted from the light generating means, and this light receiving means. a light attenuation change detection circuit that detects a change in light attenuation in living tissue for N different wavelengths based on a received light output signal from the means; and N different light attenuation change detection circuits that are output from the light attenuation change detection circuit. an attenuation ratio calculation circuit that calculates N-1 ratios of changes in attenuation between different wavelengths based on detection output signals for wavelengths; An N-1 simultaneous equation of the ratio of the N-1 changes in attenuation, which was established between different wavelengths and changes in the thickness of pure tissues not including For the calculation formula, the value of the ratio of the change in attenuation output from the attenuation ratio calculation circuit and the attenuation of each of N-1 blood components and pure tissue for N different wavelengths. A non-invasive blood component concentration measuring device comprising a blood component concentration calculation circuit that calculates relative concentrations of N-1 blood components by performing calculations based on coefficient values. .
する光発生手段と、 この光発生手段から発せられた光の生体組織における透
過光または反射光を受光する受光手段と、この受光手段
からの受光出力信号に基づいて生体組織における減光度
の変化分をN個の異なる波長についてそれぞれ検出する
減光度変化分検出回路と、 この減光度変化分検出回路から出力されるN個の異なる
波長についての検出出力信号に基づいて減光度の変化分
の比を互いに異なる波長間についてN−1個求める減光
度比演算回路と、 N個の異なる波長についてのN−1個の血中成分および
純組織のそれぞれの減光係数値とを記憶する係数記憶回
路と、 生体組織における減光度の変化分を血液の脈動による厚
みの変化分と血液を含まない純組織の逆位相で生ずる脈
動による厚みの変化分との和によるものとして、互いに
異なる波長間について立てたN−1個の該減光度の変化
分の比のN−1元連立方程式を、血中成分の濃度につい
て解いた演算式に対して、上記減光度比演算回路から出
力される減光度の変化分の比の値と上記係数記憶回路か
ら出力される減光係数値とを基に演算を行ない、N−1
個の血中成分についての相対濃度を算出する血中成分濃
度演算回路とを備えたことを特徴とする非観血式血中成
分濃度測定装置。(2) A light generating means that emits light of N different wavelengths to be irradiated onto living tissue; a light receiving means that receives transmitted light or reflected light in the living tissue of the light emitted from the light generating means; and this light receiving means. a light attenuation change detection circuit that detects a change in light attenuation in living tissue for N different wavelengths based on a received light output signal from the means; and N different light attenuation change detection circuits that are output from the light attenuation change detection circuit. an attenuation ratio calculation circuit that calculates N-1 ratios of changes in attenuation between different wavelengths based on detection output signals for wavelengths; and N-1 blood components for N different wavelengths; a coefficient storage circuit that stores the respective light attenuation coefficient values of pure tissues; Assuming that it is due to the sum of the changes in the attenuation, the N-1 simultaneous equations of the ratios of the N-1 changes in the attenuation between different wavelengths can be converted into the equation solved for the concentration of the blood component. On the other hand, a calculation is performed based on the value of the ratio of the change in the degree of attenuation outputted from the attenuation degree ratio calculation circuit and the attenuation coefficient value outputted from the coefficient storage circuit, and N-1
1. A non-invasive blood component concentration measuring device comprising: a blood component concentration calculation circuit that calculates relative concentrations of individual blood components.
路が、マイクロプロセッサを含む回路により構成されて
いることを特徴とする請求項(1)および(2)記載の
非観血式血中成分濃度測定装置。(3) The non-invasive blood method according to claims (1) and (2), wherein the attenuation ratio calculation circuit and the blood component concentration calculation circuit are configured by a circuit including a microprocessor. Medium component concentration measuring device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1274888A JPH03136637A (en) | 1989-10-24 | 1989-10-24 | Non-observing type blood component concentration measuring device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1274888A JPH03136637A (en) | 1989-10-24 | 1989-10-24 | Non-observing type blood component concentration measuring device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03136637A true JPH03136637A (en) | 1991-06-11 |
JPH0588609B2 JPH0588609B2 (en) | 1993-12-22 |
Family
ID=17547934
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1274888A Granted JPH03136637A (en) | 1989-10-24 | 1989-10-24 | Non-observing type blood component concentration measuring device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03136637A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003505115A (en) * | 1998-12-01 | 2003-02-12 | クリティケア システムズ インコーポレーティッド | Digital oximeter and method for calculating oxygenation level |
JP2012515337A (en) * | 2009-01-19 | 2012-07-05 | スマート・メディカル・ソリューションズ・ゲー・エム・ベー・ハー | Measuring device for measuring at least one parameter of a blood sample |
JP2014147473A (en) * | 2013-01-31 | 2014-08-21 | Nippon Koden Corp | Biological signal measurement system, biological signal measurement device, and control program of biological signal measurement device |
JP2015192865A (en) * | 2014-03-28 | 2015-11-05 | 日本光電工業株式会社 | Pulse photometer |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7206621B2 (en) | 2003-08-27 | 2007-04-17 | Nihon Kohden Corporation | Pulse oximeter |
-
1989
- 1989-10-24 JP JP1274888A patent/JPH03136637A/en active Granted
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003505115A (en) * | 1998-12-01 | 2003-02-12 | クリティケア システムズ インコーポレーティッド | Digital oximeter and method for calculating oxygenation level |
JP2012515337A (en) * | 2009-01-19 | 2012-07-05 | スマート・メディカル・ソリューションズ・ゲー・エム・ベー・ハー | Measuring device for measuring at least one parameter of a blood sample |
JP2014147473A (en) * | 2013-01-31 | 2014-08-21 | Nippon Koden Corp | Biological signal measurement system, biological signal measurement device, and control program of biological signal measurement device |
JP2015192865A (en) * | 2014-03-28 | 2015-11-05 | 日本光電工業株式会社 | Pulse photometer |
Also Published As
Publication number | Publication date |
---|---|
JPH0588609B2 (en) | 1993-12-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5137023A (en) | Method and apparatus for monitoring blood analytes noninvasively by pulsatile photoplethysmography | |
JP4465271B2 (en) | Apparatus for noninvasively determining blood oxygen saturation in a target tissue | |
US6456862B2 (en) | Method for non-invasive spectrophotometric blood oxygenation monitoring | |
US5277181A (en) | Noninvasive measurement of hematocrit and hemoglobin content by differential optical analysis | |
US6411832B1 (en) | Method of improving reproducibility of non-invasive measurements | |
US5891024A (en) | Two stage calibration and analyte measurement scheme for spectrophotomeric analysis | |
US5127406A (en) | Apparatus for measuring concentration of substances in blood | |
JP3364819B2 (en) | Blood absorption substance concentration measurement device | |
US5372135A (en) | Blood constituent determination based on differential spectral analysis | |
JP2002369814A (en) | Non-invasive method and apparatus for monitoring hemoglobin concentration and oxygen saturation | |
JPS63252239A (en) | reflective oximeter | |
EP2129288B1 (en) | Device and method for monitoring blood parameters | |
Takatini et al. | A miniature hybrid reflection type optical sensor for measurement of hemoglobin content and oxygen saturation of whole blood | |
JP2003144401A (en) | Blood flow measurement device | |
JPH03136637A (en) | Non-observing type blood component concentration measuring device | |
US20080214911A1 (en) | Method and Device for Determining Blood Components Using Ratiometric Absolute Pulse Spectroscopy | |
US6339714B1 (en) | Apparatus and method for measuring concentrations of a dye in a living organism | |
JPH0415046A (en) | Measuring method for blood circulating movement | |
JPH02305555A (en) | Device for simultaneously measuring degree of saturation of blood oxygen and blood pressure | |
Aoyagi | Pulse oximetry: Its origin and development | |
JP3893509B2 (en) | Biological parameter measuring device | |
US20180353080A1 (en) | Time resolved near infrared remission spectroscopy for noninvasive in vivo blood and tissue analysis | |
JPH0326236A (en) | Measuring instrument for degree of saturation of oxygen | |
Timm | Non-invasive haemoglobin monitoring by an LED based optical sensor system | |
IL93498A (en) | Device and method for measuring light backscattering |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081222 Year of fee payment: 15 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081222 Year of fee payment: 15 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091222 Year of fee payment: 16 |
|
EXPY | Cancellation because of completion of term |