JPH03136366A - Semiconductor device - Google Patents
Semiconductor deviceInfo
- Publication number
- JPH03136366A JPH03136366A JP1276814A JP27681489A JPH03136366A JP H03136366 A JPH03136366 A JP H03136366A JP 1276814 A JP1276814 A JP 1276814A JP 27681489 A JP27681489 A JP 27681489A JP H03136366 A JPH03136366 A JP H03136366A
- Authority
- JP
- Japan
- Prior art keywords
- region
- junction
- type
- diffusion region
- conductivity type
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Semiconductor Memories (AREA)
- Dram (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は半導体装置に関し、特にバイポーラ型トランジ
スタとMO8型トランジスタとを一体に組合せて構成し
たメモリセルを有する半導体装置に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor device, and particularly to a semiconductor device having a memory cell configured by integrally combining a bipolar transistor and an MO8 transistor.
〔従来の4技術〕
従来のメモリセルを有する半導体装置の一例として、1
988年のインターナショナル・エレクトロン・デバイ
ス・ミーティング(InternationalEle
ctron Device Meeting)で発表さ
れた論文ア・二ニー・スタティック・メモリ・セル・ベ
ースド・オン・リザーブ・ベース・カレント(RBC)
エフェクト・オン・バイポーラ・トランジスタ(入 N
ew 5tatic Memory Ce1l
1lased on ReverseBase
Current (RB C) Effect of
BipolarTrnsistor)がある。[Four conventional technologies] As an example of a semiconductor device having a conventional memory cell, 1
988 International Electron Device Meeting (InternationalEle
Paper presented at ctron Device Meeting) A Two Static Memory Cell Based on Reserve Base Current (RBC)
Effect on bipolar transistor (in N
ew 5tatic Memory Ce1l
1lased on ReverseBase
Current (RB C) Effect of
Bipolar Transistor).
第3図は従来の半導体装置のメモリセルの等価回路図で
あり、PチャネルMO8型トランジスタQ、にベースを
接続したバイポーラ型トランジスタQ2の各1個で構成
されている。FIG. 3 is an equivalent circuit diagram of a memory cell of a conventional semiconductor device, which is composed of a P-channel MO8 type transistor Q and a bipolar type transistor Q2 whose base is connected to each other.
第4図は従来の半導体装置の断面図である。FIG. 4 is a sectional view of a conventional semiconductor device.
第4図に示すように、P型シリコン基板1の上にN+型
型埋領領域2びN型領域3を設け、N型領域3の表面に
選択的にフィールド酸化膜4を設けて素子形成領域を形
成し、素子形成領域の表面に設けたゲート酸化膜を介し
てゲート電極5を設け、ゲート電極5に整合してN型領
域3内にP型拡散領域10及びP型拡散領域9を設け、
P型拡散領域10及びP型拡散領域9をそれぞれソース
領域又はドレイン領域とするMOS型トランジスタを構
成している。一方、P型拡散領域10内にN++拡散領
域11を設け、これにより、N型領域3をコレクタ領域
、P型拡散領域10をベース領域、N++拡散領域11
をエミッタ領域とするバイポーラ型トランジスタを構成
し、エミッタ領域のN++拡散領域11に接続する配線
6、P型拡散領域9に接続する配線8、及び配線間を電
気的に分離する絶縁膜7を設けている。As shown in FIG. 4, an N+ type buried region 2 and an N type region 3 are provided on a P type silicon substrate 1, and a field oxide film 4 is selectively provided on the surface of the N type region 3 to form an element. A gate electrode 5 is provided through a gate oxide film provided on the surface of the element formation region, and a P-type diffusion region 10 and a P-type diffusion region 9 are formed in the N-type region 3 in alignment with the gate electrode 5. established,
A MOS transistor is configured in which the P-type diffusion region 10 and the P-type diffusion region 9 serve as a source region or a drain region, respectively. On the other hand, an N++ diffusion region 11 is provided within the P-type diffusion region 10, so that the N-type region 3 is a collector region, the P-type diffusion region 10 is a base region, and the N++ diffusion region 11 is a collector region.
constitutes a bipolar transistor having an emitter region, and includes a wiring 6 connected to the N++ diffusion region 11 in the emitter region, a wiring 8 connected to the P-type diffusion region 9, and an insulating film 7 for electrically separating the wirings. ing.
メモリセルの機能としてはバイポーラ型トランジスタの
コレクタとエミッタ間にある電位、即ちベースオープン
時にコレクタとエミッタ間で大電流が流れ始める電圧(
以下BVCEOと記す)よりやや低めの電位に設定し、
ベース電位を外部から強制的にIV又はOVに設定した
後、ベースオープンにするとベース電位が自動的に1■
又は0■の値(強制的に与えられた電位と異なる場合も
ある)に保持されて、メモリ機能をもつことになる。尚
、MOS型トランジスタは前記のベース領域(即ちP壁
領域10)の電位を強制的に変更するためと、ベース領
域の電位読み取りのために使われる。The function of a memory cell is the potential between the collector and emitter of a bipolar transistor, that is, the voltage at which a large current begins to flow between the collector and emitter when the base is open.
(hereinafter referred to as BVCEO), set to a slightly lower potential than
After the base potential is forcibly set to IV or OV from the outside, when the base is opened, the base potential is automatically set to 1.
Alternatively, it is held at a value of 0 (which may be different from the forcibly applied potential) and has a memory function. Note that the MOS transistor is used to forcibly change the potential of the base region (namely, the P wall region 10) and to read the potential of the base region.
上述した従来の半導体装置は、バイポーラ型トランジス
タのベース領域がMOS型トランジスタのP型拡散領域
10と共用しており、かつ、一方のP型拡散領域9と同
じく、比較的浅い接合深さになっている。このためバイ
ポーラ型トランジスタの電流増幅率が高く約100程度
になる。これによりベース電位がIV付近に保持された
時に、コレクタに流れる電流が100μA〜1mAとな
り、大規模のメモリセルを構成した時、全メモリセルに
流れる全電流が大電流になり、その結果、消費電力が大
きくなって半導体装置が高熱を発生し、信頼性を低下さ
せたり、又は、半導体装置の破壊をまねくという問題点
を有する。In the conventional semiconductor device described above, the base region of the bipolar transistor is shared with the P-type diffusion region 10 of the MOS transistor, and like the P-type diffusion region 9, the junction depth is relatively shallow. ing. Therefore, the current amplification factor of the bipolar transistor is high, about 100. As a result, when the base potential is held near IV, the current flowing to the collector becomes 100 μA to 1 mA, and when a large-scale memory cell is configured, the total current flowing to all memory cells becomes a large current, and as a result, the consumption There is a problem in that the electric power increases and the semiconductor device generates high heat, reducing reliability or causing destruction of the semiconductor device.
例えば、コレクタ電流が100μAの時64にビットの
メモリ装置で、全メモリセルがIV付近く即ち1”のレ
ベル〉に保持されると、全体で64kX100μA=6
.4Aの電流が流れることになり、殆んど使用に耐えな
い値になる。For example, in a 64-bit memory device when the collector current is 100 μA, if all memory cells are held near IV, that is, at a level of 1, then the total is 64 k×100 μA = 6
.. A current of 4A will flow, a value that is almost unusable.
また、MOS型トランジスタでは5■電源を使用した場
合、従来の構造のバイポーラ型トランジスタではBVC
ROが8〜10■になり2種類の電源を供給する必要が
あり、単一電源の5Vで使用できないという欠点がある
。In addition, when using a 5■ power supply with a MOS transistor, a bipolar transistor with a conventional structure has a BVC
The disadvantage is that the RO is 8 to 10 cm and two types of power supplies must be supplied, and a single power supply of 5V cannot be used.
本発明の半導体装置は、−導電型半導体基板上に設けた
高不純物濃度を有する逆導電型埋込領域と、前記逆導電
型埋込領域を含む表面に設けた低不純物濃度の逆導電型
領域と、前記逆導電型領域上に設けて素子形成領域を区
画するフィールド絶縁膜と、前記素子形成領域上に設け
たゲート絶縁膜の上に設けたゲート電極と、前記ゲート
電極に整合して前記素子形成領域内に設けて前記埋込領
域に達する深いPN接合を有する一導電型の第1の拡散
領域及び前記第1の拡散領域よりも浅いPN接合を有す
る一導電型の第2の拡散領域と、前記第1の拡散領域内
に設けた逆導電型の第3の拡散領域とを備えている。The semiconductor device of the present invention includes a reverse conductivity type buried region having a high impurity concentration provided on a conductivity type semiconductor substrate, and a reverse conductivity type region having a low impurity concentration provided on a surface including the reverse conductivity type buried region. a field insulating film provided on the opposite conductivity type region to partition an element formation region; a gate electrode provided on a gate insulating film provided on the element formation region; A first diffusion region of one conductivity type having a deep PN junction provided in the element formation region and reaching the buried region; and a second diffusion region of one conductivity type having a PN junction shallower than the first diffusion region. and a third diffusion region of an opposite conductivity type provided within the first diffusion region.
次に、本発明の実施例について図面を参照して説明する
。Next, embodiments of the present invention will be described with reference to the drawings.
第1図は本発明の第1の実施例の断面図である。FIG. 1 is a sectional view of a first embodiment of the invention.
第1図に示すように、P型シリコン基板1の上に、N+
型型埋領領域2び低濃度のN−型領域3を順次積層して
設け、N−型領域3の表面を選択的に酸化して設けたフ
ィールド酸化膜4により素子形成領域を区画する0次に
素子形成領域の表面に設けたゲート酸化膜を介してゲー
ト電極5を設け、ゲート電極5に整合してN+型領領域
2達する深いPN接合を有するP型の拡散領域12と浅
いPN接合を有するP型拡散領域9を設け、P型拡散領
域12及びP型拡散領域9をソース領域又はドレイン領
域とするMO3型トランジスタを構成し、一方、P型拡
散12内にN++拡散領域11を設け、これにより、N
+型型埋領領域2びN型領域3をコレクタ領域、P型拡
散領域12をベース領域、N++拡散領域11をエミッ
タ領域とするバイポーラ型トランジスタを構成してメモ
リセルを形成する。As shown in FIG. 1, N+
A type buried region 2 and a low concentration N-type region 3 are sequentially stacked, and an element forming region is partitioned by a field oxide film 4 formed by selectively oxidizing the surface of the N-type region 3. Next, a gate electrode 5 is provided via a gate oxide film provided on the surface of the element formation region, and a shallow PN junction is formed between a P-type diffusion region 12 having a deep PN junction aligned with the gate electrode 5 and reaching the N+ type region 2. A P-type diffusion region 9 having a P-type diffusion region 12 and a P-type diffusion region 9 are provided as a source region or a drain region to constitute an MO3 type transistor, while an N++ diffusion region 11 is provided within the P-type diffusion region 12. , which gives N
A memory cell is formed by configuring a bipolar transistor in which the + type buried region 2 and the N type region 3 serve as a collector region, the P type diffusion region 12 serves as a base region, and the N++ diffusion region 11 serves as an emitter region.
第2図は本発明の第2の実施例の断面図である。FIG. 2 is a sectional view of a second embodiment of the invention.
第2図に示すように、第1の実施例との相違は、深いP
N接合を有する拡散領域が2段になっていることである
。即ち浅いPN接合部と、深いPN接合部がある。浅い
PN接合部はP型拡散領域9と同じ接合深さで形成した
P型拡散領域13であるがN++拡散領域11が設けら
れた下方に深いPN接合を有するP型拡散領域12はN
+型型埋領領域2達する深い接合部を形成している。As shown in FIG. 2, the difference from the first embodiment is that the deep P
The diffusion region having the N junction is in two stages. That is, there is a shallow PN junction and a deep PN junction. The shallow PN junction is a P-type diffusion region 13 formed with the same junction depth as the P-type diffusion region 9, but the P-type diffusion region 12, which has a deep PN junction below where the N++ diffusion region 11 is provided, is an N-type diffusion region 12.
A deep junction reaching the + type buried region 2 is formed.
第2の実施例は第1の実施例に比して、MO3型トラン
ジスタの特性が安定しており、制御しやすい構造になっ
ている。In the second embodiment, compared to the first embodiment, the characteristics of the MO3 type transistor are more stable and the structure is easier to control.
以上説明したように本発明は第1の拡散領域のPN接合
深さを第2の拡散領域のPN接合深さより深くすること
により、第1の拡散領域をベース領域とするバイポーラ
型トランジスタのベース幅を広く、それにより電流増幅
率を下げることができる。即ち、電流増幅率を従来の1
0分の1から100分の1に下げることができる。即ち
、前述の64にビットのメモリ装置では、電流増幅率が
10分の1であれば全体では640mAの電流であり、
又100分の1であれば64mAとなる。As explained above, the present invention improves the base width of a bipolar transistor using the first diffusion region as a base region by making the PN junction depth of the first diffusion region deeper than the PN junction depth of the second diffusion region. can be made wider, thereby lowering the current amplification factor. In other words, the current amplification factor is reduced to 1
It can be lowered from 1/0 to 1/100. That is, in the aforementioned 64-bit memory device, if the current amplification factor is 1/10, the total current is 640 mA,
Also, if it is 1/100, it will be 64 mA.
即ち、低電流であり、信頼性の高い、高性能で、且つ単
一電源で駆動できるメモリセルの半導体装置を実現でき
るという効果を有する。In other words, it is possible to realize a memory cell semiconductor device that uses low current, is highly reliable, has high performance, and can be driven with a single power source.
第1図は本発明の第1の実施例の断面図、第2図は本発
明の第2の実施例の断面図、第3図はメモリセルの等価
回路図、第4図は従来の半導体装置の断面図である。
1・・・P型シリコン基板、2・・・N+型型埋領領域
3・・・N型領域、4・・・フィールド酸化膜、5・・
・ゲート電極、6・・・配線、7・・・絶縁膜、8・・
・配線、9゜10・・・P型拡散領域、11・・・N+
+拡散領域、12.13・・・P型拡散領域。
躬 1 図FIG. 1 is a sectional view of a first embodiment of the present invention, FIG. 2 is a sectional view of a second embodiment of the present invention, FIG. 3 is an equivalent circuit diagram of a memory cell, and FIG. 4 is a conventional semiconductor FIG. 2 is a cross-sectional view of the device. DESCRIPTION OF SYMBOLS 1... P type silicon substrate, 2... N+ type buried region 3... N type region, 4... Field oxide film, 5...
・Gate electrode, 6... Wiring, 7... Insulating film, 8...
・Wiring, 9゜10...P-type diffusion region, 11...N+
+diffusion region, 12.13...P type diffusion region. 1 diagram
Claims (1)
逆導電型埋込領域と、前記逆導電型埋込領域を含む表面
に設けた低不純物濃度の逆導電型領域と、前記逆導電型
領域上に設けて素子形成領域を区画するフィールド絶縁
膜と、前記素子形成領域上に設けたゲート絶縁膜の上に
設けたゲート電極と、前記ゲート電極に整合して前記素
子形成領域内に設けて前記埋込領域に達する深いPN接
合を有する一導電型の第1の拡散領域及び前記第1の拡
散領域よりも浅いPN接合を有する一導電型の第2の拡
散領域と、前記第1の拡散領域内に設けた逆導電型の第
3の拡散領域とを備えたことを特徴とする半導体装置。an opposite conductivity type buried region with a high impurity concentration provided on a semiconductor substrate of one conductivity type; an opposite conductivity type region with a low impurity concentration provided on a surface including the opposite conductivity type buried region; and the opposite conductivity type region provided on a surface including the opposite conductivity type buried region. a field insulating film provided above to partition an element forming region; a gate electrode provided on a gate insulating film provided on the element forming region; and a field insulating film provided in the element forming region in alignment with the gate electrode. a first diffusion region of one conductivity type having a deep PN junction reaching the buried region; a second diffusion region of one conductivity type having a PN junction shallower than the first diffusion region; and the first diffusion region. A semiconductor device comprising: a third diffusion region of an opposite conductivity type provided within the region.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1276814A JPH03136366A (en) | 1989-10-23 | 1989-10-23 | Semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1276814A JPH03136366A (en) | 1989-10-23 | 1989-10-23 | Semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03136366A true JPH03136366A (en) | 1991-06-11 |
Family
ID=17574764
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1276814A Pending JPH03136366A (en) | 1989-10-23 | 1989-10-23 | Semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03136366A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05251670A (en) * | 1991-12-16 | 1993-09-28 | Philips Gloeilampenfab:Nv | Semiconductor device |
-
1989
- 1989-10-23 JP JP1276814A patent/JPH03136366A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05251670A (en) * | 1991-12-16 | 1993-09-28 | Philips Gloeilampenfab:Nv | Semiconductor device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW488077B (en) | Semiconductor integrated circuit device and the manufacturing method thereof | |
JP2601143B2 (en) | Semiconductor device | |
JPH03136366A (en) | Semiconductor device | |
JP2926785B2 (en) | Semiconductor device | |
JP2550119B2 (en) | Semiconductor memory device | |
JP2597753B2 (en) | Lateral PNP transistor with improved electrostatic withstand voltage using latch voltage of NPN transistor | |
JPS6230363A (en) | Semiconductor device | |
JPH02129960A (en) | Semiconductor memory | |
JPH04159774A (en) | Semiconductor device | |
JPH0258864A (en) | Semiconductor device | |
JPS63205946A (en) | semiconductor equipment | |
JPH031393A (en) | Semiconductor device suitable for digital operation | |
JPS59149045A (en) | Semiconductor device | |
JPS5984461A (en) | semiconductor equipment | |
JPS6120147B2 (en) | ||
JP3077396B2 (en) | Semiconductor device | |
JPS62141758A (en) | Semiconductor storage device | |
JPH0311665A (en) | Semiconductor memory device and its manufacture | |
KR19990085651A (en) | Output amplifier made of one cell in semiconductor device | |
JPS58155751A (en) | semiconductor equipment | |
JP2002093816A (en) | Semiconductor device | |
JPS6129150B2 (en) | ||
JPS63249365A (en) | Semiconductor memory device | |
JPH06302786A (en) | Semiconductor integrated circuit device | |
JPS61164260A (en) | bipolar transistor |