JPH03135515A - Optical isolator - Google Patents
Optical isolatorInfo
- Publication number
- JPH03135515A JPH03135515A JP27416789A JP27416789A JPH03135515A JP H03135515 A JPH03135515 A JP H03135515A JP 27416789 A JP27416789 A JP 27416789A JP 27416789 A JP27416789 A JP 27416789A JP H03135515 A JPH03135515 A JP H03135515A
- Authority
- JP
- Japan
- Prior art keywords
- optical
- optical axis
- axis
- magneto
- wavelength
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 77
- 230000010287 polarization Effects 0.000 claims abstract description 21
- 239000000463 material Substances 0.000 claims abstract description 8
- 238000000926 separation method Methods 0.000 claims description 6
- 239000004065 semiconductor Substances 0.000 description 14
- 230000000694 effects Effects 0.000 description 5
- 238000002955 isolation Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- BGPVFRJUHWVFKM-UHFFFAOYSA-N N1=C2C=CC=CC2=[N+]([O-])C1(CC1)CCC21N=C1C=CC=CC1=[N+]2[O-] Chemical compound N1=C2C=CC=CC2=[N+]([O-])C1(CC1)CCC21N=C1C=CC=CC1=[N+]2[O-] BGPVFRJUHWVFKM-UHFFFAOYSA-N 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は、光通信、光計測及び光記録に用いる光アイソ
レータに関するものである。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an optical isolator used in optical communication, optical measurement, and optical recording.
従来の技術
半導体レーザを光通信等の光信号伝送系の光源として用
いる場合、半導体レーザからの出射光の一部が、伝送路
あるいは伝送用光学部品の各接続部で反射して、半導体
レーザの発振特性の不安定化や雑音増加を引き起こす原
因となる。この反射戻り光が半導体レーザに帰還するの
を防止するために、一般的に光アイソレータが使用され
ている。Conventional technology When a semiconductor laser is used as a light source in an optical signal transmission system such as optical communication, a part of the light emitted from the semiconductor laser is reflected at the transmission line or at each connection of the transmission optical components, causing the semiconductor laser to emit light. This causes oscillation characteristics to become unstable and noise to increase. An optical isolator is generally used to prevent this reflected return light from returning to the semiconductor laser.
従来、この種の光アイソレータは、例えば第6図に示す
ように、偏光子1、磁気光学素子2、検光子3及び磁石
4を備えている。半導体レーザからの出射光6は偏光子
1を通過して直線偏光となり、磁気光学素子2通過時に
その偏光方向は46゜回転され、偏光子1と45°の角
度に配置した検光子3を通過する。逆に、反射戻り光6
は検光子3を通過して直線偏光となり、磁気光学素子2
通過時に、ファラデー効果の持つ非相反性により、偏光
方向はさらに45°回転され、偏光子1と直交するため
に直線偏光は通過できない。以上のような原理で、反射
戻り光6が半導体レーザに帰還するのを防止することが
できる。Conventionally, this type of optical isolator includes a polarizer 1, a magneto-optical element 2, an analyzer 3, and a magnet 4, as shown in FIG. 6, for example. The emitted light 6 from the semiconductor laser passes through the polarizer 1 and becomes linearly polarized light, and when it passes through the magneto-optical element 2, its polarization direction is rotated by 46 degrees, and then passes through the analyzer 3, which is arranged at an angle of 45 degrees with the polarizer 1. do. On the contrary, the reflected return light 6
passes through the analyzer 3 and becomes linearly polarized light, and the magneto-optical element 2
Upon passing, the polarization direction is further rotated by 45 degrees due to the non-reciprocity of the Faraday effect, and since it is orthogonal to the polarizer 1, linearly polarized light cannot pass through. Based on the principle described above, it is possible to prevent the reflected return light 6 from returning to the semiconductor laser.
一般に、磁気光学素子による偏光方向の回転角θは、
θ=VHL
V:グエルデ定数
H:磁界の強さ
L:磁気光学素子の厚さ
で表わされる。この中でヴエルデ定数Vは波長依存性、
温度依存性を持ち、磁気光学結晶の種類や組成によって
も異なる。従って、磁気光学素子は飽和磁界中で定温(
一般には室温)でひとつの波長に対して偏光方向の回転
角が45°となるように、結晶の種類、組成、厚み等が
設計されている。Generally, the rotation angle θ of the polarization direction by the magneto-optical element is expressed as θ=VHL V: Guelde constant H: strength of magnetic field L: thickness of the magneto-optical element. Among these, the Werde constant V is wavelength dependent,
It is temperature dependent and varies depending on the type and composition of the magneto-optic crystal. Therefore, the magneto-optical element is kept at a constant temperature (
The type, composition, thickness, etc. of the crystal are designed so that the rotation angle of the polarization direction is 45° for one wavelength at room temperature (generally).
発明が解決しようとする課題
一般の光アイソレータは、ひとつの波長にのみ対応でき
るように設計されているものであり、複数の波長に対応
できる光アイソレータとしては、不飽和磁界の領域で磁
界強度を変えることによって、偏光方向の回転角を45
°に補正する方法(特開昭59−174817号公報、
特開昭69−181319号公報)等が提案されている
。Problems to be Solved by the Invention Conventional optical isolators are designed to handle only one wavelength. Optical isolators that can handle multiple wavelengths need to increase the magnetic field strength in the unsaturated magnetic field region. By changing the rotation angle of the polarization direction by 45
A method of correcting to
JP-A-69-181319) and the like have been proposed.
本発明はこのような課題を解決するもので、複数波長に
対応でき、高アイソレーシゴン比を持つ光アイソレータ
を提供することを目的とするものである。The present invention is intended to solve these problems, and aims to provide an optical isolator that can handle multiple wavelengths and has a high isolation ratio.
課題を解決するだめの手段
本発明は前記課題を解決するために、偏光分離素子、磁
気光学素子、及び磁気回路材料を備え、前記磁気回路材
料中に階段状とした前記磁気光学素子を固定するととも
に、光軸に垂直な面内で光軸を除く光軸に平行な軸を中
心として回転できるようにしたもので、さらに偏光分離
素子からの反射光波長の変化により、磁気回路材料中に
固定した階段状磁気光学素子が、自動的に光軸に垂直な
面内で光軸を除く光軸に平行な軸を中心として回転する
ように構成したものである。Means for Solving the Problems In order to solve the above problems, the present invention includes a polarization separation element, a magneto-optical element, and a magnetic circuit material, and fixes the stepped magneto-optic element in the magnetic circuit material. At the same time, it can be rotated around an axis parallel to the optical axis excluding the optical axis in a plane perpendicular to the optical axis, and further fixed in the magnetic circuit material by changing the wavelength of the reflected light from the polarization separation element. The stepped magneto-optical element is configured to automatically rotate around an axis parallel to the optical axis excluding the optical axis within a plane perpendicular to the optical axis.
作用
本発明の光アイソレータによれば、使用する光の波長に
対応して、光路部分の磁気光学素子の厚みを変化させる
ことができるので、複数の波長に対応できる光アイソレ
ータが得られることとなる。Effect: According to the optical isolator of the present invention, the thickness of the magneto-optical element in the optical path portion can be changed depending on the wavelength of the light used, so an optical isolator that can handle multiple wavelengths can be obtained. .
さらに、偏光分離素子からの反射光波長を測定して、磁
気光学素子を光軸に垂直な面内で、光軸を除く光軸に平
行な軸を中心として回転させることができるので、自動
的に複数の波長に対応できる光アイソレータが得られる
こととなる。Furthermore, by measuring the wavelength of the reflected light from the polarization separation element, it is possible to automatically rotate the magneto-optical element within a plane perpendicular to the optical axis and around an axis parallel to the optical axis, excluding the optical axis. This means that an optical isolator that can handle multiple wavelengths can be obtained.
実施例
第1図に本発明による光アイソレータの構成を示す。磁
気光学結晶(例えばYIG)を2種の光波長に対応する
ように厚み設計し、第1波長に対応する厚みと第2波長
に対応する厚みを備えた階段状磁気光学素子7を磁石4
中に固定する。半導体レーザからの出射光5は、第1波
長に対応する偏光子8(以下、第1偏光子とする)を通
過して直線偏光となり、階段状磁気光学素子7の第1波
長に対応する厚みに設計された部分を通過する際にその
偏光方向は46°回転され、第1偏光子8と45°の角
度で配置された第1波長に対応する検光子9(以下、第
1検光子とする)を通過する。逆に、反射戻り光は第1
検光子9を通過して直線偏光どなり、階段状磁気光学素
子7通過時に、ファラデー効果の持つ非相反性により偏
光方向はさらに46°回転され、第1偏光子8と直交す
るだめに直線偏光は通過できない。Embodiment FIG. 1 shows the configuration of an optical isolator according to the present invention. A magneto-optic crystal (for example, YIG) is designed to have a thickness that corresponds to two types of optical wavelengths, and a stepped magneto-optical element 7 having a thickness corresponding to the first wavelength and a thickness corresponding to the second wavelength is attached to the magnet 4.
Fix it inside. The emitted light 5 from the semiconductor laser passes through a polarizer 8 (hereinafter referred to as the first polarizer) corresponding to the first wavelength and becomes linearly polarized light, and the stepped magneto-optical element 7 has a thickness corresponding to the first wavelength. The polarization direction of the light is rotated by 46 degrees when it passes through a section designed for ). Conversely, the reflected return light is the first
The linearly polarized light passes through the analyzer 9, and when it passes through the stepped magneto-optical element 7, the polarization direction is further rotated by 46 degrees due to the non-reciprocity of the Faraday effect, and the linearly polarized light is now perpendicular to the first polarizer 8. Can't pass.
ところが、異なった第2波長の半導体レーザを使用する
場合、階段状磁気光学素子7による偏光方向の回転角は
46°からずれてしまうため、第1検光子9を通過する
光量が減少する。さらに、反射戻り光が階段状磁気光学
素子7通過時にも偏光方向の回転角が46°からずれて
しまうので、第1偏光子8を通過する光量が増加し、そ
の結果アイソレーション比が劣化することになる。However, when a semiconductor laser with a different second wavelength is used, the rotation angle of the polarization direction by the stepped magneto-optical element 7 deviates from 46°, and thus the amount of light passing through the first analyzer 9 decreases. Furthermore, even when the reflected return light passes through the stepped magneto-optical element 7, the rotation angle of the polarization direction deviates from 46°, so the amount of light passing through the first polarizer 8 increases, resulting in a deterioration of the isolation ratio. It turns out.
そこで、第2波長に対応する厚みに設計された部分が光
路上に位置するように、階段状磁気光学素子7を固定し
た磁石4を、光軸に対して垂直な面内で光軸を除く光軸
に平行な磁石の回転軸1゜を中心として180°回転さ
せる。そうすれば、第2図のように、階段状磁気光学素
子7の第2波長に対応する厚みに設計された部分が光路
上に位置し、それとともに第2波長に対応する偏光子1
1(以下、第2偏光子とする)及び、第2波長に対応す
る検光子12(以下、第2検光子とする)が光路上に位
置するようになる。従って、第2波長の半導体レーザか
らの出射光6は、第2偏光子11を通過して直線偏光と
なり、階段状磁気光学素子7の第2波長に対応する厚み
に設計された部分を通過する際にその偏光方向は45°
回転され、第2偏光子11と45°の角度で配置された
第2検光子12を通過する。逆に、反射戻り光は第2検
光子12を通過して直線偏光となり、階段状磁気光学素
子7通過時に、ファラデー効果の持つ非相反性により偏
光方向はさらに45°回転され、第2偏光子11と直交
するために、直線偏光は通過できなくなり高アイソレー
シヨン比が得られることになる。ここで、13は偏光子
ホルダ、14は検光子ホルダである。Therefore, the magnet 4 to which the stepped magneto-optical element 7 is fixed is placed in a plane perpendicular to the optical axis so that the part designed to have a thickness corresponding to the second wavelength is located on the optical path. The magnet is rotated 180° around the 1° rotation axis of the magnet parallel to the optical axis. Then, as shown in FIG. 2, the part of the stepped magneto-optical element 7 designed to have a thickness corresponding to the second wavelength will be located on the optical path, and at the same time, the polarizer 1 corresponding to the second wavelength will be located on the optical path.
1 (hereinafter referred to as a second polarizer) and an analyzer 12 (hereinafter referred to as a second analyzer) corresponding to the second wavelength are located on the optical path. Therefore, the emitted light 6 from the semiconductor laser having the second wavelength passes through the second polarizer 11 to become linearly polarized light, and passes through a portion of the stepped magneto-optical element 7 designed to have a thickness corresponding to the second wavelength. In this case, the polarization direction is 45°
It is rotated and passes through a second analyzer 12 arranged at an angle of 45° with the second polarizer 11 . On the contrary, the reflected return light passes through the second analyzer 12 and becomes linearly polarized light, and when it passes through the stepped magneto-optical element 7, the polarization direction is further rotated by 45 degrees due to the non-reciprocity of the Faraday effect, and the polarization direction is further rotated by 45 degrees. 11, linearly polarized light cannot pass through, resulting in a high isolation ratio. Here, 13 is a polarizer holder, and 14 is an analyzer holder.
さらに、第3図に示すように、使用している半導体レー
ザの光波長を測定するために、受光素子16を設置する
。検光子9,12からの反射光を受光素子15で測定し
、光波長に対応するパワーの電圧を回転制御機16へ導
くことによって、ホルダ17を光軸に対して垂直な面内
で、光軸を除く光軸に平行な軸を中心として回転させる
ことができる。Furthermore, as shown in FIG. 3, a light receiving element 16 is installed in order to measure the optical wavelength of the semiconductor laser being used. The reflected light from the analyzers 9 and 12 is measured by the light receiving element 15, and a voltage with a power corresponding to the wavelength of the light is guided to the rotation controller 16. It can be rotated around an axis parallel to the optical axis excluding the optical axis.
今、第1波長の半導体レーザを使用しているとすると、
半導体レーザからの出射光5は、第1偏光子8、階段状
磁気光学素子7、第1検光子9を通過し、反射戻シ光は
第1検光子9、階段状磁気光学素子7を通過するが、第
1偏光子8を通過できず、高アイソレーシヨン比が得ら
れる。ところが、第2波長の半導体レーザからの出射光
をこの光アイソレータに入射すると、階段状磁気光学素
子7による偏光方向の回転角は、波長に対する設計厚み
が異なるため46°からずれ、アイル−ジョン比が劣化
する。ここで、光波長を測定する受光素子15を設けて
おけば、第1検光子9からの反射光を受光素子16に導
き、回転制御機16によってホルダ17を光軸に対して
垂直な面内で、光軸を除く光軸に平行な軸を中心として
回転させることができる。そうすれば第4図のように、
光路上には第2偏光子11、階段状磁気光学素子7の第
2波長に対応する厚みに設計された部分、第2検光子1
2が位置するので、階段状磁気光学素子7による偏光方
向の回転角は46°となり、高アイソレーシヨン比が得
られることとなる。Now, if we are using a semiconductor laser with the first wavelength,
The emitted light 5 from the semiconductor laser passes through the first polarizer 8, the stepped magneto-optical element 7, and the first analyzer 9, and the reflected light passes through the first analyzer 9 and the stepped magneto-optical element 7. However, the light cannot pass through the first polarizer 8, resulting in a high isolation ratio. However, when the light emitted from the semiconductor laser of the second wavelength is incident on this optical isolator, the rotation angle of the polarization direction by the stepped magneto-optical element 7 deviates from 46° due to the difference in the designed thickness with respect to the wavelength, and the aisle ratio increases. deteriorates. Here, if a light receiving element 15 for measuring the light wavelength is provided, the reflected light from the first analyzer 9 is guided to the light receiving element 16, and the rotation controller 16 moves the holder 17 in a plane perpendicular to the optical axis. can be rotated around an axis parallel to the optical axis, excluding the optical axis. Then, as shown in Figure 4,
On the optical path are a second polarizer 11, a portion of the stepped magneto-optical element 7 designed to have a thickness corresponding to the second wavelength, and a second analyzer 1.
2, the angle of rotation of the polarization direction by the stepped magneto-optical element 7 is 46°, and a high isolation ratio can be obtained.
なお、3つ以上の波長に対応する厚さの段を持つ磁気光
学素子を配置すれば、3つ以上の波長に対応できる光ア
イソレータが得られることとなる。Note that by arranging a magneto-optical element having steps of thickness corresponding to three or more wavelengths, an optical isolator that can handle three or more wavelengths can be obtained.
発明の効果
以上のように本発明によれば、使用する半導体レーザの
光波長に対応して、それぞれの波長に対応する厚みを備
えた階段状磁気光学素子を、光軸に対して垂直な面内で
、光軸を除く光軸に平行な軸を中心として回転させて、
光路上の磁気光学素子の厚みを変化させることによって
、複数波長に対応できる光アイソレータが得られること
となる。Effects of the Invention As described above, according to the present invention, step-shaped magneto-optical elements having thicknesses corresponding to the optical wavelengths of the semiconductor lasers used are arranged in a plane perpendicular to the optical axis. Rotate around an axis parallel to the optical axis, excluding the optical axis,
By changing the thickness of the magneto-optical element on the optical path, an optical isolator that can handle multiple wavelengths can be obtained.
さらに、偏光分離素子からの反射光波長を測定して、回
転制御機に導き、光波長に対応するように磁気光学素子
を回転させることによって、自動的に複数波長に対応で
きる光アイソレータが得られることとなる。Furthermore, by measuring the wavelength of the reflected light from the polarization separation element and guiding it to a rotation controller, which rotates the magneto-optical element to correspond to the optical wavelength, an optical isolator that can automatically handle multiple wavelengths can be obtained. It happens.
第1図、第2図は本発明による光アイソレータの構成図
、第3図、第4図は本発明による光アイソレータのうち
回転制御機を備えた光アイソレータの構成図、第6図は
従来の光アイソレータの構成及びその原理を示す構成図
である。
4・・・・・・磁石、6・・・・・・出射光、7・・・
・・・階段状磁気光学素子、8,11・・・・・・偏光
子、e、12・・・・・・検光子、1o・・・・・・磁
石の回転軸、13・・・・・・偏光子ホルダ、14・・
・・・・検光子ホルダ、16・・印・受光素子、16・
・・・・・回転制御機、17・・・・・・ホルダ。1 and 2 are block diagrams of an optical isolator according to the present invention, FIGS. 3 and 4 are block diagrams of an optical isolator equipped with a rotation controller among the optical isolators according to the present invention, and FIG. 6 is a block diagram of a conventional optical isolator. FIG. 1 is a configuration diagram showing the configuration and principle of an optical isolator. 4... Magnet, 6... Emitted light, 7...
...Stepped magneto-optical element, 8, 11...Polarizer, e, 12...Analyzer, 1o...Rotation axis of magnet, 13... ...Polarizer holder, 14...
...Analyzer holder, 16... mark, light receiving element, 16.
... Rotation control machine, 17 ... Holder.
Claims (2)
を備え、前記磁気回路材料中に階段状とした前記磁気光
学素子を固定するとともに、光軸に垂直な面内で光軸を
除く光軸に平行な軸を中心として回転できるように構成
したことを特徴とする光アイソレータ。(1) comprising a polarization separation element, a magneto-optical element, and a magnetic circuit material, in which the magneto-optical element is fixed in a step-like manner in the magnetic circuit material, and light excluding the optical axis in a plane perpendicular to the optical axis; An optical isolator characterized by being configured to be able to rotate around an axis parallel to the axis.
気回路材料中に固定した階段状磁気光学素子が、光軸に
垂直な面内で光軸を除く光軸に平行な軸を中心として回
転するように構成したことを特徴とする請求項1記載の
光アイソレータ。(2) Due to the change in the wavelength of the reflected light from the polarization separation element, the stepped magneto-optical element fixed in the magnetic circuit material is centered on an axis parallel to the optical axis excluding the optical axis in a plane perpendicular to the optical axis. The optical isolator according to claim 1, wherein the optical isolator is configured to rotate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27416789A JPH03135515A (en) | 1989-10-20 | 1989-10-20 | Optical isolator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27416789A JPH03135515A (en) | 1989-10-20 | 1989-10-20 | Optical isolator |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03135515A true JPH03135515A (en) | 1991-06-10 |
Family
ID=17537970
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP27416789A Pending JPH03135515A (en) | 1989-10-20 | 1989-10-20 | Optical isolator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03135515A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5278853A (en) * | 1991-05-28 | 1994-01-11 | Mitsubishi Gas Chemical Co., Ltd. | Optical isolator |
KR101600511B1 (en) * | 2015-11-13 | 2016-03-07 | (주)88콘크리트 | Improved mixing hopper apparatus and method for manufacturing a multi-color blocks using the same |
-
1989
- 1989-10-20 JP JP27416789A patent/JPH03135515A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5278853A (en) * | 1991-05-28 | 1994-01-11 | Mitsubishi Gas Chemical Co., Ltd. | Optical isolator |
KR101600511B1 (en) * | 2015-11-13 | 2016-03-07 | (주)88콘크리트 | Improved mixing hopper apparatus and method for manufacturing a multi-color blocks using the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4539519A (en) | Fiber optics device for measuring the intensity of an electric current utilizing the Faraday effect | |
JPH0746177B2 (en) | Optical isolator | |
US5691837A (en) | Magneto-optical element and optical magnetic field sensor using the same | |
US5742157A (en) | Optical fiber magnetic-field sensor | |
US5375009A (en) | Optical isolator device having a wider cutoff wavelength band for a return light beam | |
JPH03135515A (en) | Optical isolator | |
US7147388B2 (en) | Method for fabrication of an all fiber polarization retardation device | |
JPH03135517A (en) | Optical isolator | |
JPH04128715A (en) | Optical modulator | |
JPH0375614A (en) | Optical isolator | |
JPH0375613A (en) | Optical isolator | |
JPH06221993A (en) | Extinction ratio measuring method and measuring device for polarizer | |
EP0647869A1 (en) | Non-reciprocal optical device | |
JPH03246448A (en) | Magnetic field sweep ellipsometer | |
JP3348257B2 (en) | Optical isolator device | |
JP3206614B2 (en) | Optical voltage sensor | |
GB2100018A (en) | Fibre optics measuring device | |
JPH0237545B2 (en) | HIKARINYORUDENKAI * JIKAISOKUTEIKI | |
JPH0810785Y2 (en) | Wide-field magnetic field sweep device | |
JPH0429112A (en) | Magnetooptic device and optical isolator | |
JPH04303814A (en) | Optical isolator | |
JP2960567B2 (en) | Optical isolator | |
JP2751475B2 (en) | Optical isolator | |
JP2818757B2 (en) | Optical isolator | |
JPH07209604A (en) | Optical isolator device |