JPH03134960A - Manufacture of negative electrode plate for lead-acid battery - Google Patents
Manufacture of negative electrode plate for lead-acid batteryInfo
- Publication number
- JPH03134960A JPH03134960A JP1274113A JP27411389A JPH03134960A JP H03134960 A JPH03134960 A JP H03134960A JP 1274113 A JP1274113 A JP 1274113A JP 27411389 A JP27411389 A JP 27411389A JP H03134960 A JPH03134960 A JP H03134960A
- Authority
- JP
- Japan
- Prior art keywords
- lead
- paste
- electrode plate
- negative electrode
- amount
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/14—Electrodes for lead-acid accumulators
- H01M4/16—Processes of manufacture
- H01M4/20—Processes of manufacture of pasted electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は鉛蓄電池の製造法に関するものであり、2 ・
・
特にペースト式負極板の活物質利用率の向上を図るもの
である。[Detailed Description of the Invention] Industrial Application Field The present invention relates to a method for manufacturing lead-acid batteries, and includes 2.
- In particular, this aims to improve the utilization rate of active materials in paste-type negative electrode plates.
従来の技術
鉛蓄電池の負極板は、通常鉛粉に水と硫酸を加え、さら
に有機添加剤や炭素の微粉末などを添加し練合してペー
ストとなし、それを鋳造格子やエキスバンドメタルなど
の格子体に塗着した後、熟成乾燥して製造される。この
とき用いられる鉛粉の多くはボールミルタイプあるいは
バートンポットタイプの鉛粉機によって作製された鉛粉
を用いるため、その組成は赤色リサージ〔以下pb○(
RF、D )という〕を主成分としてこれに少量の金属
鉛を含んだものとなっている。又、未化成板の活物質組
成としては3塩基性硫酸鉛を主成分として、Pb0(R
ED)や金属鉛などによって構成されているのが一般的
である。Conventional technology The negative electrode plate of a lead-acid battery is usually made by adding water and sulfuric acid to lead powder, then adding organic additives and fine carbon powder, etc., and kneading it into a paste, which is then made into a paste using cast grids, expanded metal, etc. It is manufactured by coating it on a lattice body and then aging and drying it. Most of the lead powder used at this time is produced by a ball mill type or Burton pot type lead powder machine, so its composition is red litharge [hereinafter referred to as pb○ (
RF, D)], and contains a small amount of metallic lead. In addition, the active material composition of the unformed board is tribasic lead sulfate as the main component, Pb0(R
It is generally made of metal lead (ED) or metal lead.
発明が解決しようとする課題
このようにして作られた鉛蓄電池の負極板利用率は、常
温の5時間率放電で理論値の約50%と極めて低い。又
低温および大電流放電になる程こ3 ・\−7
の利用率はさらに低下し、たとえば−15°Cで5CA
の放電にもなると、利用率は理論値に対し約10%にま
で低下するという課題があった。Problems to be Solved by the Invention The negative electrode plate utilization rate of the lead-acid battery manufactured in this manner is extremely low at about 50% of the theoretical value at a 5-hour rate discharge at room temperature. In addition, the lower the temperature and the higher the current discharge, the lower the utilization rate of 3.\-7 becomes.
There was a problem in that the utilization rate decreased to about 10% of the theoretical value when it became discharged.
課題を解決するだめの手段
本発明はこのような負極板の活物質利用率の向上、特に
急放電特性の向上を図るものであり、その具体的な手段
として、鉛粉に水と硫酸を加え練合してペーストとし、
これを鋳造格子やエキスバンドメタルの格子体に塗着し
熟成乾燥を行う製造方法において、用いる鉛粉中に黄色
リサージ〔以下PI)O(YELLOW)という〕を好
ましくは粉末総量の3.5〜13.5重量%混合し、こ
れを熟成乾燥時に温度80”Q以上、湿度85%以上の
雰囲気中にて保管して乾燥することで熟成させ、未化成
板の活物質中に4塩基性硫酸塩を生成させることを特徴
とするものである。さらに好捷しくは、ペースト練合時
に加える硫酸量を、鉛粉中に含まれるPb01m01に
対して0.1 m 01〜0.5molの範囲で加える
ことを特徴とするものである。Means to Solve the Problems The present invention aims to improve the active material utilization rate of such a negative electrode plate, and in particular to improve the rapid discharge characteristics.As a specific means, water and sulfuric acid are added to lead powder. Knead to make a paste,
In a production method in which this is applied to a cast grid or expanded metal grid and aged and dried, yellow litharge (hereinafter referred to as PI)O (YELLOW) is preferably added to the lead powder in a range of 3.5 to 3.5% of the total amount of powder. 13.5% by weight is mixed, and this is aged by storing and drying in an atmosphere with a temperature of 80"Q or higher and a humidity of 85% or higher during aging and drying, and tetrabasic sulfuric acid is added to the active material of the unformed board. It is characterized by generating salt.More preferably, the amount of sulfuric acid added during paste kneading is in the range of 0.1 m 01 to 0.5 mol with respect to Pb01 m01 contained in the lead powder. It is characterized by adding.
作用
上記の方法によって負極板の活物質利用率を大幅に向上
させることができる。Effect: By the method described above, the utilization rate of the active material of the negative electrode plate can be significantly improved.
つまり、従来はポールミルクイブ等の鉛粉機にて作製さ
れたPb0(RED)を主成分とした鉛粉を用い、練合
・熟成乾燥後の未化成板の活物質組成としては、一般に
3塩基性硫酸鉛を主成分とするような熟成乾燥が行われ
ていた。この3塩基性硫酸鉛は一般に結晶粒子径が平均
約1μと非常に小さなものであるため、活物質粒子間に
形成されるボアの大きさもそれに準じて平均孔径1μ以
下の小さなものとなる。In other words, conventionally, lead powder mainly composed of Pb0 (RED) produced using a lead powder machine such as Pall Milk Eve was used, and the active material composition of the unformed board after kneading, aging and drying was generally 3. Aging and drying was performed in which the main component was basic lead sulfate. Since this tribasic lead sulfate generally has a very small crystal particle size of about 1 μm on average, the size of the pores formed between the active material particles is correspondingly small with an average pore size of 1 μm or less.
この未化成板を化成した後の活物質問のボアは化成前の
原形をとどめ、その平均孔径も極めて小さなものであっ
た。このため電解液の拡散などによる移動および供給が
スムーズにおこなわれず、寿命特性は良いが、容量の得
られにくい活物質利用率の低いものとなる。After the unformed plate was chemically formed, the bores of the live material remained in their original shape before chemical formation, and the average pore diameter was also extremely small. For this reason, the movement and supply of the electrolyte by diffusion etc. cannot be performed smoothly, and although the life characteristics are good, the active material utilization rate is low, making it difficult to obtain a capacity.
これに対して本発明では鉛粉中にpb。On the other hand, in the present invention, PB is contained in lead powder.
(YELLOW)を3.5〜13.5重量%の範囲で5
/\−1
混合してペーストとし、その熟成乾燥を温度80°C以
上、湿度85%以上の雰囲気中にて行い未化成板の活物
質中に4塩基性硫酸鉛を主成分として生成させることに
より、活物質問のボアをより大きくし、電解液の拡散浸
透を円滑にして活物質利用率を大幅に向上させたもので
ある。(YELLOW) in the range of 3.5 to 13.5% by weight.
/\-1 Mix to form a paste, age and dry it in an atmosphere with a temperature of 80°C or higher and a humidity of 85% or higher to form tetrabasic lead sulfate as the main component in the active material of the unformed plate. As a result, the bore of the active material is made larger, and the diffusion and penetration of the electrolytic solution is made smoother, thereby significantly improving the active material utilization rate.
すなわち4塩基性硫酸鉛の結晶粒子径は、3塩基性硫酸
鉛の結晶と比較し、非常に大きなもので、その大きさは
数十μにも達する。このため活物質問のボアの平均孔径
も大きなものとなり、結果として化成後の極板のボアも
大きなものができ、電解液の拡散移動およびそのペース
ト内部への供給がスムーズに行われる形となる。従って
活物質利用率は3塩基性硫酸鉛を主成分とした未化成板
活物質のものと比較し、大幅に向上することとなる。That is, the crystal particle size of tetrabasic lead sulfate is much larger than that of tribasic lead sulfate, reaching several tens of microns in size. For this reason, the average pore diameter of the bore of the active material becomes large, and as a result, the bore of the electrode plate after chemical formation is also large, allowing smooth diffusion and movement of the electrolyte and its supply into the paste. . Therefore, the active material utilization rate is significantly improved compared to that of an unformed plate active material containing tribasic lead sulfate as a main component.
実施例
以下本発明の実施例について述べる。壕ず鉛粉に水と硫
酸を加えて練合してペーストとする段階において、鉛粉
中にpbo(yELLoW)を0重量%から15重量%
まで0.5車量%刻みで混合し6 \−7
た各種の鉛酸化物を作成した。次いでそれら鉛酸化物に
加える硫酸量の代表例として、Pb01m01に対して
硫酸を0.3 m Ol加えて練合し、ペーストを作成
した。そしてこれらペーストを表−1に示すA−82種
類の熟成乾燥条件で熟成を行い、負極板を得た。Examples Examples of the present invention will be described below. At the stage of adding water and sulfuric acid to lead powder and kneading it into a paste, pbo (yELLoW) is added from 0% by weight to 15% by weight in lead powder.
Various lead oxides were prepared by mixing them in increments of 0.5% by weight. Next, as a typical example of the amount of sulfuric acid added to these lead oxides, 0.3 mOl of sulfuric acid was added to Pb01m01 and kneaded to create a paste. These pastes were aged under A-82 types of aging and drying conditions shown in Table 1 to obtain negative electrode plates.
この得られた負極板の活物質をX線回折で測定した結果
、熟成乾燥条件AのものとBのうちpb。As a result of measuring the active material of the obtained negative electrode plate by X-ray diffraction, it was found that under aging and drying conditions A and B, pb.
(YKLLOW)の粉末に対する混合量が3.5重量%
未滴のものは3塩基性硫酸鉛が主成分であり、それ以外
のものは4塩基性硫酸鉛が主成分であった。The amount of (YKLLOW) mixed with the powder is 3.5% by weight.
The main component of the undropped product was tribasic lead sulfate, and the main component of the other products was tetrabasic lead sulfate.
さらにそれらの得られた負極板を用いて電圧12v仕様
で5時間率容量が25Ahの電池を作成して電槽内化成
を行った。その後−15°Cにて7 べ−7
20時間静置し、150Aの電流にて放電を行い、電池
の端子電圧が6vに低下するまでの放電持続時間を求め
た。Furthermore, a battery having a voltage of 12 V and a 5-hour rate capacity of 25 Ah was prepared using the obtained negative electrode plates, and chemical conversion was performed inside the battery case. Thereafter, the battery was allowed to stand at -15°C for 20 hours, and discharged at a current of 150A, and the discharge duration until the terminal voltage of the battery decreased to 6V was determined.
その結果を第1肉に示す。図より明らかなように従来の
熟成乾燥条件である人にて熟成を行ったものは、PbO
(YKLLOW)の混合量が多くなっても放電持続時間
の伸びはまったく見られないのに対して、本発明の熟成
乾燥条件Bによるものは、Pt+0(YKLLOW)の
混合量が多くなるに従い放電持続時間は長くなり、その
混合量が粉末総量の3.5重量%以上になると急激に放
電持続時間が伸びており、著しい効果があるのが判る。The results are shown in the first piece. As is clear from the figure, those aged by humans under conventional aging and drying conditions are PbO
Even if the amount of Pt+0 (YKLLOW) mixed increases, the discharge duration does not increase at all, whereas in the case of aging drying condition B of the present invention, the discharge duration increases as the amount of Pt+0 (YKLLOW) mixed increases. The time becomes longer, and when the amount of the mixture exceeds 3.5% by weight of the total amount of powder, the discharge duration increases rapidly, and it can be seen that there is a remarkable effect.
第2図は熟成乾燥条件Bで処理した電池を用いて放電を
5時間率電流にて電池の端子電圧が10.5Vに低下す
るまで行い、充電はその放電容量の130%まで行うこ
とを1サイクルとしたサイクル試験にて、放電容量が5
時間率容量の50%まで低下するサイクルを求めた結果
を示す。図よシ明らかなようにPb0(YELLOW)
の混合量が13.5重量%を超えるとサイクルが急激に
低下するのが判る。これは4塩基性硫酸鉛が生成しすぎ
ることにより、活物質問ボアの孔径が大きくなりすぎ、
活物質相互の結合力が弱くなったためと思われる。Figure 2 shows that using a battery treated under aging and drying condition B, discharge is performed at a 5-hour rate current until the terminal voltage of the battery drops to 10.5V, and charging is performed to 130% of its discharge capacity. In a cycle test, the discharge capacity was 5
The results of determining the cycle in which the time rate capacity decreases to 50% are shown. As the figure clearly shows, Pb0 (YELLOW)
It can be seen that when the mixing amount exceeds 13.5% by weight, the cycle rate decreases rapidly. This is due to the formation of too much tetrabasic lead sulfate, which causes the pore size of the living matter bore to become too large.
This seems to be due to the weakening of the bonding force between the active materials.
発明の効果 以のように本発明によれば、従来のpb。Effect of the invention As described above, according to the present invention, conventional pb.
(RED )を主成分とした鉛粉を用い、未化成板の活
物質組成として3塩基性硫酸鉛を主成分とした負極板を
用いたものの寿命特性は良いが活物質利用率は低いとい
う問題を、鉛粉中にpb。(RED) is used as the main component, and a negative electrode plate with tribasic lead sulfate as the main component of the active material composition of the unformed plate has good life characteristics, but the problem is that the active material utilization rate is low. , pb in lead powder.
(YELLOW)を混合し、未化成板の活物質組成とし
て4塩基性硫酸鉛を主成分とすることによシ、寿命特性
は何ら変える事なく活物質利用率を向上させるものであ
る。(YELLOW) and by making tetrabasic lead sulfate the main component of the active material composition of the unformed plate, the utilization rate of the active material is improved without changing the life characteristics at all.
第1図は熟成乾燥条件の違いによるpb。
(YICLLOW)の混合量と初期容量との関係を示す
図、第2図はPb0(YKLLOW)の混合量と寿命サ
イクルとの関係を示す図である。Figure 1 shows PB due to differences in aging and drying conditions. FIG. 2 is a diagram showing the relationship between the mixing amount of Pb0 (YICLLOW) and the initial capacity, and FIG. 2 is a diagram showing the relationship between the mixing amount of Pb0 (YKLLOW) and the life cycle.
Claims (2)
のペーストを格子体に塗着した後、熟成乾燥を行う鉛蓄
電池負極板の製造方法であって、前記鉛粉中に黄色リサ
ージ〔PbO(YELLOW)〕を粉末総量の3.5〜
13.5重量%の範囲で混合してペーストとし、このペ
ーストを温度80℃以上、湿度85%以上の雰囲気中に
保管することで熟成することを特徴とした鉛蓄電池負極
板の製造法。(1) A method for producing a negative electrode plate for a lead-acid battery, in which lead powder is mixed with water and sulfuric acid to form a paste, the paste is applied to a grid, and then aged and dried. Resurge [PbO (YELLOW)] from 3.5 to 3.5 of the total amount of powder
A method for producing a negative electrode plate for a lead-acid battery, characterized in that the paste is mixed in a range of 13.5% by weight, and the paste is aged by storing it in an atmosphere with a temperature of 80° C. or higher and a humidity of 85% or higher.
れるPbO1molに対して0.1〜0.5molの範
囲としたことを特徴とする特許請求の範囲第1項に記載
の鉛蓄電池負極板の製造法。(2) The lead-acid battery according to claim 1, wherein the amount of sulfuric acid added during paste kneading is in the range of 0.1 to 0.5 mol per 1 mol of PbO contained in the lead powder. Manufacturing method of negative electrode plate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1274113A JPH03134960A (en) | 1989-10-20 | 1989-10-20 | Manufacture of negative electrode plate for lead-acid battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1274113A JPH03134960A (en) | 1989-10-20 | 1989-10-20 | Manufacture of negative electrode plate for lead-acid battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03134960A true JPH03134960A (en) | 1991-06-07 |
Family
ID=17537194
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1274113A Pending JPH03134960A (en) | 1989-10-20 | 1989-10-20 | Manufacture of negative electrode plate for lead-acid battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03134960A (en) |
-
1989
- 1989-10-20 JP JP1274113A patent/JPH03134960A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2004199950A (en) | Method for manufacturing positive electrode plate for lead-acid battery | |
JP2010102916A (en) | Method for manufacturing positive electrode plate for lead-acid battery, method for manufacturing lead-acid battery, and lead-acid battery | |
JPH03134960A (en) | Manufacture of negative electrode plate for lead-acid battery | |
JP4441934B2 (en) | Method for producing lead-acid battery | |
JPH11162456A (en) | Lead storage battery | |
WO2021055974A1 (en) | Naples and pb-sb-sn yellows - composition and methods of use | |
JP3164237B2 (en) | Manufacturing method of anode plate for lead-acid battery | |
JPH09289020A (en) | Positive electrode plate for lead acid battery and method for manufacturing the same | |
JP6447866B2 (en) | Control valve type lead storage battery manufacturing method | |
JP4501246B2 (en) | Control valve type stationary lead acid battery manufacturing method | |
JP2004055417A (en) | Method for producing paste-like active material for positive electrode and lead storage battery using the same | |
JPH1064530A (en) | Method for manufacturing electrode plate for lead-acid battery | |
JP2773312B2 (en) | Manufacturing method of positive electrode plate for lead-acid battery | |
JPS58111263A (en) | Manufacture of cathodh plate for lead-acid battery | |
KR100250866B1 (en) | A method for preparing anode plate of lead storage battery | |
JPH0322353A (en) | Manufacture of electrode plate for lead-acid battery | |
JPS6030054A (en) | Manufacture of plate for paste type lead-acid battery | |
JPH11273666A (en) | Positive electrode plate for lead storage battery and method of manufacturing the same | |
JP2000182615A (en) | Lead storage battery | |
JPS6229064A (en) | Manufacturing method for anode plates for lead-acid batteries | |
JP2006318775A (en) | Method for producing paste active material for negative electrode | |
JPS61161660A (en) | Lead-acid battery | |
JPS60249243A (en) | Positive plate for sealed storage battery | |
JPH042052A (en) | Manufacture of lead acid battery | |
JPH1012225A (en) | Lead acid battery |