JPH03132720A - Liquid crystal element, polarization converting element using the element and method for driving the element - Google Patents
Liquid crystal element, polarization converting element using the element and method for driving the elementInfo
- Publication number
- JPH03132720A JPH03132720A JP27031489A JP27031489A JPH03132720A JP H03132720 A JPH03132720 A JP H03132720A JP 27031489 A JP27031489 A JP 27031489A JP 27031489 A JP27031489 A JP 27031489A JP H03132720 A JPH03132720 A JP H03132720A
- Authority
- JP
- Japan
- Prior art keywords
- liquid crystal
- polarization
- voltage
- state
- crystal element
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Liquid Crystal (AREA)
- Polarising Elements (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、高速でオン、オフを繰り返す液晶素子及びそ
れを用いた偏光変換素子及びその駆動法に関するもので
ある。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a liquid crystal element that repeatedly turns on and off at high speed, a polarization conversion element using the liquid crystal element, and a method for driving the same.
[従来の技術]
高速でオン、オフを繰り返す液晶素子としては、二周波
駆動法によるプリンターヘッド装置が知られている。[Prior Art] As a liquid crystal element that repeatedly turns on and off at high speed, a printer head device using a dual-frequency driving method is known.
この二周波駆動法においては、数KHzまでの低周波と
数十KHzの高周波が用いられている。In this two-frequency driving method, a low frequency up to several KHz and a high frequency up to several tens of KHz are used.
このため、高周波領域では透明電極基板ので電極抵抗を
低くしなければ液晶に印加される有効電圧が低下するこ
ととなり、大面積を駆動することが難しいという欠点を
有する。For this reason, in a high frequency region, unless the electrode resistance of the transparent electrode substrate is lowered, the effective voltage applied to the liquid crystal will be reduced, and this has the disadvantage that it is difficult to drive a large area.
また、二周波駆動に適する液晶材料は、液晶分子の分子
軸に対して横方向の相互作用が強(なるため、通常のネ
マチック液晶に比べ粘性が非常に高(なっている。この
ため、高速応答を得るためには、高電圧が必要となり、
ひいては消費電力が太き(なる欠点を有していた。In addition, liquid crystal materials suitable for dual-frequency driving have strong interactions in the lateral direction with respect to the molecular axes of liquid crystal molecules, and therefore have extremely high viscosity compared to normal nematic liquid crystals. To get a response, a high voltage is required,
Furthermore, it had the disadvantage of high power consumption.
そこで、数KHzまでの低周波単一信号による駆動方式
が望まれている。Therefore, a driving method using a low frequency single signal of up to several KHz is desired.
この従来の低周波単一信号による駆動方式では、通常の
ツイストネマチック(TN)モードにおいては、その電
圧印加(オン)時の応答性は、電圧を高くすることによ
り速(することができる。しかし、その電圧を切った(
オフ)時の応答性は、電圧によって速くすることができ
なく、セルの基板間隙を薄くしたり、液晶を低粘性化す
ることにより多少は速くできるが、この応答速度は0℃
でせいぜい数十ff1sec程度にすぎなかった。また
、この基板間隙の薄型化及び液晶の低粘性化により、液
晶素子自体の偏光変換効率が低下してしまうこともあり
、偏光変換効率が良くかつ高速応答で視野角の広い液晶
素子は得られていなかった。In this conventional driving method using a single low-frequency signal, in the normal twisted nematic (TN) mode, the response when voltage is applied (on) can be increased by increasing the voltage. , turned off that voltage (
The response speed when off) cannot be increased by changing the voltage; it can be made somewhat faster by thinning the gap between the cell substrates or lowering the viscosity of the liquid crystal, but this response speed cannot be increased at 0°C.
However, it was only a few tens of ff1sec at most. Additionally, due to the thinning of the gap between the substrates and the lowering of the viscosity of the liquid crystal, the polarization conversion efficiency of the liquid crystal element itself may decrease, making it impossible to obtain a liquid crystal element with high polarization conversion efficiency, high speed response, and a wide viewing angle. It wasn't.
[発明の解決しようとする問題点]
これを解決するために、本発明者らは、既に一対の水平
配向処理された透明電極付の透明電極基板を、その配向
処理方向がほぼ直交するように配置して、その間にネマ
チック液晶を挟持し、そのネマチック液晶層よりも入射
光側に偏光軸を入射光側の基板面の液晶分子の配向方向
にほぼ平行またはこれにほぼ直交するように偏光板を配
置し、ネマチック液晶のピッチpと基板間隙dとの関係
d/pが0.5<d/p <1とし、両透明電極間に液
晶のしきい値電圧以上の電圧を印加することにより液晶
分子が縦配向状態を取り、その後、電圧をオフすること
により、液晶分子がその自然のねじれ状態である270
°への緩和状態であるほぼ90″の中間ねじれ状態とさ
れ、この液晶分子の縦配向状態と液晶分子の中間ねじれ
状態との2つの状態を利用して入射光の偏光方向を90
°変える液晶素子を提案している。[Problems to be Solved by the Invention] In order to solve this problem, the present inventors have developed a pair of transparent electrode substrates with transparent electrodes that have already been horizontally aligned so that the directions of the alignment process are almost perpendicular to each other. a polarizing plate with a nematic liquid crystal sandwiched between them, and the polarization axis on the incident light side of the nematic liquid crystal layer so that it is substantially parallel to or substantially perpendicular to the alignment direction of liquid crystal molecules on the substrate surface on the incident light side. By arranging the nematic liquid crystal, the relationship d/p between the pitch p of the nematic liquid crystal and the substrate gap d is 0.5<d/p<1, and applying a voltage higher than the threshold voltage of the liquid crystal between both transparent electrodes. The liquid crystal molecules assume a vertical alignment state, and then by turning off the voltage, the liquid crystal molecules are in their natural twisted state270
The polarization direction of the incident light is changed to approximately 90" by using the two states, the vertically aligned state of the liquid crystal molecules and the intermediate twisted state of the liquid crystal molecules.
We are proposing a liquid crystal element that can be changed.
これにより、低消費電力の低周波単一信号による駆動方
式で、偏光変換効率の低下なしに高速応答が可能な液晶
素子を得ることができた。As a result, it was possible to obtain a liquid crystal element that is capable of high-speed response without deteriorating polarization conversion efficiency using a driving method using a low-frequency single signal with low power consumption.
しかし、その後、垂直方向では偏光変換率は良いが斜め
方向から見た場合に偏光変換効率が低下する欠点が見出
された。このため、視野角が広(偏光変換効率が高い液
晶素子が望まれており、本発明はそれを得ることを目的
としたものである。However, it was later discovered that although the polarization conversion efficiency is good in the vertical direction, the polarization conversion efficiency decreases when viewed from an oblique direction. Therefore, a liquid crystal element with a wide viewing angle (high polarization conversion efficiency) is desired, and the present invention is aimed at obtaining this.
[問題点を解決するための手段]
本発明はかかる問題点を解決すべくなされたものであり
、一対の水平配向処理された透明電極付の透明電極基板
を両透明電極基板間では相互にその水平配向方向がほぼ
直交するように配置し、その間にネマチック液晶を挟持
し、そのネマチック液晶層よりも入射光側に偏光板を配
置し、入射光側の偏光板の偏光軸を入射光側の基板面の
液晶分子の配向方向にほぼ平行またはこれにほぼ直交す
るように配置し、ネマチック液晶のピッチpと基板間隙
dとの関係d/pを、0.5 xn <d/p <0.
5 X(n + 1 ) (n: n≧1の整数)と
し、両透明電極間に液晶のしきい値電圧以上の電圧を印
加することにより液晶分子が縦配向状態を取り、その後
、電圧をオフすることにより、液晶分子がその自然のね
じれ状態への緩和状態であるほぼ90゜+180゜×m
(m:n>m≧0の整数)の中間ねじれ状態とされ
、この液晶分子の縦配向状態と液晶分子の中間ねじれ状
態との2つの状態を利用して入射光の偏光方向を90°
変える液晶素子において、複屈折板の3個の主屈折率を
nus nx、 nよとし、nlを複屈折板の厚み方向
の屈折率とした場合、nx=n。[Means for Solving the Problems] The present invention has been made to solve these problems, and includes a pair of transparent electrode substrates with transparent electrodes that are horizontally aligned. They are arranged so that the horizontal alignment directions are almost perpendicular, a nematic liquid crystal is sandwiched between them, a polarizing plate is arranged on the incident light side of the nematic liquid crystal layer, and the polarization axis of the polarizing plate on the incident light side is aligned with the polarizing axis of the polarizing plate on the incident light side. The nematic liquid crystal is arranged so as to be substantially parallel to or perpendicular to the alignment direction of liquid crystal molecules on the substrate surface, and the relationship d/p between the pitch p of the nematic liquid crystal and the substrate gap d is 0.5 xn < d/p < 0.
5 X (n + 1) (n: an integer of n≧1), and by applying a voltage higher than the threshold voltage of the liquid crystal between both transparent electrodes, the liquid crystal molecules become vertically aligned, and then the voltage is By turning off, the liquid crystal molecules relax to their natural twisted state, approximately 90° + 180°×m
(m: an integer of n>m≧0), and the polarization direction of the incident light is changed to 90° by using two states: the vertical alignment state of liquid crystal molecules and the intermediate twist state of liquid crystal molecules.
In a liquid crystal element that changes, if the three principal refractive indices of the birefringent plate are nus nx and n, and nl is the refractive index in the thickness direction of the birefringent plate, then nx=n.
>nzであり、液晶の屈折率異方性Δn1と基板間隙d
、との積Δn、・d、に対して、複屈折板の屈折率異方
性Δn2と複屈折板の厚みd2との積を総合した複屈折
板のΔn2・d2の値が、0.1×Δn。>nz, and the refractive index anisotropy Δn1 of the liquid crystal and the substrate gap d
, and the product Δn,・d, the value of Δn2・d2 of the birefringent plate, which is the product of the refractive index anisotropy Δn2 of the birefringent plate and the thickness d2 of the birefringent plate, is 0.1. ×Δn.
tL <Δn2・dz <1.5 ×Δn、・d、とな
るような1軸性の複屈折板を液晶層の外側に配置したこ
とを特徴とする液晶素子、及び、その液晶素子において
、液晶分子のd/pが0.5 <d/p <1とされ、
自然のねじれ状態が270”とされ、液晶分子の縦配向
状態と90°の中間ねじれ状態との2つの状態を利用し
て入射光の偏光方向を90゜変えることを特徴とする液
晶素子、及び、それらの液晶素子において、複屈折板が
液晶層の両側に配置されていることを特徴とする液晶素
子、及び、それらの液晶素子において、液晶分子の配向
状態が自然のねじれ状態で水平配向によるプレティルト
角と整合するようにされることを特徴とする液晶素子、
及び、それらの液晶素子において、ネマ、チック液晶層
の出射光側にも偏光板を配置することを特徴とする液晶
素子、及び、それらの液晶素子を表示体の前に配置した
ことを特徴とする偏光変換素子、及び、それらの液晶素
子を駆動する液晶素子の駆動方法において、液晶分子の
ねじれ状態が中間ねじれ状態となった後、液晶のしきい
個未満の電圧を印加することを特徴とする液晶素子の駆
動方法を提供するものである。A liquid crystal element characterized by disposing a uniaxial birefringent plate such that tL <Δn2・dz <1.5 ×Δn,・d, and the liquid crystal element in which the liquid crystal The d/p of the molecule is 0.5 < d/p < 1,
A liquid crystal element whose natural twist state is 270" and which changes the polarization direction of incident light by 90 degrees by utilizing two states of liquid crystal molecules: a vertical alignment state and a 90 degree intermediate twist state, and In these liquid crystal elements, birefringent plates are arranged on both sides of the liquid crystal layer, and in these liquid crystal elements, the alignment state of liquid crystal molecules is a natural twisted state and is caused by horizontal alignment. A liquid crystal element, characterized in that it is adapted to match a pretilt angle.
And, in these liquid crystal elements, a polarizing plate is also arranged on the output light side of the negative or tick liquid crystal layer, and these liquid crystal elements are arranged in front of the display body. A polarization conversion element for driving a polarization conversion element and a method for driving a liquid crystal element for driving such a liquid crystal element, characterized in that a voltage less than a threshold value of the liquid crystal is applied after the twisted state of the liquid crystal molecules becomes an intermediate twisted state. The present invention provides a method for driving a liquid crystal element.
本発明は、通常の液晶で使用される電圧オン時とオフ時
の2つの安定状態のみを利用して光の透過率を変えるの
ではなく、長時間電圧オフによる完全なオフ時で通常の
液晶よりもより太き(ねじれた自然のねじれ状態への緩
和状態であるほぼ90゜+180°X m (m: n
>m≧0の整数)の中間ねじれ状態と、しきい値電圧以
上の電圧を印加した縦配向状態との2つの状態を利用し
て入射光の偏光方向を90@変えるものであり、高速応
答でかつ高い偏光変換効率が得られる。The present invention does not change the light transmittance by using only the two stable states of voltage on and voltage off, which are used in ordinary liquid crystals, but instead changes the light transmittance by completely turning off the voltage by turning off the voltage for a long time. thicker (relaxed state to twisted natural twisted state approximately 90° + 180°X m (m: n
It changes the polarization direction of incident light by 90@ by using two states: an intermediate twisted state (integer > m ≧ 0) and a vertically oriented state where a voltage higher than the threshold voltage is applied, resulting in a high-speed response. and high polarization conversion efficiency can be obtained.
また本発明では、斜め方向からみた場合の偏光変換効率
を改善したものであり、複屈折板の3個の主屈折率を0
8、n2、n8とし、nzを複屈折板の厚み方向の屈折
率とした場合、n4= nx> nzとなるようなl軸
性の複屈折板を液晶層の外側に配置したものであり、こ
れにより、視野角が広く優れた偏光変換性能を得ること
ができる。In addition, in the present invention, the polarization conversion efficiency when viewed from an oblique direction is improved, and the three principal refractive indices of the birefringent plate are reduced to 0.
8, n2, and n8, and when nz is the refractive index in the thickness direction of the birefringent plate, an l-axis birefringent plate such that n4 = nx > nz is arranged outside the liquid crystal layer, Thereby, it is possible to obtain a wide viewing angle and excellent polarization conversion performance.
さらに本発明では、中間ねじれ状態の安定性を改善する
ために、電圧をオフにし、液晶分子のねじれ状態が中間
ねじれ状態となった後、液晶のしきい個未満の電圧を印
加するものでもある。これにより、液晶分子の中間ねじ
れ状態が長(続くものであり、優れた偏光変換性能を得
ることができる。Furthermore, in the present invention, in order to improve the stability of the intermediate twisted state, the voltage is turned off and after the twisted state of the liquid crystal molecules becomes the intermediate twisted state, a voltage lower than the threshold of the liquid crystal is applied. . As a result, the intermediate twisted state of the liquid crystal molecules continues for a long time, and excellent polarization conversion performance can be obtained.
本発明は、この中間ねじれ状態である準安定状態を使用
しているため、数m5ec〜数secのある程度高速で
液晶に入射した偏光の偏光方向を繰り返して変化させる
用途に適している。Since the present invention uses this intermediate twisted state, which is a metastable state, it is suitable for applications in which the polarization direction of polarized light incident on a liquid crystal is repeatedly changed at a relatively high speed of several meters to several seconds.
本発明の液晶素子の配向処理方向は、2枚の基板間でほ
ぼ直交されるようにする。この基板間に挟持されるネマ
チック液晶のピッチpと基板間隙dとの関係d/pが0
.5×n <d/p < 0.5X(n+1)(n:n
=1の整数)とされる。これにより、電圧を長い間オフ
にしておいた状態である自然のねじれ状態ではn=1の
場合270@となり、n=2の場合450”となる。The orientation processing directions of the liquid crystal element of the present invention are made to be substantially orthogonal between the two substrates. The relationship d/p between the pitch p of the nematic liquid crystal sandwiched between the substrates and the substrate gap d is 0.
.. 5×n <d/p<0.5X(n+1)(n:n
= 1 integer). This results in 270@ for n=1 and 450'' for n=2 in the natural torsion state, where the voltage is left off for a long time.
本発明では、これに液晶のしきい電圧以上の電圧を印加
することにより、液晶分子を縦配向状態にする。この状
態は、・従来の通常の90°ツイストの液晶表示素子に
しきい電圧以上の電圧を印加した場合と同様である。In the present invention, the liquid crystal molecules are brought into a vertically aligned state by applying a voltage higher than the threshold voltage of the liquid crystal. This state is similar to the case where a voltage higher than the threshold voltage is applied to a conventional 90° twisted liquid crystal display element.
この2つの安定状態間での変化は、本発明の液晶素子で
も、従来の液晶素子でも同じである。本発明では、この
ようにしてしきい値以上の電圧を印加して液晶分子を縦
配向状態にした後、電圧をオフにした際の挙動が従来の
液晶素子と異なる。The change between these two stable states is the same for both the liquid crystal element of the present invention and the conventional liquid crystal element. In the present invention, the behavior when the voltage is turned off after the liquid crystal molecules are vertically aligned by applying a voltage equal to or higher than the threshold value is different from that of conventional liquid crystal elements.
本発明では、電圧をオフにすると、液晶分子のねじれ角
が大きいため、上記2つの安定状態の外に、短時間であ
るが完全な電圧オフ時の自然のねじれ状態であるほぼ9
0゜+180°×n(n+ n=1の整数)への緩和状
態であるほぼ90゜+180゜×m (m: n>m
≧0の整数)の準安定な中間ねじれ状態をとる。In the present invention, when the voltage is turned off, the twist angle of the liquid crystal molecules is large, so in addition to the above two stable states, the natural twist state when the voltage is completely turned off is approximately 9
Approximately 90° + 180° × m (m: n>m), which is a relaxed state to 0° + 180° × n (n + n = 1 integer)
≧0 (integer)).
この中間ねじれ状態は、液晶分子自身のねじれようとす
る力が強いため、縦配向状態から極めて速(、具体的に
は室温で1〜数m5ec程度と高速で到達し、かつある
程度の時間保持された後、自然のねじれ状態に到達する
。This intermediate twisted state is reached from the vertically aligned state extremely quickly (specifically, at a high speed of about 1 to several m5ec at room temperature, and is maintained for a certain period of time due to the strong twisting force of the liquid crystal molecules themselves). After that, the natural twisted state is reached.
本発明では、電圧をオフにしてこの中間ねじれ状態にな
った後、液晶のしきい値以下の電圧を印加することによ
り、この中間ねじれ状態を安定して長く継続させること
ができる。In the present invention, after the voltage is turned off to enter this intermediate twisted state, by applying a voltage below the threshold value of the liquid crystal, this intermediate twisted state can be maintained stably for a long time.
本発明では、このしきい値電圧以上の電圧を印加した時
の縦配向状態と、準安定な中間ねじれ状態との2つの状
態の間で駆動し、高速でオンオフするものである。In the present invention, the device is driven between two states: a vertically oriented state when a voltage equal to or higher than this threshold voltage is applied, and a metastable intermediate twisted state, and is turned on and off at high speed.
本発明ではこの中間ねじれ状態が90’ とされること
が好ましく、高速応答が得られ円偏光等の欠点を生じに
くい。特に、d/pを0.5< d/pく1とし、液晶
の自然のねじれ状態を270°として、縦配向状態と9
0°の中間ねじれ状態との間で変化させることが好まし
い。In the present invention, it is preferable that this intermediate twist state is 90', so that a high-speed response can be obtained and defects such as circular polarization are less likely to occur. In particular, when d/p is 0.5<d/p×1 and the natural twisted state of the liquid crystal is 270°, the vertical alignment state and 9
It is preferable to change between an intermediate twist state of 0°.
これは、ねじれ角が大きくなると中間ねじれ状態への移
行の応答速度は向上する傾向はあるが、駆動に要する電
圧が高くなり、円偏光性が増加し、偏光変換率が低下し
、コントラスト比が低下してくるためであり、270’
とすることが好ましい。また、ねじれ角を大きくすると
、リターデーション色が強(なる傾向もあり、好ましく
ない色が生じることがある。This is because as the twist angle increases, the response speed for transition to the intermediate twist state tends to improve, but the voltage required for driving increases, circular polarization increases, the polarization conversion rate decreases, and the contrast ratio decreases. This is because it is decreasing, and 270'
It is preferable that Furthermore, when the twist angle is increased, there is a tendency for the retardation color to become stronger, which may result in an undesirable color.
また、この場合、液晶分子の配向状態が自然のねじれ状
態で水平配向によるプレティルト角と整合するようにし
ておくことにより、中間ねじれ状態で整合の場合より、
高速でこの中間状態に移行し好ましい。このようにする
と、中間ねじれ状態から自然ねじれ状態へも速く移行し
易(なるが、この場合には、液晶のしきい値未満の電圧
を印加することにより、この中間ねじれ状態が安定して
継続する。In addition, in this case, by aligning the alignment state of the liquid crystal molecules with the pretilt angle due to horizontal alignment in the natural twisted state, it is possible to
It is preferable to transition to this intermediate state at high speed. In this way, it is easy to quickly transition from the intermediate twisted state to the natural twisted state (although in this case, by applying a voltage below the threshold of the liquid crystal, this intermediate twisted state can be stably maintained). do.
この整合状態の例を、自然ねじれの状態が270°であ
って、上から見て反時計方向に液晶がねじれている場合
の例で説明する。An example of this alignment state will be explained using an example in which the natural twist state is 270° and the liquid crystal is twisted counterclockwise when viewed from above.
この場合に、上から見て反時計方向に液晶が270@ね
じれている場合に整合状態となるようにされる。具体的
には、上側の基板では基板に液晶分子の左端が接してお
り、下側の基板では基板に液晶分子の手前側が接してい
る。これにより液晶のピッチが液晶分子のどちら側でも
同一となり、安定した整合状態となる。即ち、上側の基
板に接していた液晶分子の左端は、液晶が反時計方向に
90°ねじれたことにより手前側に来ることになり、奥
側(液晶分子の右端)が下側の基板に接すれば整合した
状態である安定な状態になる。しかし、下側の基板では
逆の手前側が基板に接しているため、液晶分子の左端側
と右端側で液晶分子のピッチが異なることになり、不整
合状態となる。逆に、270°ねじれた場合は整合状態
となり、液晶のピッチが同一となる。このため、 27
0”ねじれを自然のねじれ状態とする液晶素子の場合に
適しており、準安定な中間ねじれ状態の90°に速(到
達することとなる。In this case, when the liquid crystal is twisted 270@ in the counterclockwise direction when viewed from above, the alignment state is achieved. Specifically, in the upper substrate, the left end of the liquid crystal molecules is in contact with the substrate, and in the lower substrate, the near side of the liquid crystal molecules is in contact with the substrate. This makes the pitch of the liquid crystal the same on either side of the liquid crystal molecules, resulting in a stable alignment state. In other words, the left end of the liquid crystal molecule, which was in contact with the upper substrate, now comes to the front as the liquid crystal is twisted 90 degrees counterclockwise, and the far side (the right end of the liquid crystal molecule) comes into contact with the lower substrate. If this happens, it will be in a stable state, which is a consistent state. However, since the opposite front side of the lower substrate is in contact with the substrate, the pitch of the liquid crystal molecules differs between the left end and right end of the liquid crystal molecules, resulting in a mismatched state. On the other hand, if it is twisted by 270 degrees, it will be in a matching state and the pitch of the liquid crystal will be the same. For this reason, 27
This is suitable for a liquid crystal element whose natural twist state is 0'' twist, and it quickly reaches the metastable intermediate twist state of 90°.
以下図面を参照して本発明をさらに詳細に説明する。The present invention will be explained in more detail below with reference to the drawings.
第1図は本発明の液晶素子の基本的構成を示す断面図で
ある。FIG. 1 is a sectional view showing the basic structure of a liquid crystal element according to the present invention.
第1図において、IA、 IBはガラス、プラスチック
等の透明基板であり、その内面には酸化スズ、酸化イン
ジウム−酸化スズ等の透明電極2A、2Bが必要に応じ
て所望のパターンにパターニングされて形成されている
。この透明電極の表面には、液晶分子が一方向に水平配
向するようにラビングまたは斜め蒸着等により水平配向
処理がなされ、この水平配向方向が2枚の基板でお互い
に直交するように向い合せて、周辺をシール材3により
シールし、内部にネマチック液晶4を封入して液晶セル
を形成する。In FIG. 1, IA and IB are transparent substrates made of glass, plastic, etc., and transparent electrodes 2A, 2B made of tin oxide, indium oxide-tin oxide, etc. are patterned on their inner surfaces in desired patterns as necessary. It is formed. The surface of this transparent electrode is horizontally aligned by rubbing or diagonal vapor deposition so that the liquid crystal molecules are horizontally aligned in one direction, and the two substrates are placed facing each other so that the horizontal alignment direction is orthogonal to each other. , the periphery is sealed with a sealing material 3, and a nematic liquid crystal 4 is sealed inside to form a liquid crystal cell.
本発明においては、この液晶セルの外側に少なくとも1
枚の1軸性複屈折板を配置する。この図の例においては
、液晶セルの両側に複屈折板5A、5Bを配置している
。本発明では、液晶層の片側に1枚ないし複数枚の1軸
性複屈折板を配置してもよいし、液晶層の両側に夫々1
枚ないし複数枚の1軸性複屈折板を配置してもよいが、
液晶層の両側に配置する方が視野角が広くなるので好ま
しい。さらに、この液晶セルの入射光側に偏光板6Aを
、その偏光板の偏光軸を入射光側基板面の液晶分子の配
向方向にほぼ平行またはこれにほぼ直交するように配置
する。In the present invention, at least one
A number of uniaxial birefringent plates are arranged. In the example shown in this figure, birefringent plates 5A and 5B are arranged on both sides of the liquid crystal cell. In the present invention, one or more uniaxial birefringent plates may be arranged on one side of the liquid crystal layer, or one or more uniaxial birefringent plates may be arranged on both sides of the liquid crystal layer.
Although one or more uniaxial birefringent plates may be arranged,
It is preferable to arrange them on both sides of the liquid crystal layer because the viewing angle becomes wider. Further, a polarizing plate 6A is arranged on the incident light side of this liquid crystal cell so that the polarization axis of the polarizing plate is substantially parallel to or substantially perpendicular to the alignment direction of liquid crystal molecules on the substrate surface on the incident light side.
このようにすることにより、高速応答で、視野角が広(
偏光変換能の優れた偏光変換用液晶素子が得られる。こ
の偏光変換用液晶素子は、例えば、左右で偏光軸の異な
る偏光板を設けたメガネを使用し、偏光変換用液晶素子
をテレビ等の表示体の前に配置して、表示体の表示に同
期して液晶素子をオンオフして偏光を切り替えて、立体
画像を見るようにすることができる。By doing this, the response is fast and the viewing angle is wide (
A liquid crystal element for polarization conversion with excellent polarization conversion ability can be obtained. This liquid crystal element for polarization conversion uses, for example, glasses with polarizing plates with different polarization axes on the left and right sides, and the liquid crystal element for polarization conversion is placed in front of a display such as a television to synchronize with the display on the display. By turning the liquid crystal element on and off and switching the polarization, you can view a three-dimensional image.
例えば、NTSC方式のテレビの場合には、60Hzの
速度で電圧をオンオフすることによって、フレーム毎に
画像の偏光を90°変化させ、左右で偏光軸の異なる偏
光板を設けたメガネを使用し、立体画像を見るようにす
ることができる。このメガネは単に2枚の偏光板のみで
よ(、従来の立体表示用の液晶メガネのように、表示体
の表示に同期して液晶メガネを駆動する必要がないので
、多人数でも同じ表示体の立体画像を容易に見ることが
できるようになる。本発明では、特定の複屈折板を用い
て視野を拡大しているので、多人数が広がって見ること
ができるので、この偏光変換素子としての用途に好適で
ある。For example, in the case of an NTSC TV, the polarization of the image is changed by 90 degrees for each frame by turning the voltage on and off at a rate of 60 Hz, and glasses with polarizing plates with different polarization axes on the left and right sides are used. It is possible to view stereoscopic images. These glasses only require two polarizing plates (unlike conventional liquid crystal glasses for stereoscopic display, there is no need to drive the liquid crystal glasses in synchronization with the display), so even many people can use the same display. In the present invention, a specific birefringent plate is used to expand the field of view, so that a large number of people can view the image. Suitable for applications such as
また、用途によっては、この液晶セルの出射光側に偏光
板6Bを、その偏光板の偏光軸を出射光側基板面の液晶
分子の配向方向にほぼ平行またはこれにほぼ直交するよ
うに配置し、2枚の偏光板の偏光軸が直交するように配
置して使用してもよい。Depending on the application, a polarizing plate 6B may be arranged on the output light side of this liquid crystal cell so that the polarization axis of the polarizing plate is substantially parallel to or substantially perpendicular to the alignment direction of liquid crystal molecules on the substrate surface on the output light side. , two polarizing plates may be used so that their polarization axes are orthogonal to each other.
この例としては、従来の立体表示用の場合と同様に、テ
レビ側では60Hzで単に画像を変化させ、メガネ側に
2枚の偏光板を使用した本発明の液晶素子を使用して、
60Hzで左右の液晶素子を透明−不透明制御をするこ
とにより立体画像を見るようにすることができる。As an example of this, as in the case of conventional stereoscopic display, the image is simply changed at 60Hz on the TV side, and the liquid crystal element of the present invention using two polarizing plates is used on the glasses side.
By controlling the left and right liquid crystal elements to be transparent or opaque at 60 Hz, it is possible to view a stereoscopic image.
なお、この説明においては省略したが、一般の液晶表示
装置で行われているような応用、例えば、透明電極に金
属リードを形成したり、光の透過率を変化させる部分を
除いて無電解Niメツキ、Cr、 Al蒸着等により不
透明のマスクを形成したり、カラーフィルターを形成し
たり、ポリイミド、ポリアミド、ポリウレタン、シリコ
ン樹脂、シリカ、アルミナ等の配向膜用のオーバーコー
トを透明電極上に形成したり、液晶セル内に基板間隙を
正確に保つためのガラス繊維、アルミナ粒子、プラスチ
ック粒子等のスペーサーを散布もしくはそれらスペーサ
ー入りのシール材を点付けしたりする等してもよい。Although omitted in this explanation, applications such as those used in general liquid crystal display devices, such as forming metal leads on transparent electrodes and using electroless Ni except for parts that change light transmittance, are possible. An opaque mask is formed by plating, Cr, Al vapor deposition, etc., a color filter is formed, and an overcoat for alignment film such as polyimide, polyamide, polyurethane, silicone resin, silica, alumina, etc. is formed on the transparent electrode. Alternatively, spacers such as glass fibers, alumina particles, plastic particles, etc. may be scattered or a sealing material containing such spacers may be dotted in order to accurately maintain the gap between the substrates within the liquid crystal cell.
第2図は、本発明で用いる複屈折板の主屈折率の定義を
示す斜視図である。FIG. 2 is a perspective view showing the definition of the principal refractive index of the birefringent plate used in the present invention.
本発明の1軸性の複屈折板は、複屈折板の面内方向をX
軸方向、y軸方向とし、厚み方向をX軸方向とする。こ
の夫々の方向の屈折率をnxs nys nz、とする
。本発明では、nx=nyであり、nx>nzとなり、
その複屈折板の屈折率異方性Δn2はΔn2= nx−
nx= ny−niで表される。この場合、この複屈折
板の光軸方向はX軸方向となる。なお、d2は複屈折板
の厚みである。In the uniaxial birefringent plate of the present invention, the in-plane direction of the birefringent plate is
The axial direction is the y-axis direction, and the thickness direction is the x-axis direction. Let the refractive index in each direction be nxs nys nz. In the present invention, nx=ny, nx>nz,
The refractive index anisotropy Δn2 of the birefringent plate is Δn2=nx−
It is expressed as nx=ny-ni. In this case, the optical axis direction of this birefringent plate is the X-axis direction. Note that d2 is the thickness of the birefringent plate.
また、本発明においては、この複屈折板のΔn2・d2
と液晶層のΔn1・d、との関係は、総合したΔng*
dtの値が、 0.1×Δn+・d+ <Δn、・d。In addition, in the present invention, Δn2・d2 of this birefringent plate
The relationship between and Δn1・d of the liquid crystal layer is the total Δng*
The value of dt is 0.1×Δn+・d+ <Δn,・d.
< 1.5XΔnx−d、となるように設定することに
より、視野角が広い液晶素子が得らる。By setting so that <1.5XΔnx-d, a liquid crystal element with a wide viewing angle can be obtained.
なお、この複屈折板を複数枚重ねて使用する場合や、液
晶層の片側にのみ複屈折板を複数枚使用する場合には、
総合したΔn2・d2の値が上記範囲になるようにすれ
ばよい。もっとも、前述したように、液晶層の両側に夫
々1枚以上の複屈折板を配置する方が、視野角が広くな
り好ましい。In addition, when using multiple birefringent plates stacked on top of each other, or when using multiple birefringent plates only on one side of the liquid crystal layer,
The total value of Δn2·d2 may be set within the above range. However, as described above, it is preferable to arrange one or more birefringent plates on both sides of the liquid crystal layer, since this provides a wider viewing angle.
本発明の複屈折板は、上述の複屈折性を示す透明板であ
れば使用でき、プラスチックフィルム、無機の結晶板等
が使用可能である。As the birefringent plate of the present invention, any transparent plate exhibiting the above-mentioned birefringence can be used, and plastic films, inorganic crystal plates, etc. can be used.
所望の複屈折効果を得るために、Δn2・cL =(n
x nx)・d2を調整して使用するか、1枚では調
整できない場合には、同じ1軸性の複屈折板または異な
る1軸性の複屈折板を複数枚組み合わせてもよい。In order to obtain the desired birefringence effect, Δn2・cL = (n
x nx)·d2 may be used, or if adjustment cannot be made with one plate, a plurality of the same uniaxial birefringent plates or different uniaxial birefringent plates may be combined.
なお、複屈折板は液晶層と偏光板との間に設ければよく
、例えば、液晶層と電極の間に層状に設けたり、電極と
基板の間に層状に設けたり、基板自体を複屈折板とした
り、基板と偏光板との間に層状に設けたり、それらを組
み合わせて設けたりすれば良い。なお、片面にのみ偏光
板を設ける場合には、複屈折板を液晶層の偏光板と反対
側に設けても良い。Note that the birefringent plate may be provided between the liquid crystal layer and the polarizing plate; for example, the birefringent plate may be provided in a layer between the liquid crystal layer and the electrode, or between the electrode and the substrate, or the birefringent plate itself may be provided in a layer between the liquid crystal layer and the electrode. It may be provided as a plate, as a layer between the substrate and the polarizing plate, or as a combination of these. Note that when a polarizing plate is provided only on one side, a birefringent plate may be provided on the opposite side of the liquid crystal layer to the polarizing plate.
第3図(A)、(B)は、夫々本発明の電圧オフ時の後
半に、液晶のしきい個未満の電圧を印加する液晶素子の
駆動波形図及び相対光透過特性図であり、第4図(A)
、(B)は、夫々電圧オフ時には、単に電圧をオフにす
るのみの液晶素子の駆動波形図及び相対光透過特性図で
ある。3(A) and 3(B) are a drive waveform diagram and a relative light transmission characteristic diagram of a liquid crystal element, respectively, in which a voltage less than the threshold value of the liquid crystal is applied during the latter half of the voltage-off period according to the present invention; Figure 4 (A)
, (B) are a driving waveform diagram and a relative light transmission characteristic diagram of a liquid crystal element in which the voltage is simply turned off when the voltage is turned off, respectively.
なお、この相対光透過特性図は、液晶素子の出射光側に
、もう1枚の偏光板を入射光側の偏光板の偏光軸とその
偏光板の偏光軸が直交するように配置して測定した。This relative light transmission characteristic diagram was measured by placing another polarizing plate on the outgoing light side of the liquid crystal element so that the polarizing axis of the polarizing plate on the incident light side was orthogonal to the polarizing axis of that polarizing plate. did.
第4図において、当初の時間1+の間は、液晶のしきい
値電圧以上の電圧が印加され、液晶分子は立ち上がり、
縦配向状態となり、光が透過してこない。次に、時間t
2において、この印加していた電圧をオフにすると、液
晶分子はまず中間ねじれ状態に移行し、はぼ90゜+1
80°×mのねじれとなるため、光が透過して(る。こ
の場合、−旦中間ねじれ状態となるが、徐々にこれが自
然のねじれ状態になろうとするため、光の透過率が徐々
に低下して(ることとなる。In FIG. 4, during the initial time 1+, a voltage higher than the threshold voltage of the liquid crystal is applied, and the liquid crystal molecules stand up.
It becomes vertically oriented and no light passes through it. Next, time t
In 2, when the applied voltage is turned off, the liquid crystal molecules first shift to an intermediate twisted state, and the angle is approximately 90°+1.
Since the twist is 80° x m, the light is transmitted through it. It will decrease.
このため、オンオフの繰り返しサイクルによっては、液
晶の応答速度を速めても、偏光変換が不十分になること
がある。For this reason, even if the response speed of the liquid crystal is increased, polarization conversion may become insufficient depending on the repeated on-off cycle.
第3図は、本発明の好ましい駆動方法の例によるもので
ある。FIG. 3 is an example of a preferred driving method of the present invention.
この場合も、第4図の例と同様、当初の時間t、の間は
、液晶のしきい値電圧以上の電圧が印加され、液晶分子
は立ち上がり、縦配向状態となり、光が透過してこない
。次に、時間t2において、この印加していた電圧をオ
フにすると、液晶分子はまず中間ねじれ状態に移行し、
はぼ90゜+180°×mのねじれとなるため、光が透
過して(る。この過程も第4図の例と同様である。In this case as well, as in the example shown in Figure 4, during the initial time t, a voltage higher than the threshold voltage of the liquid crystal is applied, and the liquid crystal molecules stand up and become vertically aligned, and no light passes through. . Next, at time t2, when this applied voltage is turned off, the liquid crystal molecules first shift to an intermediate twisted state,
Since the twist is approximately 90° + 180° x m, light passes through it. This process is also similar to the example shown in Figure 4.
しかし、本発明では、この中間ねじれ状態に移行して後
、液晶のしきい値電圧未満の電圧を印加する。即ち、時
間t2の内、液晶が中間ねじれ状態に移行して後、時間
t3の間、液晶のしきい値電圧未満の電圧を印加する。However, in the present invention, after transitioning to this intermediate twisted state, a voltage lower than the threshold voltage of the liquid crystal is applied. That is, after the liquid crystal shifts to the intermediate twisted state during time t2, a voltage lower than the threshold voltage of the liquid crystal is applied during time t3.
これにより、液晶が中間ねじれ状態で安定して保持され
、偏光が保持されるため、はぼ一定の光の透過率が得ら
れる。このため、液晶の応答速度を速めることにより、
より高い偏光変換が行われることになる。As a result, the liquid crystal is stably held in an intermediate twisted state, and polarization is maintained, so that a nearly constant light transmittance can be obtained. Therefore, by increasing the response speed of the liquid crystal,
Higher polarization conversion will occur.
また、その後、再び液晶のしきい値電圧以上の電圧を印
加した際に、液晶の応答速度が速くなる傾向がある。こ
れは、その直前において液晶が中間ねじれ状態となって
いるためである。Furthermore, when a voltage equal to or higher than the threshold voltage of the liquid crystal is applied again thereafter, the response speed of the liquid crystal tends to become faster. This is because the liquid crystal is in an intermediate twisted state just before that.
この電圧をオフにする時間、即ち、ts−ttの時間は
、通常は液晶が中間ねじれ状態になる時間程度でよく、
光の透過率で見ればほぼ90%以上の透過率になった後
であればよい。もちろん光の透過率が最も高(なった後
、しばら(放置してもよい。The time for turning off this voltage, that is, the time ts-tt, is usually about the time when the liquid crystal is in an intermediate twisted state,
In terms of light transmittance, it is sufficient if the transmittance reaches approximately 90% or more. Of course, you can leave it for a while after the light transmittance reaches its highest value.
その後、時間tsの間、液晶のしきい値電圧未満の電圧
を印加する。この電圧も液晶のしきい個未満の電圧であ
ればよ(、中間ねじれ状態が最も安定に保持される電圧
を実験的に求めて印加すればよい。Thereafter, a voltage lower than the threshold voltage of the liquid crystal is applied for a time ts. This voltage also needs to be less than the threshold voltage of the liquid crystal (it is sufficient to experimentally determine the voltage at which the intermediate twisted state is most stably maintained and apply it).
また、この例では、この液晶のしきい個未満の電圧を一
定としたが、段階的に2以上の異なる電圧を印加したり
、2以上の周波数としてもよい。Further, in this example, the voltage below the threshold value of the liquid crystal is kept constant, but two or more different voltages may be applied stepwise or two or more frequencies may be applied.
なお、この配向方向の交差角並びに配向方向と偏光軸の
関係は、正確に平行または直交とするのみにβ艮られな
く、例えば5°、IO″、20゜程度ずらすこともでき
る。Note that the intersecting angle of the alignment directions and the relationship between the alignment directions and the polarization axis are not limited to just being exactly parallel or orthogonal, but can also be shifted by about 5°, IO'', or 20°, for example.
また、出射光側の偏光板と液晶セルとの間に174波長
板を、その光軸が配向処理方向とほぼ45″ずれるよう
に配置してもよい。Further, a 174-wavelength plate may be arranged between the polarizing plate on the output light side and the liquid crystal cell so that its optical axis is offset by approximately 45'' from the alignment processing direction.
また、本発明に使用する液晶の屈折率異方性Δn+と基
板間隙d1との積Δnx ・d、は0.3〜2.5μm
とすることが好ましく、これにより高コントラスト比を
得ることができる。Further, the product Δnx・d of the refractive index anisotropy Δn+ of the liquid crystal used in the present invention and the substrate gap d1 is 0.3 to 2.5 μm.
It is preferable to do this, and thereby a high contrast ratio can be obtained.
本発明では、この偏光変換が高速で繰り返される用途に
向いており、立体テレビのように6゜82% 120H
2程度まで偏光変換または透明−不透明を繰り返す用途
に好適である。The present invention is suitable for applications where this polarization conversion is repeated at high speed.
It is suitable for applications that require polarization conversion up to a degree of 2 or repeating transparent and opaque states.
[作 用]
液晶にしきい値電圧以上の電圧を印加した時の液晶分子
が縦配向状態おいて、斜め方向がら見た場合に光がもれ
、偏光変換効率が低下する理由を説明する。[Function] The reason why when a voltage equal to or higher than the threshold voltage is applied to the liquid crystal and the liquid crystal molecules are vertically aligned, light leaks and the polarization conversion efficiency decreases when viewed from an oblique direction.
第5図(A)、(B)は、・本発明の詳細な説明する斜
視図である。FIGS. 5(A) and 5(B) are perspective views for explaining the present invention in detail.
第5図(A)において、Z軸を基板の垂直方向、2枚の
偏光板の偏光軸7A、7Bをそれぞれ、X軸、y軸方向
とする。充分に電圧が印加された状態では液晶分子はほ
ぼZ軸方向に向いている。この液晶中を第5図(B)で
示される角度で光が進む場合の光の透過率を計算する。In FIG. 5(A), the Z axis is the vertical direction of the substrate, and the polarization axes 7A and 7B of the two polarizing plates are the X axis and y axis directions, respectively. When a sufficient voltage is applied, the liquid crystal molecules are oriented approximately in the Z-axis direction. The transmittance of light when light travels through this liquid crystal at the angle shown in FIG. 5(B) is calculated.
液晶の屈折率を分子軸方向でno、分子軸に直角方向で
ns (ns> no)とすると、液晶が(θ、ψ)方
向から示す複屈折性Δn*ttは
Δn・・・“ (。。・sin・θ+0.・。。8・θ
)・、7n・ (1)となる。この複屈折性よって生じ
る位相差αは、液晶の厚さをdとして
2π d
・“−°△・・・・° 。。8e(2)λ
となり、この場合の透過重工は
I = 5in22ψ・5in2(a/2)
(3)となる。If the refractive index of the liquid crystal is no in the molecular axis direction and ns (ns>no) in the direction perpendicular to the molecular axis, then the birefringence Δn*tt exhibited by the liquid crystal from the (θ, ψ) direction is Δn..." (. .・sin・θ+0.・.8・θ
)・, 7n・ (1). The retardation α caused by this birefringence is 2π d ・“−°Δ...°..8e(2)λ, where d is the thickness of the liquid crystal, and the transmission heavy beam in this case is I = 5in22ψ・5in2 (a/2)
(3) becomes.
θ=0″においては、Δn*tt=0であるため複屈折
性を示さないが、θが大きくなるに従い、Δn*ttは
大きくなり、透過率が増す。この現象はψ=45’
135” 225’、315°で最も顕著になる
。At θ=0'', Δn*tt=0, so no birefringence is exhibited, but as θ increases, Δn*tt increases, and the transmittance increases.This phenomenon is explained by ψ=45'
It is most noticeable at 135"225', 315°.
この複屈折性をな(すには、(2)式の位相を打ち消す
位相差をくわえてやればよい。この位相差を与える位相
差板として用いるのが本発明における複屈折板の役割で
ある。この複屈折板は光学異方性が液晶と逆の符号を持
つ、即ち、複屈折板の3個の主屈折率をn1% ny+
nzとし、n8を複屈折板の厚み方向の屈折率とした
場合、nx= nx> nxどなるよりな1軸性の複屈
折板を用いることにより、斜め方向から見た場合に光が
もれ、偏光変換効率が低下するのを防止することができ
る。これにより、視野角が広い液晶素子が可能となる。In order to eliminate this birefringence, it is sufficient to add a phase difference that cancels out the phase in equation (2).The role of the birefringence plate in the present invention is to use it as a retardation plate that provides this phase difference. The optical anisotropy of this birefringent plate has the opposite sign to that of the liquid crystal, that is, the three principal refractive indices of the birefringent plate are n1% ny+
nz and n8 is the refractive index in the thickness direction of the birefringent plate, then nx = nx > nx By using a uniaxial birefringent plate, light leaks when viewed from an oblique direction, It is possible to prevent the polarization conversion efficiency from decreasing. This enables a liquid crystal element with a wide viewing angle.
また、液晶分子が十分に立ち上がらない電圧で駆動する
場合においても電圧印加時の液晶分子の平均的な光軸方
向と、複屈折板の光軸方向を一致させるように配置すれ
ば、同様に視野角が広い液晶素子が得られる。In addition, even when driving with a voltage that does not allow the liquid crystal molecules to rise sufficiently, if the average optical axis direction of the liquid crystal molecules when voltage is applied and the optical axis direction of the birefringent plate are arranged to match, the field of view will be the same. A liquid crystal element with wide corners can be obtained.
[実施例]
実施例1.2、比較例1.2
ガラス基板上にバターニングされた透明電極を有する表
側基板と裏側基板との夫々の電極面側に配向膜用オーバ
ーコートとしてポリイミドを塗布し、熱硬化後の膜厚を
約80nmとした。これらポリイミド膜の表面をラビン
グ法により、水平配向処理し、 270”で整合状態と
なるようにラビング方向が直交するように2枚の基板を
配置し、周辺を注入口部を除きシール材でシールしてセ
ルを形成した。このセルの液晶注入前のセル間隙は6.
0μmであり、Δn1・dlは1.2μmであった。[Example] Example 1.2, Comparative Example 1.2 Polyimide was applied as an overcoat for an alignment film on the electrode surfaces of a front substrate and a back substrate, each having a transparent electrode patterned on a glass substrate. The film thickness after thermosetting was approximately 80 nm. The surfaces of these polyimide films were horizontally aligned using a rubbing method, and the two substrates were placed so that the rubbing directions were perpendicular to each other so that they were aligned at 270", and the periphery was sealed with a sealant except for the injection port. The cell gap before liquid crystal injection was 6.
0 μm, and Δn1·dl was 1.2 μm.
このセルに、らせんピッチが8.0μmとなるようにカ
イラル成分としてコレステリルノナネートを添加したネ
マチック液晶を注入して、注入口を封止した。A nematic liquid crystal to which cholesteryl nonanate was added as a chiral component was injected into this cell so that the helical pitch was 8.0 μm, and the injection port was sealed.
このセルの両面に一枚ずつ、第1表及び第2表に示すよ
うな屈折率を持つ種々の1軸性の複屈折板を貼付け(比
較例1=複屈折板なし、実施例1=0.40μmの複屈
折板計2枚、実施例2=0.50μmの複屈折板計2枚
、比較例1=1.00μmの複屈折板計2枚)、さらに
その上下に一対の偏光板をその偏光軸がセルのラビング
方向に平行となるように設置して液晶素子を製造した。Various uniaxial birefringent plates having refractive indices as shown in Tables 1 and 2 are pasted on each side of this cell (Comparative example 1 = no birefringence plate, Example 1 = 0 (Example 2 = 2 birefringent plates of 0.50 μm, Comparative Example 1 = 2 birefringent plates of 1.00 μm), and a pair of polarizing plates above and below them. A liquid crystal element was manufactured by setting the polarization axis parallel to the rubbing direction of the cell.
このようにして製造した液晶素子は、電圧を印加しない
状態では液晶分子が270°ねじれた状態となっていた
。In the liquid crystal element manufactured in this manner, the liquid crystal molecules were twisted by 270 degrees when no voltage was applied.
この液晶素子をt+= tt= 1/60sec 、即
ち、60Hzで駆動した。次に、しきい値電圧以上の電
圧である12Vを印加すると、液晶分子が縦配向状態と
なっていた。この状態では液晶セルは光に対して等方向
となり、液晶セルに入射した光は入射偏光を保ったまま
出て来る。このため、光はほとんど透過してこない。This liquid crystal element was driven at t+=tt=1/60 sec, that is, 60 Hz. Next, when a voltage of 12 V, which is higher than the threshold voltage, was applied, the liquid crystal molecules were vertically aligned. In this state, the liquid crystal cell becomes isodirectional with respect to light, and the light incident on the liquid crystal cell comes out while maintaining the incident polarization. Therefore, almost no light passes through.
次に、電圧を切ると、セル内で液晶分子は瞬時に90°
ねじれた中間ねじれ状態となり、入射側偏光板を通った
入射光はセル内を液晶のねじれ構造に従ってその偏光成
分は90″′ねじられ、光が透過してきた。Next, when the voltage is turned off, the liquid crystal molecules instantly move 90° within the cell.
The cell was in a twisted intermediate twisted state, and the incident light that passed through the incident side polarizing plate was twisted by 90'' in accordance with the twisted structure of the liquid crystal inside the cell, and the light was transmitted.
この中間ねじれ状態になった後、しきい値電圧未満の電
圧である3■の電圧なts= 0.6tzの時間印加し
た。この結果、この中間ねじれ状態が安定して継続し、
光の透過率はほとんど変化しなかった。After this intermediate twisted state was reached, a voltage of 3 cm, which was less than the threshold voltage, was applied for a time of ts = 0.6 tz. As a result, this intermediate twisted state continues stably,
The light transmittance hardly changed.
比較のために、時間t2の間、電圧をオフにしたまま放
置した場合には、光の透過率が徐々に低下し、最大15
%程度低下してしまうものであった。このため、中間ね
じれ状態になった後、しきい値電圧未満の電圧を印加し
た場合には、印加しない場合に比して、時間平均したコ
ントラスト比が向上した。For comparison, when the voltage is left off for time t2, the light transmittance gradually decreases to a maximum of 15
%. Therefore, when a voltage lower than the threshold voltage was applied after the intermediate twist state was reached, the time-averaged contrast ratio was improved compared to when no voltage was applied.
そこで、中間ねじれ状態になった後、しきい値電圧未満
の電圧である3vの電圧をt2= 0.6t2の時間印
加して視野角の広さを比較し、その結果を、第6図(比
較例1)、第7図(実施例1)、第8図(実施例2)及
び第9図(比較例2)に示す。Therefore, after reaching the intermediate twisted state, a voltage of 3V, which is less than the threshold voltage, was applied for a time of t2 = 0.6t2 to compare the width of the viewing angle, and the results are shown in Figure 6 ( Comparative Example 1), FIG. 7 (Example 1), FIG. 8 (Example 2), and FIG. 9 (Comparative Example 2).
なお、第6図〜第11図は、等コントラスト曲線と呼ば
れるもので、セルの観察方向を極座標表示し、その角度
を(θ、ψ)と表した場合、この(θ、ψ)により、液
晶セルのコントラスト比がどの様に変化しているかをθ
を0〜50″で変化させ、ψを0〜360’で変化させ
て示したものである。なお、ψは図の主視野角方向(下
方)を0°とし、反時計回りに0〜360とし、θは中
心な0°とし、同心円状に0〜50″ とした。コント
ラスト比の曲線は1、2.10.20のみを示した。Note that Figures 6 to 11 are called isocontrast curves, and if the observation direction of the cell is expressed in polar coordinates and the angle is expressed as (θ, ψ), this (θ, ψ) will cause the liquid crystal to θ shows how the contrast ratio of the cell changes.
is shown by changing from 0 to 50'', and ψ from 0 to 360'. Note that ψ is shown by changing from 0 to 360'' counterclockwise, with the main viewing angle direction (downward) of the figure being 0°. and θ was set at 0° at the center, and ranged from 0 to 50″ concentrically. The contrast ratio curves showed only 1, 2, 10, and 20.
本発明の実施例では、第1表に示すように、1’l、:
nx> nxであり、0.1×Δn+’d+ <Δn
x−dz<1.5XΔn1・dl となるような複屈折
板を使用している。このため、複屈折板を使用しない場
合(比較例1、第6図)より、斜線で示したコントラス
ト比が1以下、即ち、白黒のコントラストが逆転してし
まう領域が非常に小さいものであった。また、コントラ
スト比が高い領域(10以上)も広(なり、視野角が広
(偏光変換能の優れた液晶素子が可能となった。In an embodiment of the present invention, as shown in Table 1, 1'l:
nx> nx, and 0.1×Δn+'d+ <Δn
A birefringent plate is used such that x-dz<1.5XΔn1·dl. Therefore, compared to the case where no birefringent plate was used (Comparative Example 1, Figure 6), the contrast ratio indicated by diagonal lines was less than 1, that is, the area where the black and white contrast was reversed was very small. . Furthermore, the region with a high contrast ratio (10 or more) is wide (10 or more), and the viewing angle is wide (a liquid crystal element with excellent polarization conversion ability) has become possible.
一方、n It ” n y > n zとなるような
複屈折板を使用しても、総合したΔn2・d2、の値が
液晶層のΔn1・d、の値の1.5倍より大きくなった
場合、即ち、比較例2の場合(第9図)には、本発明の
ものより視野角が狭(、かつ、コントラスト比が高い領
域も狭いことがわかった。On the other hand, even if a birefringent plate such that n It ''ny > n z was used, the total value of Δn2・d2 was larger than 1.5 times the value of Δn1・d of the liquid crystal layer. In the case of Comparative Example 2 (FIG. 9), it was found that the viewing angle was narrower (and the region of high contrast ratio was also narrower) than that of the present invention.
実施例3、実施例4
実施例1と同様にして製造した液晶セルの片面に第2表
に示すような複屈折板を2枚積層して貼付け、さらにそ
の上下に一対の偏光板をその偏光軸がセルのラビング方
向に平行となるように設置した。Examples 3 and 4 Two birefringent plates as shown in Table 2 are laminated and pasted on one side of a liquid crystal cell manufactured in the same manner as in Example 1, and a pair of polarizing plates are placed above and below the birefringent plates to reflect the polarized light. It was installed so that the axis was parallel to the rubbing direction of the cell.
実施例1と同様に駆動した際の、等コントラスト曲線を
第10図(実施例3)及び第11図(実施例4)に示す
。Equal contrast curves when driven in the same manner as in Example 1 are shown in FIG. 10 (Example 3) and FIG. 11 (Example 4).
本発明では、第2表に示すように、nx=nx>n2で
あり、0.1×Δn+−d+ <入nx・d、 <1.
5 ×Δn1・dl となるような複屈折板を使用して
いるので、前述の複屈折板を使用しない場合(比較例1
、第6図)より、斜線で示したコントラスト比が1以下
、即ち、白黒のコントラストが逆転してしまう領域が非
常に小さいものであった。また、コントラスト比が高い
領域(10以上)も広くなり、視野角が広(偏光変換能
の優れた液晶素子が可能となった。In the present invention, as shown in Table 2, nx=nx>n2, 0.1×Δn+−d+ <input nx·d, <1.
5 × Δn1・dl Since a birefringent plate is used, when the above-mentioned birefringent plate is not used (Comparative Example 1
, FIG. 6), the contrast ratio indicated by diagonal lines was 1 or less, that is, the area where the black and white contrast was reversed was very small. In addition, the region with a high contrast ratio (10 or more) has become wider, and the viewing angle has become wider (a liquid crystal element with excellent polarization conversion ability has become possible).
実施例5
実施例1と同様にして製造した両側に偏光板を配置した
液晶セルをメガネの両方に配置し、テレビの画面に同期
して60Hzで左右のメガネの液晶素子を相互に透明−
不透明となるように制御したところ、はっきりした立体
的な画像が得られた。Example 5 A liquid crystal cell with polarizing plates on both sides manufactured in the same manner as in Example 1 was placed on both glasses, and the liquid crystal elements of the left and right glasses were made transparent to each other at 60 Hz in synchronization with the TV screen.
When controlled to be opaque, a clear three-dimensional image was obtained.
実施例6
実施例1と同様にして製造した大型液晶セルの入射光側
にのみ偏光板を積層してテレビの前に配置し、テレビの
画面に同期して120Hzで液晶素子を駆動し、偏光変
換を行った。観察者側は左右で偏光軸が直交した偏光メ
ガネをかけて見たところ、はっきりした立体的な画像が
得られた。Example 6 A large liquid crystal cell manufactured in the same manner as in Example 1 was laminated with a polarizing plate only on the incident light side and placed in front of a television.The liquid crystal element was driven at 120Hz in synchronization with the television screen to generate polarized light. Conversion was done. When the viewer wore polarized glasses with the left and right polarization axes perpendicular to each other, a clear three-dimensional image was obtained.
第 1 表
第 2 表
[発明の効果]
本発明は、誘電異方性が正であり、その液晶のピッチp
と基板間隙dとの関係d/pが0.5×n <d/p
< 0.5X (n + 1 )とされるネマチッり液
晶を用い、電圧が印加されない時はセル内で液晶分子が
ほぼ90゜+ 180’ ×nの自然のねじれ状態をと
り、電圧を印加した時には液晶分子が縦配向状態を取り
、その後の電圧を切った時には液晶分子が自然のねじれ
状態への緩和状態であるほぼ90゜+180°×mの中
間ねじれ状態をとり、この電圧を印加した時の縦配向状
態と電圧を切った時の液晶分子のほぼ90°のねじれ状
態との2つの状態を利用して入射光の偏光方向を90″
変えることにより、従来のTNモードの液晶素子に比し
てはるかに速くスイッチングが可能であるという優れた
効果を有する。Table 1 Table 2 [Effects of the Invention] The present invention has positive dielectric anisotropy, and the liquid crystal pitch p
The relationship d/p between and substrate gap d is 0.5×n < d/p
< 0.5X (n + 1) A nematic liquid crystal was used, and when no voltage was applied, the liquid crystal molecules in the cell assumed a natural twisted state of approximately 90° + 180' × n, and a voltage was applied. At times, the liquid crystal molecules take a vertically aligned state, and when the voltage is subsequently turned off, the liquid crystal molecules take an intermediate twisted state of approximately 90° + 180° × m, which is a relaxed state to the natural twisted state, and when this voltage is applied, The polarization direction of the incident light can be changed to 90" by utilizing two states: the vertically aligned state of the liquid crystal molecules and the almost 90° twisted state of the liquid crystal molecules when the voltage is turned off.
This change has the excellent effect of enabling much faster switching than conventional TN mode liquid crystal elements.
また、本発明では、この液晶素子の液晶層に隣接して少
なくとも1枚のなくともを使用し、その複屈折板の3個
の主複屈折率をnX、nx、n2とし、n8を複屈折板
の厚み方向の屈折率とした場合、nx= ny> nx
であり、液晶のΔnl’d1に対して、複屈折板のΔn
2・d2の値が、0.1XΔn。Further, in the present invention, at least one plate is used adjacent to the liquid crystal layer of the liquid crystal element, and the three main birefringence indices of the birefringent plate are nX, nx, and n2, and n8 is the birefringence. When taking the refractive index in the thickness direction of the plate, nx= ny> nx
For Δnl'd1 of the liquid crystal, Δn of the birefringent plate
The value of 2・d2 is 0.1XΔn.
・dl <Δn2・dz <1.5 ×Δn1・dl
となるよりな1軸性の複屈折板を液晶層の外側に配置し
たものであり、これにより、視野角が広(優れた偏光変
換性能を得ることができる。・dl <Δn2・dz <1.5 ×Δn1・dl
A highly uniaxial birefringent plate is placed outside the liquid crystal layer, which provides a wide viewing angle (excellent polarization conversion performance).
さらに本発明では、電圧をオフにし、液晶分子のねじれ
状態が中間ねじれ状態となった後、液晶のしきい個未満
の電圧を印加することにより、液晶分子の中間ねじれ状
態が長く続くものであり、優れた偏光変換性能を得るこ
とができる。Furthermore, in the present invention, after the voltage is turned off and the twisted state of the liquid crystal molecules becomes the intermediate twisted state, by applying a voltage lower than the threshold of the liquid crystal, the intermediate twisted state of the liquid crystal molecules continues for a long time. , excellent polarization conversion performance can be obtained.
特に、自然のねじれ状態で整合するように配向処理する
ことにより、中間ねじれ状態への移行も速(なる。従来
のように、電圧をオフ状態にし続けると、この中間ねじ
れ状態から自然のねじれ状態へも速く移行し易い。しか
し、本発明のように電圧をオフにして、液晶分子のねじ
れが中間ねじれ状態となった後、液晶のしきい個未満の
電圧を液晶に印加することにより、この中間ねじれ状態
が安定して長く継続する。これにより高速応答と、高コ
ントラスト比という2つの利点が得られる。In particular, by aligning the natural twisted state so that it matches the natural twisted state, the transition to the intermediate twisted state is also quick. However, as in the present invention, after the voltage is turned off and the twist of the liquid crystal molecules becomes an intermediate twist state, by applying a voltage below the threshold of the liquid crystal to the liquid crystal, this The intermediate twisted state continues stably for a long time.This provides two advantages: high-speed response and high contrast ratio.
また、電圧が印加されないときの自然のねじれ状態であ
る大きくねじれた状態を使用しないことにより、ねじれ
が大きいものにもかかわらずコントラスト比の低下が少
なく、リターデーションによる悪影響も少ない。Furthermore, by not using a highly twisted state which is a natural twisted state when no voltage is applied, there is little reduction in contrast ratio despite the large twist, and there is little adverse effect due to retardation.
本発明は、本発明の効果を損しない範囲内で種々な応用
が可能なものであり、プロジェクション型立体テレビの
画像選択素子等の高速変換が要求される用途に応用が可
能なものである。The present invention can be applied in various ways without detracting from the effects of the present invention, and can be applied to applications that require high-speed conversion, such as image selection elements in projection-type stereoscopic televisions.
第1図は、本発明の液晶素子の基本的構成を示す断面図
である。
第2図は、本発明で用いる複屈折板の主屈折率の定義を
示す斜視図である。
第3図(A)、(B)は、夫々本発明の電圧オフ時の後
半に液晶のしきい個未満の電圧を印加する液晶素子の駆
動波形図及び相対光透過特性図である。
第4図(A)、(B)は、夫々電圧オフ時には単に電圧
をオフにするのみの液晶素子の駆動波形図及び相対光透
過特性図である。
第5図(A)、(B)は、本発明の詳細な説明する斜視
図である。
第6図〜第11図は、実施例及び比較例の等コントラス
ト曲線を示した図。
透明基板 :IA、IB
透明電極 :2A、2B
シール材 : 3
ネマチック液晶 : 4
複屈折板 :5A、5B
偏光板 :6A、6B
偏光軸 ニアA、7B
第
1
図
第
図
第
図
1I15ニジ揚ブ仁里田
第
図
第
図
第
図
第
図
80
第
8
図
80
第
図
工
第10図
80
第11図FIG. 1 is a sectional view showing the basic structure of a liquid crystal element of the present invention. FIG. 2 is a perspective view showing the definition of the principal refractive index of the birefringent plate used in the present invention. FIGS. 3A and 3B are a drive waveform diagram and a relative light transmission characteristic diagram, respectively, of a liquid crystal element to which a voltage below the liquid crystal threshold is applied in the latter half of the voltage-off period according to the present invention. FIGS. 4A and 4B are a drive waveform diagram and a relative light transmission characteristic diagram, respectively, of a liquid crystal element in which the voltage is simply turned off when the voltage is turned off. FIGS. 5(A) and 5(B) are perspective views illustrating details of the present invention. FIG. 6 to FIG. 11 are diagrams showing equal contrast curves of Examples and Comparative Examples. Transparent substrate: IA, IB Transparent electrode: 2A, 2B Sealing material: 3 Nematic liquid crystal: 4 Birefringent plate: 5A, 5B Polarizing plate: 6A, 6B Polarization axis Near A, 7B Figure 80 Figure 80 Figure 10 Figure 80 Figure 11
Claims (1)
基板を両透明電極基板間では相互にその水平配向方向が
ほぼ直交するように配置し、その間にネマチック液晶を
挟持し、そのネマチック液晶層よりも入射光側に偏光板
を配置し、入射光側の偏光板の偏光軸を入射光側の基板
面の液晶分子の配向方向にほぼ平行またはこれにほぼ直
交するように配置し、ネマチック液晶のピッチpと基板
間隙dとの関係d/pを、0.5×n<d/p<0.5
×(n+1)(n:n≧1の整数)とし、両透明電極間
に液晶のしきい値電圧以上の電圧を印加することにより
液晶分子が縦配向状態を取り、その後、電圧をオフする
ことにより、液晶分子がその自然のねじれ状態への緩和
状態であるほぼ90゜+180゜×m(m:n>m≧0
の整数)の中間ねじれ状態とされ、この液晶分子の縦配
向状態と液晶分子の中間ねじれ状態との2つの状態を利
用して入射光の偏光方向を90゜変える液晶素子におい
て、複屈折板の3個の主屈折率をn_x、n_y、n_
zとし、n_zを複屈折板の厚み方向の屈折率とした場
合、n_x=n_y>n_zであり、液晶の屈折率異方
性Δn_1と基板間隙d_1との積Δn_1・d_1に
対して、複屈折板の屈折率異方性Δn_2と複屈折板の
厚みd_2との積を総合した複屈折板のΔn_2・d_
2の値が、0.1×Δn_1・d_1<Δn_2・d_
2<1.5×Δn_1・d_1になるような1軸性の複
屈折板を液晶層の外側に配置したことを特徴とする液晶
素子。 2)請求項1記載の液晶素子において、液晶分子のd/
pが0.5<d/p<1とされ、自然のねじれ状態が2
70゜とされ、液晶分子の縦配向状態と90゜の中間ね
じれ状態との2つの状態を利用して入射光の偏光方向を
90゜変えることを特徴とする液晶素子。 (3)請求項1または2記載の液晶素子において、複屈
折板が液晶層の両側に配置されていることを特徴とする
液晶素子。 (4)請求項1〜3のいずれか記載の液晶素子において
、液晶分子の配向状態が自然のねじれ状態で水平配向に
よるプレティルト角と整合するようにされることを特徴
とする液晶素子。 (5)請求項1〜4のいずれか記載の液晶素子において
、ネマチック液晶層の出射光側にも偏光板を配置するこ
とを特徴とする液晶素子。 (6)請求項1〜4のいずれか記載の液晶素子を表示体
の前に配置したことを特徴とする偏光変換素子。 (7)請求項1〜5のいずれか記載の液晶素子を駆動す
る液晶素子の駆動方法において、液晶分子のねじれ状態
が中間ねじれ状態となった後、液晶のしきい値未満の電
圧を印加することを特徴とする液晶素子の駆動方法。[Claims] (1) A pair of horizontally aligned transparent electrode substrates with transparent electrodes are arranged so that their horizontal alignment directions are substantially orthogonal to each other, and a nematic liquid crystal is placed between them. A polarizing plate is placed on the incident light side of the nematic liquid crystal layer, and the polarization axis of the polarizing plate on the incident light side is approximately parallel to or substantially perpendicular to the alignment direction of the liquid crystal molecules on the substrate surface on the incident light side. The relationship d/p between the pitch p of the nematic liquid crystal and the substrate gap d is 0.5×n<d/p<0.5.
×(n+1) (n: an integer of n≧1), and by applying a voltage higher than the threshold voltage of the liquid crystal between both transparent electrodes, the liquid crystal molecules become vertically aligned, and then the voltage is turned off. , the liquid crystal molecules are in a relaxed state to their natural twisted state, approximately 90° + 180° x m (m: n>m≧0
In a liquid crystal element that changes the polarization direction of incident light by 90 degrees by using two states, the vertically aligned state of liquid crystal molecules and the intermediate twisted state of liquid crystal molecules, the birefringent plate is The three principal refractive indices are n_x, n_y, n_
z and n_z is the refractive index in the thickness direction of the birefringent plate, then n_x=n_y>n_z, and the birefringence is Δn_2・d_ of the birefringent plate, which is the product of the refractive index anisotropy Δn_2 of the plate and the thickness d_2 of the birefringent plate
The value of 2 is 0.1×Δn_1・d_1<Δn_2・d_
A liquid crystal element characterized in that a uniaxial birefringent plate such that 2<1.5×Δn_1·d_1 is disposed outside a liquid crystal layer. 2) In the liquid crystal element according to claim 1, d/ of the liquid crystal molecules is
p is 0.5<d/p<1, and the natural twist state is 2
70°, and is characterized in that the polarization direction of incident light is changed by 90° by utilizing two states of liquid crystal molecules: a vertical alignment state and a 90° intermediate twisted state. (3) A liquid crystal element according to claim 1 or 2, characterized in that birefringent plates are arranged on both sides of the liquid crystal layer. (4) A liquid crystal device according to any one of claims 1 to 3, wherein the alignment state of the liquid crystal molecules is made to match a pretilt angle due to horizontal alignment in a natural twisted state. (5) A liquid crystal device according to any one of claims 1 to 4, characterized in that a polarizing plate is also arranged on the outgoing light side of the nematic liquid crystal layer. (6) A polarization conversion element, characterized in that the liquid crystal element according to any one of claims 1 to 4 is disposed in front of a display. (7) In the method for driving a liquid crystal element according to any one of claims 1 to 5, after the twisted state of the liquid crystal molecules becomes an intermediate twisted state, a voltage lower than a threshold value of the liquid crystal is applied. A method for driving a liquid crystal element, characterized in that:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1270314A JP2803230B2 (en) | 1989-10-19 | 1989-10-19 | Liquid crystal element, polarization conversion element using the same, and driving method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1270314A JP2803230B2 (en) | 1989-10-19 | 1989-10-19 | Liquid crystal element, polarization conversion element using the same, and driving method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03132720A true JPH03132720A (en) | 1991-06-06 |
JP2803230B2 JP2803230B2 (en) | 1998-09-24 |
Family
ID=17484545
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1270314A Expired - Fee Related JP2803230B2 (en) | 1989-10-19 | 1989-10-19 | Liquid crystal element, polarization conversion element using the same, and driving method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2803230B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5430566A (en) * | 1991-11-08 | 1995-07-04 | Sumitomo Chemical Company, Limited | Liquid crystal device with phase retarder having layered inorganic compound |
US7667802B2 (en) | 2007-01-26 | 2010-02-23 | Casio Computer Co., Ltd. | Television set using liquid crystal display apparatus having improved viewing angle |
JP2010539526A (en) * | 2007-09-07 | 2010-12-16 | リアルディー インコーポレイテッド | Stereoscopic image viewing system and glasses |
-
1989
- 1989-10-19 JP JP1270314A patent/JP2803230B2/en not_active Expired - Fee Related
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5430566A (en) * | 1991-11-08 | 1995-07-04 | Sumitomo Chemical Company, Limited | Liquid crystal device with phase retarder having layered inorganic compound |
US5631755A (en) * | 1991-11-08 | 1997-05-20 | Sumitomo Chemical Company, Limited | Layered inorganic compound-containing phase retarder |
US7667802B2 (en) | 2007-01-26 | 2010-02-23 | Casio Computer Co., Ltd. | Television set using liquid crystal display apparatus having improved viewing angle |
JP2010539526A (en) * | 2007-09-07 | 2010-12-16 | リアルディー インコーポレイテッド | Stereoscopic image viewing system and glasses |
Also Published As
Publication number | Publication date |
---|---|
JP2803230B2 (en) | 1998-09-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101147127B1 (en) | Liquid Crystal Display Device And Dribing Method Thereof | |
KR102618750B1 (en) | Liquid Crystal Display Device Having Switchable Viewing Angle | |
JP2000241816A (en) | Liquid crystal display device and its production | |
JPH09105958A (en) | Visual angle varying element and visual angle variable liquid crystal display device using the same | |
WO2010098341A1 (en) | Liquid crystal shutter and liquid crystal shutter eye glasses | |
WO2010146948A1 (en) | Liquid crystal shutter and liquid crystal shutter glasses | |
JP2869511B2 (en) | TN type liquid crystal display device | |
JP2933261B2 (en) | Liquid crystal display | |
JPH02176625A (en) | Liquid crystal display device | |
KR100778167B1 (en) | Liquid crystal display element | |
JPH0365926A (en) | Liquid crystal display | |
KR100288766B1 (en) | Wide viewing angle liquid crystal display device | |
JP2002148623A (en) | Liquid crystal display device | |
JPH03132720A (en) | Liquid crystal element, polarization converting element using the element and method for driving the element | |
JP2519939B2 (en) | Liquid crystal element | |
CN116184700A (en) | Display module and display device | |
JP2008165043A (en) | Liquid crystal display element | |
JP3813036B2 (en) | Liquid crystal display device and manufacturing method thereof | |
JPH0749493A (en) | LCD display panel | |
KR100735272B1 (en) | Optically Compensated Band Mode Liquid Crystal Display | |
JPH06281927A (en) | Liquid crystal display device | |
KR100658527B1 (en) | In-plane switching mode liquid crystal display and its driving method | |
JP4545770B2 (en) | Liquid crystal display | |
JP2003255396A (en) | Liquid crystal display | |
JP3074805B2 (en) | Display element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080717 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080717 Year of fee payment: 10 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080717 Year of fee payment: 10 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080717 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090717 Year of fee payment: 11 |
|
LAPS | Cancellation because of no payment of annual fees |