[go: up one dir, main page]

JPH0312984A - Photoelectronic integrated circuit and manufacturing method thereof - Google Patents

Photoelectronic integrated circuit and manufacturing method thereof

Info

Publication number
JPH0312984A
JPH0312984A JP14994389A JP14994389A JPH0312984A JP H0312984 A JPH0312984 A JP H0312984A JP 14994389 A JP14994389 A JP 14994389A JP 14994389 A JP14994389 A JP 14994389A JP H0312984 A JPH0312984 A JP H0312984A
Authority
JP
Japan
Prior art keywords
layer
type
type electrode
inp
electrode layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14994389A
Other languages
Japanese (ja)
Inventor
Kunishige Oe
尾江 邦重
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP14994389A priority Critical patent/JPH0312984A/en
Publication of JPH0312984A publication Critical patent/JPH0312984A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0421Electrical excitation ; Circuits therefor characterised by the semiconducting contacting layers
    • H01S5/0422Electrical excitation ; Circuits therefor characterised by the semiconducting contacting layers with n- and p-contacts on the same side of the active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/2054Methods of obtaining the confinement
    • H01S5/2059Methods of obtaining the confinement by means of particular conductivity zones, e.g. obtained by particle bombardment or diffusion

Landscapes

  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To make it possible to reduce a parasitic capacity and make quick motion by injecting the electric current of semiconductor laser transversely into two adjoining grooves bored to an active layer by way of a p type electrode layer and an n type electrode layer which have made an embedded growth respectively. CONSTITUTION:This circuit comprises an Fe dope InP semi-insulation substrate 1, high resistance InP clad layers 2 and 6, a GaInAsP current guide layers 3 and 5, a GaInAs active layer 4, a non-dope GaInAs channel layer 7, an AlInAs/Si dope electric charge supply layer 8, an n type InP electrode layer 9, a p type InP electrode layer 10, a p type GaInAsP cap layer 11, an n type electrode 12, a p type electrode 13, an electric field effect transistor drain electrode, gate electrode, and source electrodes 14 to 16. The electric current of semiconductor laser is injected transversely into two adjoining grooves by way of the p type electrode layer 9 and the n type electrode layer 10 which have made an embedded growth respectively. It is, therefore, possible to reduce a parasitic capacity and operate at very fast speed as well.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、光電子集積回路及びその製造方法に関し、特
に、小型にして高速の光信号を発生させる光電子集積回
路とその製作方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an optoelectronic integrated circuit and a method for manufacturing the same, and more particularly to an optoelectronic integrated circuit that is compact and generates high-speed optical signals and a method for manufacturing the same. .

〔従来技術〕[Prior art]

半導体レーザとその駆動回路を同一半導体基板」二に集
積化した光電子集積回路は、寄生容量をへらし高速動作
を可能にする、使用部品数がへるので装置の信頼性が高
まる、実装が容易となるので値段が安くなる等の優れた
特徴があるため、従来から広く研究されてきている。
Optoelectronic integrated circuits, which integrate a semiconductor laser and its drive circuit on the same semiconductor substrate, reduce parasitic capacitance and enable high-speed operation, reduce the number of parts used, increasing device reliability, and are easy to implement. It has been widely researched because it has excellent characteristics such as low price and low price.

今までに報告されている光電子集積回路は、例えば、O
,WADAにより、IEEE JOURNAI、OF 
QUANTUM ELECTRONIC3のQE−22
巻6号805頁(1986年)に開示されている。
Optoelectronic integrated circuits reported so far include, for example, O
, WADA, IEEE JOURNAI, OF
QE-22 of QUANTUM ELECTRONIC3
It is disclosed in Vol. 6, p. 805 (1986).

また、横方向電流注入の半導体レーザと電界効果トラン
ジスタを同一の半絶縁性基板上に集積化するという考え
方はあった。例えば、Jaurnal ofApplj
ed Physjcsの6」巻10号4933頁(19
87年)にJ、0htaらは、GaAs系のTJSレー
ザと電界効果トランジスタを集積化するという考え方と
、別々に作った素子特性について開示している。
There was also an idea to integrate a lateral current injection semiconductor laser and a field effect transistor on the same semi-insulating substrate. For example, Journal ofApplj
ed Physjcs 6” Volume 10, Page 4933 (19
In 1987), J. Ohta et al. disclosed the idea of integrating a GaAs-based TJS laser and a field-effect transistor, and the characteristics of separately manufactured devices.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、前記従来の技術では、いくつかの問題点
があるため、集積化の利点を示すような結果を得ていな
いのが実情である。
However, the above-mentioned conventional technology has several problems, and the actual situation is that results that demonstrate the advantages of integration have not been obtained.

前者の場合の問題点の大きなものは、■電子デバイスと
光デバイスの必要とする膜厚が異なるために、プレーナ
構造が作りにくいこと、■膜厚ばかりでなく、その層構
造が電子デバイスと光デバイスでは異なるため、高品質
を要求される活性層も、再成長させる必要があり、良質
のものを得るのが困難であることの2点である。
The major problems in the former case are: ■ It is difficult to create a planar structure because the film thicknesses required for electronic devices and optical devices are different; and ■ Not only the film thickness, but also the layer structure Since each device is different, the active layer, which requires high quality, also needs to be regrown, making it difficult to obtain a high quality one.

また、後者の場合でも、TJSレーザは、半絶縁性基板
に溝を堀り、その部分に選択成長させることになるので
、プレーナ構造は難しく、素子製作が困難なため、集積
化には成功していない。
In addition, even in the latter case, TJS lasers require trenches to be dug in a semi-insulating substrate and selective growth is performed in those areas, making planar structures difficult and device fabrication difficult, making integration difficult. Not yet.

本発明は、前記問題点を解決するためになされたもので
ある。
The present invention has been made to solve the above problems.

本発明の目的は、光デバイスと電子デバイスの活性領域
を連続した結晶成長によって形成し、はぼプレーナ構造
に近い光電子集積回路とその製造方法を提供することに
ある。
An object of the present invention is to provide an optoelectronic integrated circuit in which active regions of optical devices and electronic devices are formed by continuous crystal growth and have a nearly planar structure, and a method for manufacturing the same.

本発明の前記ならびにその他の目的と新規な特徴は、本
明細書の記述及び添付図面によって明らかになるであろ
う。
The above and other objects and novel features of the present invention will become apparent from the description of this specification and the accompanying drawings.

〔課題を解決するための手段〕[Means to solve the problem]

前記目的を達成するために、本発明は、半絶縁性基板の
上に、半導体レーザ用の高抵抗クラッド層、ノンドープ
活性層、高抵抗クラッド層が順次形成され、さらにその
上に電界効果1−ランジスタ用のチャンネル層を有し、
半導体レーザの電流注入は、活性層まで堀られた近接し
た2つの溝にそれぞれ埋め込み成長させられたn型電極
層、n型電極層を通して横方向になされることを最も主
要な特徴とする。
In order to achieve the above object, the present invention includes a high resistance cladding layer for a semiconductor laser, a non-doped active layer, and a high resistance cladding layer that are sequentially formed on a semi-insulating substrate, and furthermore, a field effect 1- It has a channel layer for transistors,
The most important feature of the semiconductor laser is that current is injected laterally through the n-type electrode layer, which is grown in two adjacent trenches dug up to the active layer, respectively.

また、前記光電子集積回路の製造方法において、半絶縁
性半導体基板上に、半導体レーザ用の高抵抗クラッド層
、活性層、高抵抗クラッド層、電界効果トランジスタ用
のチャンネル層が順次形成される光デバイス用結晶及び
電子デバイス用結晶を層構造に成長した後、光デバイス
の電流注入用に、その活性層より下まで溝を掘り、n型
電極用層、n型電極用層を埋め込み成長により形成する
ことを特徴とする。
Further, in the method for manufacturing an optoelectronic integrated circuit, an optical device in which a high resistance cladding layer for a semiconductor laser, an active layer, a high resistance cladding layer, and a channel layer for a field effect transistor are sequentially formed on a semi-insulating semiconductor substrate. After growing crystals for optical devices and crystals for electronic devices into a layered structure, trenches are dug below the active layer for current injection of optical devices, and layers for n-type electrodes and layers for n-type electrodes are formed by buried growth. It is characterized by

〔作用〕[Effect]

前述の手段によれば、光電子集積回路の光デバイスと電
子デバイスをほぼプレーナ構造とすることができるので
、信頼性の高い光電子集積回路を再現性良く作ることが
できる。
According to the above-mentioned means, the optical devices and electronic devices of the optoelectronic integrated circuit can have a substantially planar structure, so that a highly reliable optoelectronic integrated circuit can be manufactured with good reproducibility.

また、半絶縁性基板」二に形成しているので、寄生容量
が小さく、高速動作が可能である。
Furthermore, since it is formed on a semi-insulating substrate, parasitic capacitance is small and high-speed operation is possible.

また、高品質を要求される活性層を再成長させる必要が
ないので、光デバイス・電子デバイス両方の活性層を良
質にすることができる。
Furthermore, since there is no need to re-grow the active layer, which requires high quality, the active layer of both optical devices and electronic devices can be made of high quality.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を図面を用いて具体的に説明す
る。
Hereinafter, one embodiment of the present invention will be specifically described using the drawings.

なお、実施例を説明するための企図において、同一機能
を有するものは同一符号を付け、その繰り返しの説明は
省略する。
In addition, in an attempt to explain the embodiments, parts having the same functions are given the same reference numerals, and repeated explanation thereof will be omitted.

〔実施例I〕[Example I]

第1図は、本発明の実施例■の光電子集積回路の概略構
成を説明するための図である。
FIG. 1 is a diagram for explaining the schematic configuration of an optoelectronic integrated circuit according to Example 2 of the present invention.

第1図において、1はFeドープInP半絶縁性基板、
2,6は高抵抗InPクラッド層、3,5は波長1.3
μmに対するGaInAsP電流ガイド層、4は波長1
.55μmに対応するGaInAsP活性層、7はノン
ドープGaInAsチャネル層、8はA]、InAs−
5jド一プ電荷供給層、9はn型InP電極層、10は
p型InP電極層、11はp型GaInAsPキャップ
層、12はn型電極、13はp型電極、14は電界効果
トランジスタ用ドレイン電極、15は同じくゲート電極
、16は同じくソース電極である。
In FIG. 1, 1 is an Fe-doped InP semi-insulating substrate;
2 and 6 are high resistance InP cladding layers, 3 and 5 are wavelength 1.3
GaInAsP current guide layer for μm, 4 is wavelength 1
.. GaInAsP active layer corresponding to 55 μm, 7 is undoped GaInAs channel layer, 8 is A], InAs-
5j doped charge supply layer, 9 is n-type InP electrode layer, 10 is p-type InP electrode layer, 11 is p-type GaInAsP cap layer, 12 is n-type electrode, 13 is p-type electrode, 14 is for field effect transistor A drain electrode, 15 is a gate electrode, and 16 is a source electrode.

このような構造にすることにより、光デバイスと電子デ
バイスの部分の層厚の違いはほとんどなく、今までに報
告されている光電子集積回路に比べて段差が非常に小さ
い。従ってゲート電極を細く形成することか容易であり
、また、このI−ランシスタの下には電荷を持つ層がな
いので、10ギカビッ1−で動作する電界効果1−ラン
ジスタを作ることができる。
With such a structure, there is almost no difference in layer thickness between the optical device and the electronic device, and the step difference is much smaller than in the optoelectronic integrated circuits reported so far. Therefore, it is easy to form a thin gate electrode, and since there is no charged layer under the I-transistor, it is possible to produce a field-effect 1-transistor that operates at 10 Giga bits.

また、この半導体レーザは、半絶縁性基板の上に形成さ
れた一対の電極12.13の間に電流を横方向に流すこ
とによって発振し、寄生容量が非常に小さいので20キ
ガビット以上の動作が可能となる。
In addition, this semiconductor laser oscillates by passing a current horizontally between a pair of electrodes 12 and 13 formed on a semi-insulating substrate, and has very small parasitic capacitance, so it can operate at over 20 kigabits. It becomes possible.

なお、p型GaInAsPキャップ層11は、低抵抗P
側電極を得るためてあり、GaIn、AsP電流ガイド
層3.5は、既に本発明者が特願昭63−259037
号で明細書中に記載している通り、電流の通り道を広げ
て、このレーザダイオードの抵抗を下げるためである。
Note that the p-type GaInAsP cap layer 11 has a low resistance P
A GaIn, AsP current guide layer 3.5 is provided to obtain the side electrode, and the present inventor has already proposed the same in Japanese Patent Application No. 63-259037.
This is to widen the current path and lower the resistance of the laser diode, as described in the specification.

高抵抗InPクラッド層2,6は、レーザ光を縦方向に
閉じ込めると共に、電流がGaInAsP電流カイト層
3,5及びGaInAsP活性層4のみを流れるように
、高純度のInP層又はFeドープInP層とする必要
がある。
The high-resistance InP cladding layers 2 and 6 are made of a high-purity InP layer or a Fe-doped InP layer so that the laser light is confined in the vertical direction and the current flows only through the GaInAsP current kite layers 3 and 5 and the GaInAsP active layer 4. There is a need to.

第1図の例ではFeドープInP半絶縁性基板1がその
役割も果たすので高抵抗InPクラッド層2はなくても
よい。
In the example of FIG. 1, the Fe-doped InP semi-insulating substrate 1 also fulfills this role, so the high-resistance InP cladding layer 2 is not necessary.

本実施例Iの光電子集積回路は、以」−説明したように
段差が少ないので、10キ力ビツト以上で安定に動作す
ることができる。
The optoelectronic integrated circuit of this embodiment I has few steps as described below, and therefore can operate stably at 10 kbit or more.

次に、本実施例Iの光電子集積回路の製造方法について
第2A図〜第2E図(各工程における断面図)に沿って
説明する。なお、第2A図〜第2E図において、図面を
見やすくするために、断面を表わす斜線は省略する。
Next, the method for manufacturing the optoelectronic integrated circuit of Example I will be explained with reference to FIGS. 2A to 2E (cross-sectional views at each step). Note that in FIGS. 2A to 2E, diagonal lines representing cross sections are omitted to make the drawings easier to read.

まず、第2A図に示すように、F eドープInP半絶
縁性基板1の上に、MOVPE法により、高抵抗InP
クラッド層2、GaInAsP電流ガイ1〜層3、Ga
InAsP活性層4、GaInAsP電流ガイド層電流
ガイ抗層5Pクラッド層6、ノン1〜−ブGaInAs
チャネル層7、AlInAs−3iド一プ電荷供給層8
を連続してエピタキシャル成長させる。この過程で、A
lInAs−3i lクープ電荷供給層8をMOVPE
mで7 成長させるのは、最適条件の範囲が狭いために、多少困
難なので、高抵抗InPクラッド層2、GaInAsP
電流ガイ1(層3、GaInAsP活性層4、GaIn
AsP電流ガイド層電流ガイ抗層5Pクラッド層6をM
OVPE法で成長した後、ノンドープGaInAsチャ
ネルN7、Al1nAs−5i トープ電荷供給層8を
MBE法により成長させることも、もちろん可能である
First, as shown in FIG. 2A, high-resistance InP is deposited on a Fe-doped InP semi-insulating substrate 1 by MOVPE.
Cladding layer 2, GaInAsP current layer 1 to layer 3, Ga
InAsP active layer 4, GaInAsP current guide layer current guide layer 5P cladding layer 6, non-1 to -B GaInAs
Channel layer 7, AlInAs-3i doped charge supply layer 8
are continuously epitaxially grown. In this process, A
MOVPE lInAs-3i lcoup charge supply layer 8
It is somewhat difficult to grow at 7 m due to the narrow range of optimal conditions, so high resistance InP cladding layer 2, GaInAsP
Current layer 1 (layer 3, GaInAsP active layer 4, GaIn
AsP current guide layer current guide layer 5P cladding layer 6
It is of course also possible to grow the non-doped GaInAs channel N7 and the Al1nAs-5i doped charge supply layer 8 by the MBE method after growing by the OVPE method.

その後、A]、InAsとGaInAsをエツチングし
、InPをエツチングしない選択エツチング液により、
ヘテロ接合電界効果トランジスタ部以外のノンドープG
aInAsチャネル層7及びAlInAs−3iド一プ
電荷供給層8をエツチング(第2B図)した後、5in
2膜21を付け、通常の方法により、n型InP電極層
9を成長させる部分に窓をあけ、リアクティブ・イオン
・エツチングにより高抵抗InPクラッド層2中まで溝
を堀る。そして、選択成長の容易な成長法により、この
溝の部分だけにn型1nP電極層9を成長する(第2C
図)。これには、塩素(cn)を含んだ原料を用いた結
晶成長法が適しており、ここでは、この選択成長法にI
 n (C2tl、 )zCQとPH3を用いてM○V
PE成長を行った。これにより5j−0□マスクには多
結晶がつくことなく溝部の平坦な埋め込み成長ができた
。s」o2膜21をはく離した後、同じ工程により、今
度は、p型InP電極層10、p型GaInAsPキャ
ップIllを成長させる(第2D図)。
Then, using a selective etching solution that etches InAs and GaInAs but not InP,
Non-doped G other than the heterojunction field effect transistor section
After etching the aInAs channel layer 7 and the AlInAs-3i doped charge supply layer 8 (FIG. 2B), a 5-in.
2 film 21 is attached, a window is formed in a portion where the n-type InP electrode layer 9 is to be grown by a conventional method, and a groove is dug into the high-resistance InP cladding layer 2 by reactive ion etching. Then, by a growth method that allows easy selective growth, an n-type 1nP electrode layer 9 is grown only in this groove portion (second C
figure). A crystal growth method using a raw material containing chlorine (cn) is suitable for this purpose, and here, this selective growth method is
n (C2tl, )zM○V using CQ and PH3
PE growth was performed. As a result, the 5j-0□ mask was able to grow flat in the trench without forming polycrystals. After peeling off the s'o2 film 21, a p-type InP electrode layer 10 and a p-type GaInAsP cap Ill are grown using the same process (FIG. 2D).

この過程で大切なのは、n型InP電極M9とp型In
P電極層10の距離dであり、1.5μm以下とするこ
とが必要である。これは、ホトリソグラフィーの露光に
ステッパーを使用すれは充分可能である。また、n型I
nP電極層9とp型InP電極層10夫々のかわりに、
より屈折率の大きいGaInAsP層を用いると、この
距離dを2μm以上とすることができ、製作上のマージ
ンが増える。
What is important in this process is that the n-type InP electrode M9 and the p-type InP electrode
The distance d of the P electrode layer 10 needs to be 1.5 μm or less. This is fully possible if a stepper is used for photolithographic exposure. Also, n-type I
Instead of the nP electrode layer 9 and the p-type InP electrode layer 10, respectively,
If a GaInAsP layer with a higher refractive index is used, this distance d can be set to 2 μm or more, increasing the manufacturing margin.

以上のように、本発明の手段によれば、最低3回のエピ
タキシャル成長により、光電子集積回路用の結晶を作る
ことができる。
As described above, according to the means of the present invention, a crystal for an optoelectronic integrated circuit can be produced by epitaxial growth at least three times.

その後、第2E図に示すように、通常の手段により電極
12,13,14,15.16を形成することにより、
この集積回路は完成する。
Thereafter, as shown in FIG. 2E, by forming electrodes 12, 13, 14, 15, 16 by conventional means,
This integrated circuit is completed.

ここで示した、光電子集積回路の光デバイスは、ファブ
リ・ペロー形のレーザであるが、第1回目の成長でGa
InAsP電流ガイド層5を成長した後、成長を中断し
て外に取り出し、GaInAsP電流ガイドMSの上に
回折格子を形成してから、高抵抗工nPクラッ1く層6
.ノンドープGaInAsチャネル層7、AITnAs
−8jドープ電荷供給層8を成長することにより、分布
帰還形レーザと電界効果トランジスタを集積化すること
ができる。また、ここで示した電子デバイスは、ノンド
ープGaInAsチャネル層7とA1.InAs−8]
トープ電荷供給層8からなる2次元電子ガスへテロ接合
電界効果トランジスタについて説明したが、他の材料や
構成法の電界効果トランジスタでもかまわない。
The optical device of the optoelectronic integrated circuit shown here is a Fabry-Perot type laser, but the first growth
After growing the InAsP current guide layer 5, the growth is interrupted and taken out, a diffraction grating is formed on the GaInAsP current guide MS, and then the high resistance nP crack layer 6 is formed.
.. Non-doped GaInAs channel layer 7, AITnAs
By growing the -8j doped charge supply layer 8, a distributed feedback laser and a field effect transistor can be integrated. The electronic device shown here also includes a non-doped GaInAs channel layer 7 and A1. InAs-8]
Although a two-dimensional electron gas heterojunction field effect transistor consisting of a topped charge supply layer 8 has been described, field effect transistors made of other materials and construction methods may be used.

〔実施例■〕[Example ■]

本発明の実施例■の光電子集積回路は、前記第1図に示
す実施例Iと同じ構成であり、FeドープInP#!:
絶縁性基板1を半絶縁性GaAs基板に、高抵抗InP
クランド層2,6を高抵抗AlGaAsクラッド層に、
GaInAsP電流ガイF JW 3 、5を高抵抗A
lGaAsクラッドN2,6よりA1組成の小さいAl
、GaAs電流ガイド層に、GaInAsP活性層4を
GaAs活性層に、ノンドープGaInAsチャネル層
7をノンドープGaAsチャネル層に、AlInAs−
3jド一プ電荷供給層8をAlGaAs−3i トープ
電荷供給層に、n型InP電極層9をn型Al、GaA
s層に、p型InP電極層10をp型AlGaAs層に
、p型GaInAsPキャップ層11をp型GaAsキ
ャップ層にそれぞれすることにより、波長0.88μm
の半導体レーザとGaAs系2次元電子ガスへテロ接合
電界効果トランジスタを搭載したものである。
The optoelectronic integrated circuit of Example 2 of the present invention has the same configuration as Example I shown in FIG. 1, and has an Fe-doped InP#! :
The insulating substrate 1 is a semi-insulating GaAs substrate, and a high resistance InP
The crand layers 2 and 6 are made of high resistance AlGaAs cladding layer,
GaInAsP current guide F JW 3, 5 with high resistance A
Al with a smaller A1 composition than lGaAs clad N2,6
, GaAs current guide layer, GaInAsP active layer 4 as GaAs active layer, non-doped GaInAs channel layer 7 as non-doped GaAs channel layer, AlInAs-
The 3j doped charge supply layer 8 is made of AlGaAs-3i doped charge supply layer, and the n-type InP electrode layer 9 is made of n-type Al, GaA.
By changing the p-type InP electrode layer 10 to a p-type AlGaAs layer and the p-type GaInAsP cap layer 11 to a p-type GaAs cap layer in the s layer, the wavelength is 0.88 μm.
It is equipped with a semiconductor laser and a GaAs-based two-dimensional electron gas heterojunction field effect transistor.

〔実施例■〕[Example ■]

本発明の実施例Hの光電子集積回路は、前記実施例■の
内、GaAs活性層4を、第3図に示すように、薄い(
70人)  In。、3.Gao、cqAs層31をG
aAs層32.33 (厚さ500人)ではさんだ構造
とすることにより、波長1.05μnlの半導体レーザ
とGaAs系2次元電子ガスへテロ接合電界効果1〜ラ
ンジスタを搭載したものである。
In the optoelectronic integrated circuit of Example H of the present invention, the GaAs active layer 4 of Example 2 is thin (as shown in FIG. 3).
70 people) In. , 3. Gao, cqAs layer 31
A semiconductor laser with a wavelength of 1.05 .mu.nl and a GaAs-based two-dimensional electron gas heterojunction field effect transistor are mounted by sandwiching the structure between aAs layers 32 and 33 (thickness: 500 layers).

11 以」二、本発明を実施例にもとづき具体的に説明したが
、本発明は、前記実施例に限定されるものではなく、そ
の要旨を逸脱しない範囲において種々変更可能であるこ
とは言うまでもない。
11 Hereinafter, the present invention has been specifically explained based on Examples, but it goes without saying that the present invention is not limited to the above-mentioned Examples, and can be modified in various ways without departing from the gist thereof. .

〔発明の効果〕〔Effect of the invention〕

以上、説明したように、本発明によれば、光電子集積回
路の光デバイスと電子デバイスの活性領域を連続した結
晶成長によって形成し、はぼプレーナ構造とすることが
できるので、信頼性の高い光電子集積回路を再現性良く
作ることができる。
As described above, according to the present invention, the active regions of the optical devices and electronic devices of optoelectronic integrated circuits can be formed by continuous crystal growth and can have a substantially planar structure. Integrated circuits can be created with good reproducibility.

また、光電子集積回路の光デバイスと電子デバイスが同
一半絶縁性基板」二に形成されるので、寄生容量が小さ
く、高速動作が可能である。
Furthermore, since the optical devices and electronic devices of the optoelectronic integrated circuit are formed on the same semi-insulating substrate, parasitic capacitance is small and high-speed operation is possible.

また、高品質を要求される活性層を再成長させる必要が
ないので、光デバイス・電子デバイス両方の活性層を良
質にすることができる。
Furthermore, since there is no need to re-grow the active layer, which requires high quality, the active layer of both optical devices and electronic devices can be made of high quality.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の光電子集積回路の実施例■の概略構
成を説明するための図、 第2A図、第2B図、第2C図、第2D図及び2 第2E図は、第1図に示す光電子集積回路の製造方法を
説明するための各工程における断面図、第3図は、本発
明の光電子集積@路の実施例DJの光デバイスの活性層
の構成を示す図である。 図中、1・ FeドープInP半絶縁性基板、2゜6 
・高抵抗InPクラッド層、3 、5−GaInAsP
電流ガイド層、4・・・GaInAsP活性層、7 ・
ノンドブGaInAsチャネル層、8−AITnAs−
5iド一プ電荷供給層、9 n型InP電極層、10・
・p型丁nP電極層、11−p型GaInAsPキャッ
プ層、12−n型電極、13  p型電極、14・・電
界効果トランジスタ用トレイン電極、15・ゲート電極
、16・ソース電極、21.22−5in2膜、31・
70 A厚I no、3sGao、6Js層、32.3
3−500八属GaAs層。
FIG. 1 is a diagram for explaining the schematic configuration of Example 2 of the optoelectronic integrated circuit of the present invention. FIGS. FIG. 3 is a diagram showing the structure of the active layer of the optical device of the optical device of the embodiment DJ of the optoelectronic integrated circuit of the present invention. In the figure, 1. Fe-doped InP semi-insulating substrate, 2°6
・High resistance InP cladding layer, 3,5-GaInAsP
Current guide layer, 4...GaInAsP active layer, 7.
Non-doped GaInAs channel layer, 8-AITnAs-
5i doped charge supply layer, 9 n-type InP electrode layer, 10.
・P-type nP electrode layer, 11-p-type GaInAsP cap layer, 12-n-type electrode, 13 p-type electrode, 14...train electrode for field effect transistor, 15-gate electrode, 16-source electrode, 21.22 -5in2 membrane, 31・
70 A thickness I no, 3sGao, 6Js layer, 32.3
3-500 eight-genus GaAs layer.

Claims (2)

【特許請求の範囲】[Claims] (1)半絶縁性半導体基板上に、半導体レーザ用の高抵
抗クラッド層、活性層、高抵抗クラッド層が順次形成さ
れ、さらにその上に電界効果トランジスタ用のチャンネ
ル層を有し、半導体レーザの電流注入は、前記活性層ま
で堀られた近接した2つの溝にそれぞれ埋め込み成長さ
せられたp型電極層とn型電極層を通して横方向になさ
れることを特徴とする光電子集積回路。
(1) A high-resistance cladding layer, an active layer, and a high-resistance cladding layer for a semiconductor laser are sequentially formed on a semi-insulating semiconductor substrate, and a channel layer for a field effect transistor is further formed on top of the high-resistance cladding layer for a semiconductor laser. An optoelectronic integrated circuit characterized in that current is injected laterally through a p-type electrode layer and an n-type electrode layer that are respectively grown in two adjacent trenches dug up to the active layer.
(2)半絶縁性半導体基板上に、半導体レーザ用の高抵
抗クラッド層、活性層、高抵抗クラッド層、電界効果ト
ランジスタ用のチャンネル層が順次形成される光デバイ
ス用結晶及び電子デバイス用結晶を層構造に成長した後
、光デバイスの電流注入用に、その活性層より下まで溝
を堀り、n型電極用層、p型電極用層を埋め込み成長に
より形成することを特徴とする請求項第1項に記載の光
電子集積回路の製造方法。
(2) Crystals for optical devices and crystals for electronic devices in which a high-resistance cladding layer for a semiconductor laser, an active layer, a high-resistance cladding layer, and a channel layer for a field-effect transistor are sequentially formed on a semi-insulating semiconductor substrate. A claim characterized in that, after growing into a layered structure, a groove is dug to below the active layer for current injection of an optical device, and a layer for an n-type electrode and a layer for a p-type electrode are formed by buried growth. 2. A method for manufacturing an optoelectronic integrated circuit according to item 1.
JP14994389A 1989-06-12 1989-06-12 Photoelectronic integrated circuit and manufacturing method thereof Pending JPH0312984A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14994389A JPH0312984A (en) 1989-06-12 1989-06-12 Photoelectronic integrated circuit and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14994389A JPH0312984A (en) 1989-06-12 1989-06-12 Photoelectronic integrated circuit and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JPH0312984A true JPH0312984A (en) 1991-01-21

Family

ID=15485966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14994389A Pending JPH0312984A (en) 1989-06-12 1989-06-12 Photoelectronic integrated circuit and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JPH0312984A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6403986B1 (en) 1994-09-28 2002-06-11 Nippon Telegraph And Telephone Corporation Optical semiconductor device and method of fabricating the same
JP2002307878A (en) * 2001-04-11 2002-10-23 Toppan Printing Co Ltd Forgery-preventing image forming body and manufacturing method therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6403986B1 (en) 1994-09-28 2002-06-11 Nippon Telegraph And Telephone Corporation Optical semiconductor device and method of fabricating the same
US6790697B2 (en) 1994-09-28 2004-09-14 Nippon Telegraph And Telephone Corporation Optical semiconductor device and method of fabricating the same
JP2002307878A (en) * 2001-04-11 2002-10-23 Toppan Printing Co Ltd Forgery-preventing image forming body and manufacturing method therefor

Similar Documents

Publication Publication Date Title
DE112013004345B4 (en) Semiconductor unit and method for its production
DE69032451T2 (en) Semiconductor laser and method of manufacturing the same
US4932033A (en) Semiconductor laser having a lateral p-n junction utilizing inclined surface and method of manufacturing same
DE69300772T2 (en) Laser with buried heterostructure grown on a structured substrate using MOCVD.
DE60212755T2 (en) Optical semiconductor device and manufacturing method
US4430741A (en) Semiconductor laser device
JPH0221683A (en) Semiconductor laser device
JPH01146390A (en) Semiconductor device
US5271028A (en) Semiconductor laser device
DE69123709T2 (en) Optoelectronic integrated circuit with a long-wave transmitter
JPH0312984A (en) Photoelectronic integrated circuit and manufacturing method thereof
JPH1168227A (en) Surface light emitting laser
EP0272372B1 (en) Method of making a monolithic integrated photodetector
JP2555984B2 (en) Semiconductor laser and manufacturing method thereof
JPH02106081A (en) Semiconductor laser
JP2721274B2 (en) Semiconductor laser device
JP2006245137A (en) Semiconductor optical device
JPH02237190A (en) Semiconductor laser
WO1993020604A1 (en) Semiconductor laser device
JP2517042B2 (en) Optical integrated circuit
JP2736382B2 (en) Embedded semiconductor laser and method of manufacturing the same
JPH06169130A (en) Semiconductor light emitting element and manufacture thereof
JPH09283846A (en) Semiconductor laser manufacturing method
JPH01268085A (en) Semiconductor laser
JPS62244167A (en) Optical and electronic semiconductor integrated circuits