[go: up one dir, main page]

JPH03127608A - Method and device for absorbing gas - Google Patents

Method and device for absorbing gas

Info

Publication number
JPH03127608A
JPH03127608A JP1263811A JP26381189A JPH03127608A JP H03127608 A JPH03127608 A JP H03127608A JP 1263811 A JP1263811 A JP 1263811A JP 26381189 A JP26381189 A JP 26381189A JP H03127608 A JPH03127608 A JP H03127608A
Authority
JP
Japan
Prior art keywords
gas
skeleton
iron
dimensional
organic polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1263811A
Other languages
Japanese (ja)
Inventor
Yozo Takemura
竹村 洋三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP1263811A priority Critical patent/JPH03127608A/en
Publication of JPH03127608A publication Critical patent/JPH03127608A/en
Pending legal-status Critical Current

Links

Landscapes

  • Gas Separation By Absorption (AREA)
  • Powder Metallurgy (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は、ガス吸収装置及びガス吸収方法に係り、工場
内ガス、排気ガス等のガス中の有害成分又は、回収しな
いガス成分を選別除去する分野、例えば、鉄鋼酸洗ライ
ンの工場内ガスからHClを除去したり、排煙から、S
02の除去、セロファン製造工程のガスからH,Sの除
去等に利用可能なガス吸収装置及びガス吸収方法に関す
る。 従来の技術 工場、排ガス等の大量に発生するガス中から。 特定ガス成分を除去する方法としては、一般に、直接燃
焼式、触媒方式、薬液吸収方式が挙げられる。 特に薬液吸収方式では、薬液と発生ガスをいかに接触さ
せるかが装置設計上から重要である。現在、使用されて
いる方法は、■薬液中にガスをインジェクションする方
法、■薬液をスプレーし、発生ガスを向流し、■薬液滴
とガスを反応する方法、■反応塔に充填物を装入し、薬
液をスプレーし、充填物表面上に付着した薬液と発生ガ
スを接触吸収させる方法があるが、いずれの方法も薬液
と発生ガスを接触させる点で充分でなく、ガス吸収装置
が大型化する。 発明が解決しようとする課題 木兄1!IIはガスと薬液の接触を増大させる効率的な
装置及び方法を提供するもので、三次元網目状に構成さ
れた焼結性金属多孔体を利用することによって、接触面
積を大とするだけでなく、多孔体の空孔中をガスが通過
する時骨格近傍で発生する渦流視覚を利用し、ガスと多
孔体骨格上にある液膜の接触反応チャンスを増大させる
ことが出来る。又、空孔部に生成する極めて薄い液膜が
通過ガスの圧損を大11Jにあげないで、ガス/液体の
吸収を増大させる。 又、金属多孔体の通電又は誘導加熱が容易に出来るので
、骨格りの液膜を最適反応温度に温度制御することによ
って、反応効率を増大出来る等の利点もある。 課題を解決するための手段及び作用 本発明は、 (1)3次元の連通した空孔を形成した空孔率が70体
積%以上、空孔径0.5〜10mm、比表面積300〜
2000げ/d、カサ比重0.3〜2.0の三次元網目
状の焼結金属多孔体の少なくとも金属骨格表面上に吸収
薬液の被膜を形成せしめてなるガス吸収装置、 (2)請求項(1)記載の装置内に、ガス又はガスと吸
収薬液を通過せしめて1通過ガス中の特定ガス成分を吸
収ガス薬液中に吸収、除去することを特徴とするガス吸
収方法、 (3)平均粒径が50ル以下の鉄系粉末を3次元網目状
有機高分子材の骨格に塗着し、乾燥し、熱処理して3次
元網目状有機高分子材の骨格を除去し。 鉄系粉末を焼結して製造した3次元の連通した空孔を形
成した空孔率が70体積%以上、空孔径0.5〜10m
g、比表面a 300〜2000m″/m″、カサ比重
0.3〜2.0の三次元網目状の焼結金属多孔体の少な
くとも金属骨格表面上に吸収薬液の被膜を形成せしめて
なるガス吸収装置。 (4)平均粒径が50←以下の鉄系粉末を含有する泥漿
を、型枠内に密着して配した多数の有機高分子球体の球
と球との間隙に流し込み、乾燥し、熱処理して有機高分
子球体を除去し、鉄系粉末を燃結して3次元の連通した
空孔を形成した空孔率が70体積%以上、空孔径0.5
〜10m5.比表面積300〜2000rn’ / r
n’ 、カサ比fi 0.3〜2.017)三次元網目
状の焼結金属多孔体の少なくとも金属骨格表面上に吸収
薬液の被膜を形成せしめてなるガス吸収装置。 (5)燃焼金属多孔体を通電又は誘導加熱し、骨格部を
反応温度に制御する請求項(2)記載の方法。 である。 以下詳細に説明する。 本発明のガス吸収装置は三次元の連通した空孔を形成し
たいわゆる三次元網目状の焼結金属多孔体の金属骨格表
面上に吸収薬液の被膜を形成したものである。 これらの金属多孔体は、たとえば下記の製造方法によっ
て好適に製造することができる。 ■特願昭83−185884 ■ //  83−185885 ■ //  83−1137853 ■ /l  83−210642 ■特願平1−97822 本発明のガス吸収とは、気体が単に液体中に溶解する場
合(物理吸収)と、溶解した気体が液体と化学反応を起
こす場合(化学吸収)との両者を含むものである。 金属多孔体を構成する金属としては、使用する薬液やガ
スの種類に応じて耐食性を考慮して選択する。 本発明ではガスと吸収薬液の接触を接触面積。 反応チャンスを増大させ、ガスの圧損を大巾に上げない
ため、焼結金属多孔体の空孔率を70体積%以上、空孔
径0.5〜10mm、比表面1a3(10〜2000r
n’ / m″、カサ比重を0.3〜2.0とする。 このような三次元網目状の焼結金属多孔体の代表的製造
法を下記に説明する。 先ず請求項(3)の本発明の多孔体の製造方法の例を説
明する0本発明の多孔体を製造する際は。 例えば平均粒径が50外以下でCを2.1〜4.5%含
有する鉄粉を用いる。 一般の粉末合金は高圧プレスで酸形して焼成するが、請
求項(3)では高圧プレスを用いないで、3次元網目状
有機高分子材の骨格にスラリー状とした鉄粉を塗着せし
めて焼成する。高圧プレスを用いない本発明法で、平均
粒径が50終以上では。 3次元網目状有機高分子材の骨格に塗着しづらく、又粒
子間の結合力が不十分となる。従って本発明では平均粒
径が501L以下の鉄粉を用いる。 又1本発明では粒子間の結合力を高めるために、液相焼
結化を促進させる。Cを2.1%以上含有する急冷粒銑
は粉砕し易いために微細な鉄粉がボールミル等で容易に
製造でき、かつ焼結に際しては低融点のレデブライト共
晶量が多いため液相焼結化し易く、粒子間の強固な結合
が得られ易い、しかしCを4.5%以上含有する鉄粉は
焼結時の熱応力により熱歪割れが発生し易い。 この鉄粉を、酸素含有量が第(り式となるように調整す
る。 [0]= 4/3([C]−2)〜4/3([C] +
 7)・・・(1)
Industrial Application Field The present invention relates to a gas absorption device and a gas absorption method, and is used in the field of sorting and removing harmful components or unrecoverable gas components from gases such as factory gas and exhaust gas, such as steel pickling lines. HCl is removed from factory gas, and S from flue gas is removed.
The present invention relates to a gas absorption device and a gas absorption method that can be used to remove H and S from gases used in the cellophane manufacturing process. From conventional technology factories, gases generated in large quantities such as exhaust gas. Methods for removing specific gas components generally include a direct combustion method, a catalytic method, and a chemical absorption method. Particularly in the chemical liquid absorption method, how the chemical liquid and the generated gas are brought into contact is important from the standpoint of device design. Currently, the methods used are: ■ Injecting gas into the chemical solution, ■ Spraying the chemical solution and counterflowing the generated gas, ■ Reacting the chemical droplets with the gas, and ■ Charging the reaction tower with packing. However, there is a method of spraying a chemical solution and allowing the chemical solution attached to the surface of the filling material to contact and absorb the generated gas, but these methods are not sufficient to bring the chemical solution into contact with the generated gas, and the gas absorption device becomes large. do. The problem that the invention tries to solve is 1! II provides an efficient device and method for increasing the contact between gas and chemical liquid, and by using a sinterable metal porous body structured in a three-dimensional network, the contact area can be increased simply by increasing the contact area. Instead, it is possible to increase the chance of a contact reaction between the gas and the liquid film on the porous skeleton by utilizing the visual vortex generated near the skeleton when the gas passes through the pores of the porous body. Also, the extremely thin liquid film formed in the pores increases gas/liquid absorption without increasing the pressure drop of the passing gas by as much as 11 J. In addition, since the metal porous body can be easily energized or heated by induction, there is an advantage that the reaction efficiency can be increased by controlling the temperature of the liquid film of the skeleton to the optimum reaction temperature. Means and Effects for Solving the Problems The present invention provides: (1) three-dimensional connected pores with a porosity of 70% by volume or more, a pore diameter of 0.5-10 mm, and a specific surface area of 300-300 mm;
A gas absorption device comprising a three-dimensional network-shaped sintered metal porous body having a bulk specific gravity of 2,000 g/d and a bulk specific gravity of 0.3 to 2.0, with a coating of an absorbing chemical liquid formed on at least the surface of the metal skeleton, (2) Claim (1) A gas absorption method characterized by passing a gas or a gas and an absorption chemical solution through the device described above to absorb and remove a specific gas component in the one-pass gas into the absorption gas chemical solution; (3) Average Iron-based powder with a particle size of 50 l or less is applied to the skeleton of the three-dimensional network organic polymer material, dried, and heat treated to remove the skeleton of the three-dimensional network organic polymer material. Manufactured by sintering iron-based powder and forming three-dimensional connected pores with a porosity of 70% by volume or more and a pore diameter of 0.5 to 10 m.
g, a gas formed by forming a coating of an absorbing chemical liquid on at least the metal skeleton surface of a three-dimensional network-shaped sintered metal porous body having a specific surface a of 300 to 2000 m''/m'' and a bulk specific gravity of 0.3 to 2.0; Absorption device. (4) A slurry containing iron-based powder with an average particle size of 50← or less is poured into the gaps between the spheres of a large number of organic polymer spheres closely arranged in a mold, dried, and heat-treated. The organic polymer spheres are removed, and the iron-based powder is sintered to form three-dimensional connected pores.The porosity is 70% by volume or more, and the pore diameter is 0.5.
~10m5. Specific surface area 300~2000rn'/r
n', bulk ratio fi 0.3 to 2.017) A gas absorption device comprising a three-dimensional mesh-like sintered metal porous body and a coating of an absorbing chemical liquid formed on at least the surface of the metal skeleton. (5) The method according to claim (2), wherein the porous combustion metal body is heated by electricity or induction to control the skeleton portion to a reaction temperature. It is. This will be explained in detail below. The gas absorption device of the present invention has a coating of an absorbing chemical liquid formed on the surface of a metal skeleton of a so-called three-dimensional network-like sintered metal porous body in which three-dimensional interconnected pores are formed. These metal porous bodies can be suitably manufactured, for example, by the following manufacturing method. ■Patent Application 1983-185884 ■ // 83-185885 ■ // 83-1137853 ■ /l 83-210642 ■Patent Application 1997-97822 The gas absorption of the present invention refers to the case where a gas simply dissolves in a liquid ( This includes both cases (physical absorption) and cases where dissolved gas causes a chemical reaction with the liquid (chemical absorption). The metal constituting the porous metal body is selected in consideration of corrosion resistance depending on the type of chemical solution or gas used. In the present invention, the contact area between the gas and the absorbed chemical liquid is defined as the contact area. In order to increase the reaction chance and not significantly increase the gas pressure drop, the sintered metal porous body has a porosity of 70% by volume or more, a pore diameter of 0.5 to 10 mm, and a specific surface of 1a3 (10 to 2000r).
n'/m'', and the bulk specific gravity is set to 0.3 to 2.0. A typical manufacturing method of such a three-dimensional network-like sintered metal porous body will be explained below. First, claim (3) Describing an example of the method for manufacturing the porous body of the present invention When manufacturing the porous body of the present invention: For example, iron powder having an average particle size of 50 mm or less and containing 2.1 to 4.5% of C is used. Generally, powder alloys are fired in acid form using a high-pressure press, but in claim (3), iron powder in the form of a slurry is applied to the skeleton of a three-dimensional network organic polymer material without using a high-pressure press. In the method of the present invention, which does not use a high-pressure press, if the average particle size is 50 or more, it will be difficult to coat the skeleton of the three-dimensional network organic polymer material, and the bonding force between the particles will be insufficient. Therefore, in the present invention, iron powder with an average particle size of 501L or less is used.Also, in the present invention, liquid phase sintering is promoted in order to increase the bonding force between particles.Containing 2.1% or more of C. Because the rapidly cooled granulated pig iron is easy to crush, fine iron powder can be easily produced using a ball mill, etc., and during sintering, it is easy to undergo liquid phase sintering because it contains a large amount of low-melting point leadebrite eutectic, and the solid particles between particles are easily produced. Bonding is easily obtained, but iron powder containing 4.5% or more of C is likely to cause thermal strain cracking due to thermal stress during sintering. Adjust to. [0] = 4/3 ([C] - 2) to 4/3 ([C] +
7)...(1)

【Ol:表面酸化した鉄粉末の酸素
含有量(C1:表面酸化した鉄粉末の炭素含有量この酸
素含有量の調整によって鉄粉末には炭素と酸素が適正量
含有されるが、焼結に際して炭素と酸素が反応して靭性
の優れた組成の鉄の焼結骨格を#或する。 [01量が4/3([01−2)以下では、焼結に際し
て脱炭が不十分で、靭性の優れた多孔体は生成され難い
、又【0】量が4/3([C] + 7)以上では鉄系
焼結体の骨格に未還元酸化物が多く、多孔体は壊れ易く
又強度も低い0本発明者等の知見によると、
[Ol: Oxygen content of surface-oxidized iron powder (C1: Carbon content of surface-oxidized iron powder) By adjusting this oxygen content, iron powder contains appropriate amounts of carbon and oxygen, but during sintering, carbon When the amount of 01 is less than 4/3 ([01-2), decarburization is insufficient during sintering, resulting in poor toughness. It is difficult to produce an excellent porous body, and when the amount of [0] is more than 4/3 ([C] + 7), there are many unreduced oxides in the skeleton of the iron-based sintered body, and the porous body is easily broken and has low strength. According to the findings of the inventors,

【0】を第
1式に保つ事により、靭性に優れた鉄の多孔体の製造が
安定する。鉄粉の酸素含有量の調整は鉄粉の表面を酸化
する事によって達成できる。この鉄粉の表面酸化は湿式
粉砕を行っても達成できるし、又表面酸化していない銑
鉄の鉄粉を1例えば水と共に煮沸し、あるいは例えば大
気中で低温加熱する事により得る事ができる(又酸化鉄
の添加によって可能)、この表面酸化せしめた鉄粉を結
合剤と混練して3次元網目状有機高分子材の骨格に塗着
する。 結合剤としては、有機系あるいは無機系のバインダーを
用いることができる。有機系バインダーとしては例えば
CMC、ポリアクリル酸等が使用でき、又無機系バイン
ダーとして水ガラス等が使用できる。 3次元網目状有機高分子材としては3次元に連通孔を有
する高分子多孔体で、例えばウレタンフオーム、合成m
#Iの三次元織物等が使用できる。 塗着は例えば、スプレー法や浸漬法によって行うことが
できる。 本発明では、上記の塗着生成物を加熱して、鉄粉の[0
1と[01を反応せしめると共に焼結反応をせしめる。 従って一般の粉末合金を製造する真空炉や還元炉を用い
てもよいが、加熱炉は非酸化性の例えばArやヘガス雰
囲気で十分である0例えばウレタンフオームの骨格は1
80〜350℃で約30分加熱すると除去される。又塗
着物は600〜1200℃の加熱によって自己還元焼結
して、鉄系の骨格で3次元の連通した空孔を形成した鉄
系の多孔体が得られる。この方法で例えばウレタンフオ
ームの孔径を選定する事によって、空孔が所望の大きさ
の鉄系の多孔体が得られるし、またウレタンフオームの
骨格へ塗着するスラリーン状の鉄粉の厚さを例えば複数
回浸漬する事によって7A整すると空孔率が70体積%
〜90体積%の鉄系の多孔体が得られる。この方法で、
S:、 Mn、 Xi、 Cr、 Mo。 Cu、AQ等のl又は2以上を含有した通常の合金鋼に
相当する成分の鉄条孔体を製造する際には、予めこれ等
の合金成分を含有する銑鉄を製造し、これを50ル以下
に粉砕して前記の鉄粉として用いてもよいし、あるいは
これ等の合金の粉末や合金鉄の粉末で50p以下のもの
を調合してスラリーに混入させて遠戚する事もできる。 次に請求項(4)を特徴する請求項(4)では鉄系の多
孔体を下記の方法で製造する。第2図及び第3図はその
製造方法の例を示す図である。 内部に多数の有機高分子球体6を亙いに密着して充填し
た型枠7を準備する。この有機高分子球体6は後の熱処
理に際して、熱分解し消失して空孔を形成する。有機高
分子球体は従って、この消失に際して、ガスの発生量が
少なく容易に熱分解して消失するものが望ましい、有機
高分子球体として比重の大きいものを使用すると、脱脂
に際してガスの発生量が多く1例えば鉄系の焼結の骨格
が薄肉の場合はこのガスの圧力によって鉄系の焼結の骨
格には割れや変形や脱落が発生するに至る。 例えばスチレン1膨張発泡体(積水化学株製)やエクス
パンセルプラスチック微小中空球体(ジャパンフェライ
ト■!!8りやエポキシバルーン(エマーソンカミング
社製)等は、使用に先立って発泡処理(薄気、熱水等に
よる加熱処理)する事によって、見掛は比重が0.30
以下の中空のあるいは多数の微細な気泡を有する有機高
分子球体となる。これ等の発泡処理をして見掛は比重を
0.30以下とした有機高分子球体6を用いると、熱処
理に際してガスの発生量が少ないために、鉄系の焼結の
骨格には割れや変形や脱落が発生することはない。 第2図に示す如く、例えば多数の有機高分子球体6を型
枠7内に装入し、加圧すると、有機高分子球体6は相互
に密着する。また第3図に示す如く、例えば有機高分子
球体6の相互の接点を接着剤8で接着すると、有m高分
子球体6は相互に密着する0本発明では、多数の有機高
分子球体6を互いに密着して配した型枠7内に、鉄系粉
末と結合液とを混練したスラリー状の混線液を流し込み
、有機高分子球体6の相互の隙間に混線液を配する。こ
の際の混線液は請求項(3)で述べた方法で製造する。 混練液を流し込んだ型枠は、乾燥し、熱処理する。熱処
理に際して、有機高分子球体6は 180〜350℃で
約30分加熱すると除去され、また混線液は800〜1
200℃の加熱によって自己還元焼結して、鉄系の骨格
で3次元の連通した空孔を形成した、空孔率が70体積
%以上の鉄系の多孔体が得られる。 このようにして得られた多孔体の断面の模式図を第1図
に示す、1は鉄骨格部、2は空孔、3は連通空道部、4
は金属粉末間に焼結後生じたミクロ空孔である。 鉄骨表面は粒度が大であり、薬液が付着しやす〈1反応
活性を高めている。骨格近傍には細かい枝が生じている
ためF!4流が発生し易く、この点も反応活性を高めて
いる。 又、網目状であり、又ミクロ空孔があるため、比表面積
が大であり、反応活性を高めている。 さらに、骨格内部に有機高分子骨格が焼失してできた 
100〜300ルφの連通空道部(ミクロ空孔)が存在
し、薬液はその空道部を毛管現象により連通し、全骨格
へと拡散し、多孔体全域の各骨格部及びその表面に均等
に配分されてゆく、そのため、吸収薬液が金属多孔体骨
格表面に均一拡散しやすい。 なお、空孔径0.5m/m 〜10m/mとしたのは、
 0.5層へ以下になると空孔内に生成する液膜が結合
してしまい液滴として空孔内に生成するケースがあり、
この場合は圧損が大巾に増大するので、装置上好ましく
ない、10鵬/漏以上では骨格表面の液膜は当然存在す
るが空孔内の液膜が表面張力上、生成しづらくなり反応
効率の低下を示すので好ましくない。 又、空孔率70%以L、比表面積を300〜2000m
?/m2/m3、カサ比重9.3〜2.0としたのは1
反応活性上の好ましい範囲で、請求項(3)〜(4)の
方法で容易にこの範囲のものを製造することができる。 本発明の多孔体は1強度に優れる外、切断、加工、溶接
が容易であり、所望の形状に加工し、たとえばガス及び
吸収薬液の導入、及び排出部等の必要部分以外の側壁を
板で密閉すれば、容易にガス吸収装置を製造できる。 各種ガス吸収例を第1表に示すが、本発明はこれらに適
用可能である。 (以下余白) 又、従来のガス吸収塔に用いられる充填物と本発明の金
属多孔体の1例を比較すると第2表のようになる。 第2表 実施例 平均粒径10gの酸化銑鉄粉末(C:3.0%、Mn:
0.3%、Si:0.1%、P :0.02%、s :
0.01%。 酸素:6%)に平均粒径5ルのCr、 Ni粉末を重量
比で18%、8%それぞれ添加し、ポバールを結合剤と
して網目状ウレタンフオームに塗着し、熱処理して空孔
径7m/m、空孔率95%、からなるステンレス系焼結
多孔体を製造し、第4図に示す反応塔(1厘立方体)に
圧損50mm H20/mになる様装置し、S02を5
oopp廖含有する発電所燃焼排ガス11を2+g/s
ecの流速で通過させ、多孔体15上部から、P)17
.5のMg(OHh溶液13を薬液散布ノズル!4より
50旦/分で滴下させ、処理ガス12の脱硫率を測定し
た所、88.0%の脱硫率を示した。薬液は排水口16
より排出される。 一方、市販の反応塔充填材(東洋ゴム工業■、バイレッ
クス−200)を充填した所、脱硫効率は40.0%で
あった。 発明の効果 本発明のガス吸収?を置は反応効率が大であるため、装
置が小型化し、薬液の減少、コストの低減が可能である
By keeping 0 to the first equation, the production of porous iron bodies with excellent toughness is stabilized. Adjustment of the oxygen content of iron powder can be achieved by oxidizing the surface of iron powder. This surface oxidation of iron powder can be achieved by wet grinding, or it can be obtained by boiling pig iron powder with no surface oxidation, for example, with water, or by heating it at a low temperature in the atmosphere ( This surface oxidized iron powder is kneaded with a binder and applied to the skeleton of the three-dimensional network organic polymer material. As the binder, an organic or inorganic binder can be used. As the organic binder, for example, CMC, polyacrylic acid, etc. can be used, and as the inorganic binder, water glass etc. can be used. The three-dimensional network organic polymer material is a porous polymer material having three-dimensional communicating pores, such as urethane foam, synthetic m
#I three-dimensional fabric etc. can be used. Application can be performed, for example, by a spray method or a dipping method. In the present invention, the above-mentioned coating product is heated to produce iron powder [0
1 and [01 are reacted together and a sintering reaction is caused. Therefore, a vacuum furnace or a reduction furnace for manufacturing general powder alloys may be used, but a non-oxidizing atmosphere such as Ar or gas is sufficient for the heating furnace.For example, the skeleton of urethane foam is
It is removed by heating at 80-350°C for about 30 minutes. Further, the coated material is self-reductively sintered by heating at 600 to 1200°C to obtain an iron-based porous body in which three-dimensionally connected pores are formed in an iron-based skeleton. With this method, for example, by selecting the pore size of the urethane foam, an iron-based porous body with the desired pore size can be obtained, and the thickness of the slurry-like iron powder applied to the urethane foam skeleton can be controlled. For example, if 7A is adjusted by dipping multiple times, the porosity will be 70% by volume.
An iron-based porous body containing ~90% by volume is obtained. using this method,
S:, Mn, Xi, Cr, Mo. When manufacturing a steel bar body with a composition equivalent to ordinary alloy steel containing 1 or more of Cu, AQ, etc., pig iron containing these alloy components is manufactured in advance, and this is 50 L or less. It may be ground into powder and used as the above-mentioned iron powder, or it may be used as a distant relative by mixing powder of these alloys or ferroalloy powder of 50p or less and mixing it into a slurry. Next, in claim (4), an iron-based porous body is manufactured by the following method. FIGS. 2 and 3 are diagrams showing an example of the manufacturing method. A mold 7 is prepared in which a large number of organic polymer spheres 6 are tightly packed. During the subsequent heat treatment, the organic polymer spheres 6 thermally decompose and disappear to form pores. Therefore, when organic polymer spheres disappear, it is desirable that they generate a small amount of gas and are easily thermally decomposed and disappear.If organic polymer spheres that have a high specific gravity are used, a large amount of gas will be generated during degreasing. 1. For example, if the iron-based sintered skeleton is thin, the pressure of this gas will cause the iron-based sintered skeleton to crack, deform, or fall off. For example, styrene 1 expansion foam (manufactured by Sekisui Chemical Co., Ltd.) and Expancel plastic micro hollow spheres (Japan Ferrite!! By heat treatment with water etc.), the apparent specific gravity is 0.30.
The result is an organic polymer sphere that is hollow or has many fine bubbles. When organic polymer spheres 6 with an apparent specific gravity of 0.30 or less are used after such foaming treatment, the amount of gas generated during heat treatment is small, so the iron-based sintered skeleton is free from cracks. No deformation or falling off will occur. As shown in FIG. 2, for example, when a large number of organic polymer spheres 6 are placed in a mold 7 and pressurized, the organic polymer spheres 6 come into close contact with each other. Further, as shown in FIG. 3, for example, when the mutual contact points of the organic polymer spheres 6 are bonded with an adhesive 8, the polymer spheres 6 come into close contact with each other. A slurry-like mixing liquid made by kneading iron-based powder and a binding liquid is poured into the molds 7 arranged in close contact with each other, and the mixing liquid is placed in the gaps between the organic polymer spheres 6. The mixing liquid at this time is manufactured by the method described in claim (3). The mold into which the kneading solution is poured is dried and heat treated. During the heat treatment, the organic polymer spheres 6 are removed by heating at 180-350°C for about 30 minutes, and the crosstalk liquid is heated at 800-150°C.
By self-reductive sintering by heating at 200° C., an iron-based porous body with a porosity of 70% by volume or more, in which three-dimensional connected pores are formed in an iron-based skeleton, is obtained. A schematic diagram of the cross section of the porous body thus obtained is shown in FIG.
are micropores created between metal powders after sintering. The surface of the steel frame has large particles, making it easy for chemical solutions to adhere to it (1) increasing reaction activity. F! because there are small branches near the skeleton. 4 flow is likely to occur, which also increases the reaction activity. In addition, since it is network-like and has micropores, it has a large specific surface area and increases reaction activity. In addition, the organic polymer skeleton inside the skeleton was burned away and
There are communicating cavities (micropores) with a diameter of 100 to 300 l, and the chemical solution communicates with the cavities by capillary action, diffuses to the entire skeleton, and spreads to each skeleton throughout the porous body and its surface. As it is evenly distributed, it is easy for the absorbed chemical solution to uniformly diffuse on the surface of the metal porous body skeleton. In addition, the pore diameter was set to 0.5 m/m to 10 m/m because
When the thickness is less than 0.5 layer, the liquid film generated inside the pores may combine and form droplets inside the pores.
In this case, the pressure drop increases significantly, which is undesirable in terms of equipment.If the pressure drop exceeds 10, a liquid film will naturally exist on the surface of the skeleton, but due to the surface tension, it will be difficult to form a liquid film inside the pores, making the reaction inefficient. This is not preferable because it shows a decrease in In addition, the porosity is 70% or more, and the specific surface area is 300 to 2000 m.
? /m2/m3, and the bulk specific gravity was 9.3 to 2.0.
Within a preferable range in terms of reaction activity, products within this range can be easily produced by the methods of claims (3) to (4). In addition to having excellent strength, the porous body of the present invention is easy to cut, process, and weld, and can be processed into a desired shape. If it is sealed, a gas absorption device can be manufactured easily. Examples of various gas absorptions are shown in Table 1, and the present invention is applicable to these. (Left below) Table 2 shows a comparison of the packing used in conventional gas absorption towers and one example of the metal porous body of the present invention. Table 2 Examples Examples Pig oxide powder with an average particle size of 10 g (C: 3.0%, Mn:
0.3%, Si: 0.1%, P: 0.02%, s:
0.01%. Oxygen: 6%) was added with 18% and 8% by weight of Cr and Ni powders with an average particle size of 5 μm, respectively, and applied to a mesh urethane foam using Poval as a binder, and heat treated to obtain a pore size of 7 m/m. A stainless steel sintered porous body with a porosity of 95% and a pressure drop of 50 mm H20/m was prepared in a reaction tower (1 liter cube) shown in Fig. 4, and S02 was heated to 50 mm.
2+g/s of power plant combustion exhaust gas 11 containing OOPP Liao
P) 17 from the top of the porous body 15 by passing at a flow rate of ec.
.. When the desulfurization rate of the treated gas 12 was measured by dropping the Mg(OHh solution 13 of No.5) from the chemical spray nozzle !4 at a rate of 50 degrees/min, it showed a desulfurization rate of 88.0%.
more excreted. On the other hand, the desulfurization efficiency was 40.0% when a commercially available reaction column filler (Toyo Tire & Rubber Industries ■, Virex-200) was filled. Effect of the invention Gas absorption of the present invention? Since the reaction efficiency is high when using a chemical, it is possible to downsize the device, reduce the number of chemical solutions, and reduce costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、三次元網目状金属多孔体の断面模式図、第2
〜3図は請求項4の金属多孔体の製造方法を説明する図
、第4図は実施例の説明図(縦断面図)である。 1・−・鉄骨絡線、2◆・・空孔、3・・・連通空道部
、4・・◆ミクロ空孔、6・・・有機高分子球体、7− −−空隙、10− −・処理ガス、 ノズル、15・ψ ・・型枠、8・・・接着剤、9・ ・・密接、 11・・・排ガス、12・13・・・薬液
、14・−・薬液散布 ・多孔体、16・・・薬液排水口。
Figure 1 is a schematic cross-sectional view of a three-dimensional network metal porous body, Figure 2
3 to 3 are diagrams for explaining the method for producing a metal porous body according to claim 4, and FIG. 4 is an explanatory diagram (longitudinal sectional view) of the example. 1... Steel bridge wire, 2◆... Hole, 3... Communication cavity, 4...◆Micro hole, 6... Organic polymer sphere, 7--- Cavity, 10--・Processing gas, nozzle, 15・ψ・・Formwork, 8・Adhesive, 9・・・close contact, 11・・Exhaust gas, 12・13・・chemical solution, 14・・・・chemical solution spray/porous body , 16...Medical solution drain port.

Claims (5)

【特許請求の範囲】[Claims] (1)3次元の連通した空孔を形成した空孔率が70体
積%以上、空孔径0.5〜10mm、比表面積300〜
2000m^2/m^3、カサ比重0.3〜2.0の三
次元網目状の焼結金属多孔体の少なくとも金属骨格表面
上に吸収薬液の被膜を形成せしめてなるガス吸収装置。
(1) Three-dimensional connected pores are formed, the porosity is 70% by volume or more, the pore diameter is 0.5-10mm, and the specific surface area is 300-300mm.
A gas absorption device comprising a three-dimensional mesh-like sintered metal porous body having a density of 2000 m^2/m^3 and a bulk specific gravity of 0.3 to 2.0, and a coating of an absorbing chemical liquid formed on at least the surface of the metal skeleton.
(2)請求項(1)記載の装置内に、ガス又はガスと吸
収薬液を通過せしめて、通過ガス中の特定ガス成分を吸
収ガス薬液中に吸収、除去することを特徴とするガス吸
収方法。
(2) A gas absorption method characterized by passing a gas or a gas and an absorbing chemical solution through the device according to claim (1), and absorbing and removing a specific gas component in the passing gas into the absorbing gas chemical solution. .
(3)平均粒径が50μ以下の鉄系粉末を3次元網目状
有機高分子材の骨格に塗着し、乾燥し、熱処理して3次
元網目状有機高分子材の骨格を除去し、鉄系粉末を焼結
して製造した3次元の連通した空孔を形成した空孔率が
70体積%以上、空孔径0.5〜10mm、比表面積5
00〜2000m^2/m^3、カサ比重0.3〜2.
0の三次元網目状の焼結金属多孔体の少なくとも金属骨
格表面上に吸収薬液の被膜を形成せしめてなるガス吸収
装置。
(3) Apply iron-based powder with an average particle size of 50μ or less to the skeleton of the three-dimensional network organic polymer material, dry it, heat treat it to remove the skeleton of the three-dimensional network organic polymer material, and remove the iron powder. Three-dimensional interconnected pores produced by sintering the system powder have a porosity of 70% by volume or more, a pore diameter of 0.5 to 10 mm, and a specific surface area of 5.
00~2000m^2/m^3, bulk specific gravity 0.3~2.
A gas absorption device comprising a three-dimensional mesh-like sintered metal porous body having a coating of an absorbing chemical solution formed on at least the surface of the metal skeleton.
(4)平均粒径が50μ以下の鉄系粉末を含有する泥漿
を、型枠内に密着して配した多数の有機高分子球体の球
と球との間隙に流し込み、乾燥し、熱処理して有機高分
子球体を除去し、鉄系粉末を燃結して製造した3次元の
連通した空孔を形成した空孔率が70体積%以上、空孔
径0.5〜10mm、比表面積300〜2000m^2
/m^3、カサ比重0.3〜2.0の三次元網目状の焼
結金属多孔体の少なくとも金属骨格表面上に吸収薬液の
被膜を形成せしめてなるガス吸収装置。
(4) A slurry containing iron-based powder with an average particle size of 50μ or less is poured into the gaps between the spheres of a large number of organic polymer spheres closely arranged in a mold, dried, and heat-treated. Three-dimensional connected pores produced by removing organic polymer spheres and sintering iron-based powder have a porosity of 70% by volume or more, a pore diameter of 0.5 to 10 mm, and a specific surface area of 300 to 2000 m ^2
/m^3 and a bulk specific gravity of 0.3 to 2.0, a three-dimensional network-like sintered metal porous body has a coating of an absorbing chemical solution formed on at least the surface of the metal skeleton.
(5)燃焼金属多孔体を通電又は誘導加熱し、骨格部を
反応温度に制御する請求項(2)記載の方法。
(5) The method according to claim (2), wherein the porous combustion metal body is heated by electricity or induction to control the skeleton portion to a reaction temperature.
JP1263811A 1989-10-12 1989-10-12 Method and device for absorbing gas Pending JPH03127608A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1263811A JPH03127608A (en) 1989-10-12 1989-10-12 Method and device for absorbing gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1263811A JPH03127608A (en) 1989-10-12 1989-10-12 Method and device for absorbing gas

Publications (1)

Publication Number Publication Date
JPH03127608A true JPH03127608A (en) 1991-05-30

Family

ID=17394570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1263811A Pending JPH03127608A (en) 1989-10-12 1989-10-12 Method and device for absorbing gas

Country Status (1)

Country Link
JP (1) JPH03127608A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08291304A (en) * 1995-02-23 1996-11-05 Mitsubishi Materials Corp Porous metal plate with large specific surface area
JPH08333605A (en) * 1995-04-03 1996-12-17 Mitsubishi Materials Corp Porous metallic plate having large specific surface area
WO1997015379A1 (en) * 1995-10-26 1997-05-01 Stichting Energieonderzoek Centrum Nederland Catalytic burner element, combustion engine comprising such a burner element, and device provided with such a combustion engine
JPH09143511A (en) * 1995-11-29 1997-06-03 Mitsubishi Materials Corp Porous metallic body having large specific surface area

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08291304A (en) * 1995-02-23 1996-11-05 Mitsubishi Materials Corp Porous metal plate with large specific surface area
JPH08333605A (en) * 1995-04-03 1996-12-17 Mitsubishi Materials Corp Porous metallic plate having large specific surface area
WO1997015379A1 (en) * 1995-10-26 1997-05-01 Stichting Energieonderzoek Centrum Nederland Catalytic burner element, combustion engine comprising such a burner element, and device provided with such a combustion engine
NL1001511C2 (en) * 1995-10-26 1997-05-02 Stichting Energie Catalytic burner element, combustion engine comprising such a burner element and device provided with such a combustion engine.
JPH09143511A (en) * 1995-11-29 1997-06-03 Mitsubishi Materials Corp Porous metallic body having large specific surface area

Similar Documents

Publication Publication Date Title
ES2214839T3 (en) PRODUCTION OF DENSE PARTS BY UNIAXIAL COMPRESSION OF AN AGLOMERATED SPHER METAL POWDER.
ES2243456T3 (en) HOLLOW SPHERES AND PROCEDURE FOR MANUFACTURING HOLLOW SPHERES AND LIGHT STRUCTURAL COMPONENTS WITH HOLLOW SPHERES.
JP2002535225A5 (en)
US20080171218A1 (en) Metal Foam Body Having An Open-Porous Structure As Well As A Method For The Production Thereof
US20100028710A1 (en) Open cell porous material and method for producing same
US4435483A (en) Loose sintering of spherical ferritic-austenitic stainless steel powder and porous body
WO2003015963A1 (en) Method of making open cell material
CN105177339A (en) Foam aluminum with three-dimensional (3D) space ordered pore structure and preparation method thereof
JPS60211001A (en) Method and apparatus for producing hot processing tool
JPH03127608A (en) Method and device for absorbing gas
KR102612696B1 (en) Method for producing an open pore molded body formed of metal with a modified surface and a molded body manufactured using the method
US4935392A (en) Process for the manufacture of catalyst members for the reduction of oxides of nitrogen and catalyst members produced thereby
CN111235419B (en) Porous preform and preparation method thereof, and metal foam and preparation method thereof
JP2000192107A (en) Porous metal, and its manufacture
RU2193948C2 (en) Method for making porous metal and articles of such metal
JPH01252738A (en) Manufacture of porous metallic material consisting of iron or its alloy, nickel or its alloy, or titanium or its alloy
JP2657938B2 (en) Activated carbon sintered body and method for producing the same
JPH01100204A (en) Porous aluminum or aluminum alloy body
JPS6230254B2 (en)
CN1319468A (en) Method for making warm-pressing iron powder
JPH02277704A (en) Closed-cell foamed iron base porous body and manufacture thereof
CN107779639A (en) A kind of aluminum material of porous sponge structure and preparation method thereof
JPH0387303A (en) Ferrous combined porous body and manufacture thereof
JPS5920383B2 (en) NOx reduction catalyst with high activity at low temperatures
JPH01298123A (en) Manufacture of porous aluminum alloy