[go: up one dir, main page]

JPH03126859A - Gas carburizing method - Google Patents

Gas carburizing method

Info

Publication number
JPH03126859A
JPH03126859A JP26721089A JP26721089A JPH03126859A JP H03126859 A JPH03126859 A JP H03126859A JP 26721089 A JP26721089 A JP 26721089A JP 26721089 A JP26721089 A JP 26721089A JP H03126859 A JPH03126859 A JP H03126859A
Authority
JP
Japan
Prior art keywords
gas
carburizing
volume
carburizing method
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26721089A
Other languages
Japanese (ja)
Inventor
Takemori Takayama
武盛 高山
Kazuhide Inohara
猪原 一英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP26721089A priority Critical patent/JPH03126859A/en
Publication of JPH03126859A publication Critical patent/JPH03126859A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

PURPOSE:To inhibit intergranular oxidation and to prevent the occurrence of microscopic unevenness of hardness and the deterioration of fatigue strength, wear and pitting resistances by modifying gaseous hydrocarbon and carrying out carburization with the resulting gas as a carburizing gas under a specified pressure. CONSTITUTION:Gaseous hydrocarbon is modified and carburization is carried out with the resulting gas as a carburizing gas under 20-600Torr pressure. Since the vol. percentage of CO2 in the modified gas can be reduced, the surface oxidation, especially intergranular oxidation of steel can be inhibited and a high-quality carburized product can be obtd.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は鋼の浸炭法に係り、特に浸炭時の粒界酸化を防
止し高品質の浸炭品を安価に得ることが出来る浸炭法に
関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a carburizing method for steel, and more particularly to a carburizing method that prevents grain boundary oxidation during carburizing and allows high-quality carburized products to be obtained at low cost.

(従来の技術) 従来のこの種の技術は(1)、プロパンガス若しくはブ
タンガスの変成ガス(RXガス〉又はメタンガスを主成
分とする都市ガスの変成ガス(例えばACガス)をキャ
リヤーガスとして、このキャリヤーガスにプロパンガス
若しくはブタンガスをエンリッチガスとして添加してカ
ーボンポテンシャルをコントロールしながら浸炭する浸
炭法や又(2)、窒素ガスをキャリヤーガスとしてプロ
パンガス若しくはブタンガスをエンリッチガスとして、
500torrの減圧の状態で所定時間浸炭した後、エ
ンリッチガスの添加を停止して、更に所定時間加熱を続
は炭素を拡散させる真空浸炭法がある。
(Prior art) This type of conventional technology (1) uses a converted gas of propane gas or butane gas (RX gas) or a converted gas of city gas (for example, AC gas) whose main component is methane gas as a carrier gas. A carburizing method in which propane gas or butane gas is added as an enriched gas to a carrier gas and carburizing is carried out while controlling the carbon potential.
There is a vacuum carburizing method in which after carburizing for a predetermined time under a reduced pressure of 500 torr, addition of enrich gas is stopped, heating is continued for a predetermined time, and then carbon is diffused.

(発明が解決しようとする!!題〉 しかし、係る従来技術(1)では変成ガス(RXガス、
AXガス)中に炭酸ガスが0.10〜0゜35体積%含
まれているため、普通の浸炭温度930℃近傍の温度で
は鋼中に含まれるマンガン、クローム等の合金元素が結
晶粒界の部分で著しく酸化され結晶粒界の強度を低下さ
せると共に焼入性も低下させことにより、疲労強度及び
耐ピツチング性を著しく劣化させている。また、炭酸ガ
スの含まれる割合を減するために多量のプロパンガスや
ブタンガスを添加すると、スーティングを起こしやすく
なり炉内の雰囲気を不安定にする原因となりカーボンポ
テンシャルをコントロールすることが困難になる等の問
題がある。又、従来技術(2)では結晶粒界の酸化を防
止する有効な浸炭法であるが生のプロパンガスやブタン
ガスを直接炉内に導入するためスーティングを起こしや
すく炉内の雰囲気管理が困難となり、又浸炭時はオース
テナイト鉄(γ鉄)に固溶する最大量の炭IA量となる
条件すなわちカーボンアクティビテーAc=1の条件で
浸炭するため、SCM材、SCr材、SMn材、SNC
M材等の通常の肌焼鋼では表面にセメンタイトが析出し
て、続いて行う拡散処理でセメンタイトを再固溶して炭
素量の均質化を図るが、この過程で合金元素のミクロ的
な偏析が起こり易く、ミクロ的な硬さむらが発生し、疲
労強度、耐摩耗性、耐ピツチング性を劣化させる問題が
ある。
(Problem to be solved by the invention!!) However, in the related prior art (1), metamorphic gas (RX gas,
AX gas) contains 0.10 to 0.35% by volume of carbon dioxide gas, so at temperatures near the normal carburizing temperature of 930°C, alloying elements such as manganese and chromium contained in the steel will form at the grain boundaries. Parts are significantly oxidized, reducing the strength of grain boundaries and hardenability, resulting in significant deterioration of fatigue strength and pitting resistance. Additionally, if a large amount of propane gas or butane gas is added to reduce the proportion of carbon dioxide gas contained, sooting tends to occur, making the atmosphere in the furnace unstable and making it difficult to control the carbon potential. There are other problems. Furthermore, although conventional technology (2) is an effective carburizing method that prevents oxidation of grain boundaries, raw propane gas or butane gas is introduced directly into the furnace, which tends to cause sooting and makes it difficult to control the atmosphere inside the furnace. , Also, during carburizing, carburizing is performed under the conditions that the maximum amount of carbon IA is dissolved in the austenitic iron (γ iron), that is, the carbon activity Ac = 1.
In ordinary case-hardened steel such as M material, cementite precipitates on the surface, and in the subsequent diffusion treatment, the cementite is redissolved in solid solution to homogenize the carbon content, but in this process, microscopic segregation of alloying elements occurs. This tends to cause microscopic hardness unevenness, which causes problems in deteriorating fatigue strength, wear resistance, and pitting resistance.

(課題を解決するための手段及び作用)上記問題を解決
するため本発明の請求項(1)は炭化水素ガスを変成し
て浸炭ガスとして浸炭する浸炭方法において、前記浸炭
ガスの圧力を20〜600 Lo r rとしたことを
特徴とするガス浸炭法とする0本発明の請求項(2)は
カーボンポテンシャルn!1用にメタンガス若しくはプ
ロパンガス若しくはブタンガス又はこれらのガスが2%
以上含む混合若しくは変成ガスを添加することを特徴と
する特許請求の範囲(1)項記載のガス浸炭法とする0
本発明の請求項は(3)カーボンポテンシャルR1l用
にアルコールを添加することを特徴とする特許請求の範
囲(1)項記載のガス浸炭法とする。
(Means and Effects for Solving the Problems) In order to solve the above problems, claim (1) of the present invention provides a carburizing method in which a hydrocarbon gas is denatured and carburized as a carburizing gas, in which the pressure of the carburizing gas is set to 20 to 20. Claim (2) of the present invention is a gas carburizing method characterized in that the carbon potential n! Methane gas, propane gas, butane gas, or 2% of these gases for 1
A gas carburizing method according to claim (1), characterized in that a mixed or metamorphosed gas containing the above is added.
A claim of the present invention is (3) the gas carburizing method according to claim (1), characterized in that alcohol is added for carbon potential R11.

(実施例) 以下、本発明の詳細な説明する。(Example) The present invention will be explained in detail below.

第1実施例 露点〜8℃(水蒸気;0,33体積%)でCoオを0.
186体積%含むブタンガスを変成させたRXガX(C
o;23体積%、f(!;:3o体積%、Nz+47体
積%)を炭素の存在する炉内に導入すると、RXガス中
の酸化成分であるCO!とR20は下記に示す反応を起
こし、更に減圧して229torrの状態では第1表に
示す成分となり酸化成分であるCow、HxOが著しく
低減する。
1st Example 0.0% Co was added at a dew point of ~8°C (water vapor; 0.33% by volume).
RX gas (C
When o; 23% by volume and f (!;: 3o% by volume, Nz + 47% by volume) are introduced into a furnace where carbon is present, CO!, an oxidizing component in the RX gas, is introduced. and R20 cause the reaction shown below, and when the pressure is further reduced to 229 torr, the components become as shown in Table 1, and the oxidizing components Cow and HxO are significantly reduced.

C+CO,→2CO (平衡定数)Kl −(PCO)” /PCOs(K、
−32、ただし900℃に於いて)C+  Ht  O
−G O+ H! (平衡定数)Kt =  PCO−PH1/PHx(K
g−29、ただし900℃に於いて)第1表 RXガス中のCO,。
C+CO,→2CO (equilibrium constant) Kl −(PCO)” /PCOs(K,
-32, but at 900℃)C+ HtO
-G O+ H! (Equilibrium constant) Kt = PCO-PH1/PHx (K
g-29, but at 900°C) Table 1 CO in RX gas.

HgOに対する 減圧の影響 第2実施例 n点−8℃(水蒸気;0,33体積%)でCO。against HgO Effect of decompression Second example CO at point n -8°C (water vapor; 0.33% by volume).

を0,186体積%含むブタンガスを変成させたRXガ
ス(Co ; 23体積%、Hz;30体積%N !+
 47体積%)を炭素の存在する炉内に導入し、228
torr&:l圧し、更にメタンガスを微量(0,5体
積%)添加すると下記に示す反応が起こり第2表に示す
成分となり酸化成分であるCo、、H□Oが著しく低減
する。
RX gas (Co; 23 volume%, Hz; 30 volume% N!+
47% by volume) was introduced into the furnace where carbon was present, and 228
When the pressure is increased to .1 torr and a small amount (0.5% by volume) of methane gas is added, the following reaction occurs, resulting in the components shown in Table 2, and the oxidizing components Co, H□O are significantly reduced.

Co、  +CH4→2  CO+  2  H。Co, +CH4→2 CO+2H.

(平衡定数)Ks = (PCO)” ・ (PH,)
1/pcor  ・ P  CHa (+<5=1500、ただし900℃に於いて)11 
 よ 0  +  CHa  → 2  CO+  3
 1+  !(平衡定数)K4= (PC○)! ・ 
(P!+2)’/ P  II t  O−P  CH
a(K、=1380、ただし900℃に於いて)第2表 RXガス中のCo、、I−1,0に対するメタンガス添
加の影響 第3実施例 メタノール変成ガス(Co;33体体積、II。
(Equilibrium constant) Ks = (PCO)” ・ (PH,)
1/pcor ・P CHa (+<5=1500, however at 900℃) 11
Yo 0 + CHa → 2 CO+ 3
1+! (Equilibrium constant) K4= (PC○)!・
(P!+2)'/ P II t OP CH
a (K, = 1380, at 900°C) Table 2 Effect of methane gas addition on Co, I-1,0 in RX gas Third Example Methanol conversion gas (Co; 33 volume, II.

;65体積%、CH4: 0.7体積%、+(,0;1
体積%、C0u0.3体積%)を炭素の存在する炉内に
導入し、228Lorrに減圧すると第3表に示すt1
分となりm1表に示す程酸化成分であるco、、t+、
oが低減しないがそれでも酸化成分であるCO□、+1
20が低くなり、メタノールがカーボンポテンシャル調
整用として有効に使える。
;65 volume%, CH4: 0.7 volume%, +(,0;1
% by volume, C0u0.3% by volume) is introduced into the furnace where carbon is present, and when the pressure is reduced to 228 Lorr, t1 shown in Table 3 is introduced.
The oxidation component is co, t+, as shown in the m1 table.
Although o is not reduced, CO□, which is still an oxidizing component, +1
20 becomes low, and methanol can be effectively used for carbon potential adjustment.

第3表 メタノールの変成ガス中のCOt 、H,Oに対する′Iλ圧の影響 第4実施例 天然ガスを木炭変成させたACガス(Co;22体g1
%、  I−1、; 46体積%、Nz+23体積%。
Table 3 Effect of 'Iλ pressure on COt, H, O in metamorphic gas of methanol Fourth example AC gas (Co; 22 bodies g1
%, I-1; 46% by volume, Nz+23% by volume.

CII a+ 9体積%、)を炭素の存在する炉内に導
入すると、ACガス中の酸化成分であるCO2とH2O
は下記に示す反応が起こり、更に減圧して228tor
rの状態では第4表に示す成分となり酸化成分であるG
O,、H,Oが著しく低減するまた、第2実施例のよう
にメタンガスで直接的にカーボンポテンシャルを與按す
るよりもACガスを用いる方が容易にカーボンポテンシ
ャルのn整が可能となる。
When CII a+ 9% by volume) is introduced into a furnace where carbon is present, CO2 and H2O, which are oxidizing components in AC gas, are
The reaction shown below occurs, and the pressure is further reduced to 228 torr.
In the state r, the components shown in Table 4 are G, which is an oxidizing component.
O, H, and O are significantly reduced.Furthermore, it is easier to adjust the carbon potential by using AC gas than by directly adjusting the carbon potential with methane gas as in the second embodiment.

!114表 ACガス中のCO□、H2Oに対する減圧
の影響第5実施例 ブタンガスを変成させたRXガスを露点−8℃で、炉内
の圧力を10Lorrから700Lorrまで変化させ
て、93f)tX8時間浸炭を行い、更に850℃×0
.5時間加熱後、60℃の油で油冷を行い、180℃X
2時間焼き戻しを行った試験片の浸炭深さのばらつきど
粒界酸化の深さとの関係を第1図のグラフ示す。
! Table 114 Effect of reduced pressure on CO□ and H2O in AC gas Fifth example RX gas modified from butane gas was carburized at a dew point of -8°C and the pressure in the furnace was varied from 10Lorr to 700Lorr for 93f)tX8 hours. and further 850℃×0
.. After heating for 5 hours, cool with oil at 60℃ and heat to 180℃
The graph in FIG. 1 shows the relationship between the variation in carburization depth and the depth of grain boundary oxidation for test pieces tempered for 2 hours.

炉内の圧力が20torr以下であると浸炭深さのばら
つきが大きすぎ、炉内の圧力がGOOL。
If the pressure in the furnace is less than 20 torr, the carburizing depth will vary too much, and the pressure in the furnace will be poor.

rr以上であると粒界酸化の深さが深くなり粒界酸化の
改善が期待出来ない。
If it is more than rr, the depth of grain boundary oxidation becomes deep and no improvement in grain boundary oxidation can be expected.

次に、本発明による浸炭法及び従来の浸炭法等により浸
炭した試験片の回転曲げ疲労拭験結果について説明する
Next, the results of rotary bending fatigue testing of test pieces carburized by the carburizing method according to the present invention and the conventional carburizing method will be explained.

S CM 41.58を素材として第2図に示す回転曲
げ疲労試験片に本発明による浸炭法すなわちRXガX(
Co;23体積%、Hz;30体1%N;47体榛%、
!’i点ニー8℃)にメタンガス05体積%添加した浸
炭ガスを228Lorrに減圧し930℃で8時間浸炭
して、更に850℃で0.5時間加熱後60℃の油で冷
却後180℃で2時間焼戻しした試験片、従来のRXガ
スを用いた浸炭法で浸炭した試験片、真空浸炭法で浸炭
した試験片、従来のRXガスを用いた浸炭法で浸炭し表
面を0825關研削して粒界酸化を完全に除去した試験
片、これら試験片の回転曲げ疲労強度を測定し、疲労限
度を求めた結果を第5表に示す。
The rotary bending fatigue test piece shown in FIG.
Co: 23% by volume, Hz: 30%, 1% N: 47%,
! Carburizing gas (05% by volume of methane gas added to 'i point knee 8℃) was reduced to 228Lorr, carburized at 930℃ for 8 hours, further heated at 850℃ for 0.5 hours, cooled with 60℃ oil, and then heated at 180℃. A specimen tempered for 2 hours, a specimen carburized by the conventional carburizing method using RX gas, a specimen carburized by the vacuum carburizing method, a specimen carburized by the conventional carburizing method using RX gas, and the surface ground to 0825. Table 5 shows the test pieces in which grain boundary oxidation was completely removed, and the rotating bending fatigue strength of these test pieces was measured to determine the fatigue limit.

この表に示すように本発明による浸炭法により浸炭した
試験片の疲労限度は従来のRXガスによる浸炭した試験
片より疲労限度が大幅に向上している。
As shown in this table, the fatigue limit of the test piece carburized by the carburizing method according to the present invention is significantly higher than that of the test piece carburized by the conventional RX gas.

第5表 浸炭の違いによる疲労、 粒界酸素深さ (発明の効果) 本発明は以上説明したようにRXガス、ACガス中のC
O!の体積%を低減出来るため鋼表面の酸化、粒界酸化
が抑えられまたエンリッチガスとして少量添加されるプ
ロパンガス、メタンガス、ブタンガス等の分解反応が進
みCO2を還元してCO□の体積%を著しく抑えられ、
またプロパンガス、メタンガス、ブタンガス等の添加量
も少量で良いのでスーテイングの発生もなくまた減圧下
であるためシーズニングトラブルの発生もない。
Table 5 Fatigue due to differences in carburizing, grain boundary oxygen depth (effects of the invention) As explained above, the present invention
O! This reduces the volume percent of CO2, which suppresses oxidation on the steel surface and grain boundary oxidation, and promotes decomposition reactions of propane gas, methane gas, butane gas, etc., which are added in small amounts as enrichment gases, reducing CO2 and significantly reducing the volume percent of CO□. suppressed,
Further, since only a small amount of propane gas, methane gas, butane gas, etc. can be added, sooting does not occur, and since it is under reduced pressure, no seasoning trouble occurs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は試験片の浸炭深さのばらつきと粒界酸化の深さ
との関係を示すグラフ、第2図は回転曲げ疲労試験片を
示す図である。
FIG. 1 is a graph showing the relationship between the variation in carburization depth of test specimens and the depth of grain boundary oxidation, and FIG. 2 is a diagram showing rotating bending fatigue test specimens.

Claims (3)

【特許請求の範囲】[Claims] (1).炭化水素ガスを変成して浸炭ガスとして浸炭す
る浸炭方法において、前記浸炭ガスの圧力を20〜60
0torrとしたことを特徴とするガス浸炭法。
(1). In a carburizing method in which hydrocarbon gas is denatured and carburized as a carburizing gas, the pressure of the carburizing gas is set to 20 to 60
A gas carburizing method characterized by using 0 torr.
(2).カーボンポテンシャル調整用にメタンガス若し
くはプロパンガス若しくはブタンガス又はこれらのガス
が2%以上含まれる混合若しく変成ガスを添加すること
を特徴とする特許請求の範囲(1)項記載のガス浸炭法
(2). The gas carburizing method according to claim (1), characterized in that methane gas, propane gas, butane gas, or a mixed or converted gas containing 2% or more of these gases is added for carbon potential adjustment.
(3).カーボンポテンシャル調整用にアルコールを添
加することを特徴とする特許請求の範囲(1)項記載の
ガス浸炭法。
(3). The gas carburizing method according to claim (1), characterized in that alcohol is added for carbon potential adjustment.
JP26721089A 1989-10-12 1989-10-12 Gas carburizing method Pending JPH03126859A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26721089A JPH03126859A (en) 1989-10-12 1989-10-12 Gas carburizing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26721089A JPH03126859A (en) 1989-10-12 1989-10-12 Gas carburizing method

Publications (1)

Publication Number Publication Date
JPH03126859A true JPH03126859A (en) 1991-05-30

Family

ID=17441666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26721089A Pending JPH03126859A (en) 1989-10-12 1989-10-12 Gas carburizing method

Country Status (1)

Country Link
JP (1) JPH03126859A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003147506A (en) * 2001-11-09 2003-05-21 Chugai Ro Co Ltd Carburizing method of steel parts
JP2005187883A (en) * 2003-12-25 2005-07-14 Kobe Steel Ltd Hot dip galvannealed steel sheet manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003147506A (en) * 2001-11-09 2003-05-21 Chugai Ro Co Ltd Carburizing method of steel parts
JP2005187883A (en) * 2003-12-25 2005-07-14 Kobe Steel Ltd Hot dip galvannealed steel sheet manufacturing method

Similar Documents

Publication Publication Date Title
US4049472A (en) Atmosphere compositions and methods of using same for surface treating ferrous metals
US4386972A (en) Method of heat treating ferrous metal articles under controlled furnace atmospheres
US4154629A (en) Process of case hardening martensitic stainless steels
US4175986A (en) Inert carrier gas heat treating control process
US4531984A (en) Surface hardening process for metal parts
JPH03215657A (en) Method and device for carbulizing
JPS63241158A (en) Heat treatment of steel
US5498299A (en) Process for avoiding surface oxidation in the carburization of steels
US4406714A (en) Heat treatment of metals
JPH064906B2 (en) Carburizing of metal work
CA1189771A (en) Carburizing process utilizing atmosphere generated from nitrogen ethanol based mixtures
US4208224A (en) Heat treatment processes utilizing H2 O additions
US6328819B1 (en) Method and use of an apparatus for the thermal treatment, in particular nitriding treatment, of metal workpieces
US4028100A (en) Heat treating atmospheres
JPH03126859A (en) Gas carburizing method
GB2044804A (en) Heat treatment method
JPS58123821A (en) Heat treatment
US3892597A (en) Method of nitriding
JPS6372821A (en) Treatment of metal
JPS61159567A (en) Gas carburizing method
JPS6250457A (en) Composition variable gaseous n2 carburization treatment
WO1995029270A1 (en) Method of treating titanium parts
JPS5980713A (en) Heat treatment of steel product accompanied by no decarburization
Berg et al. Sintering: Carbon Control in Sintering Atmospheres
JPS62260013A (en) Controlling method for heat treatment atmosphere