[go: up one dir, main page]

JPH03125693A - Software servo for underwater vehicles - Google Patents

Software servo for underwater vehicles

Info

Publication number
JPH03125693A
JPH03125693A JP26211289A JP26211289A JPH03125693A JP H03125693 A JPH03125693 A JP H03125693A JP 26211289 A JP26211289 A JP 26211289A JP 26211289 A JP26211289 A JP 26211289A JP H03125693 A JPH03125693 A JP H03125693A
Authority
JP
Japan
Prior art keywords
transmission device
multiplex transmission
servo
potentiometer
variable pitch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26211289A
Other languages
Japanese (ja)
Inventor
Mitsuo Osugi
大杉 光雄
Yuji Kuzuhara
葛原 悠二
Keiichi Kumagai
熊谷 敬一
Yukinori Komori
行則 小森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Mitsubishi Heavy Industries Ltd
Technical Research and Development Institute of Japan Defence Agency
Original Assignee
Japan Steel Works Ltd
Mitsubishi Heavy Industries Ltd
Technical Research and Development Institute of Japan Defence Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd, Mitsubishi Heavy Industries Ltd, Technical Research and Development Institute of Japan Defence Agency filed Critical Japan Steel Works Ltd
Priority to JP26211289A priority Critical patent/JPH03125693A/en
Publication of JPH03125693A publication Critical patent/JPH03125693A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

PURPOSE:To enable more precise control in water by comparing the feedback signal of a variable pitch propeller with a calculation value obtained by the calculator of an on-board device, controlling a servo valve on the basis of the differential signal to control the pitch angle of the variable pitch propeller. CONSTITUTION:A multiplex transmission device sub station 2, a servo valve 3, and a potentiometer 5 are integrated into an underwater sailing body 1 propelled by a variable pitch propeller 4, and a multiplex transmission device main station 7 and a control part 8 are provided on an on-board device 6. The sub station 2 is connected to the main station 7 by a cable, and the servo valve is controlled by the signal inputted from the main station 7 to control the pitch angle of the variable pitch propeller 4, and the signal of the potentiometer 5 for detecting the pitch angle of the propeller 4 is outputted to the main station 7. The feedback signal inputted to a servo computer 13 through the A/D exchanger 12 of the control part 8 is compared with the voltage signal resulted from the motion calculation by a calculator 11, and a current according to the deviation is outputted from the main station 7 to the sub station 2.

Description

【発明の詳細な説明】 (産業上の利用分野〕 本発明は水中航走体、海中作業艇等の制御装置に関する
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a control device for an underwater vehicle, an underwater work boat, etc.

[従来の技術] 従来の装置を第2図に示す。[Conventional technology] A conventional device is shown in FIG.

第2図に於いて、航走体1内には多重伝送装置子局2、
サーボバルブ3、可変ピッチプロペラ4、ポテンショメ
ータ5、及びサーボアンプ9が組込まれており、船上装
置6内には多重伝送装置親局7及び制御部10が組込ま
れている。
In FIG. 2, a multiplex transmission device slave station 2,
A servo valve 3, a variable pitch propeller 4, a potentiometer 5, and a servo amplifier 9 are incorporated, and a multiplex transmission device master station 7 and a control section 10 are incorporated in the onboard device 6.

航走体1の運動中に、運動計算結果から、可変ピッチプ
ロペラ4の変化が要求された場合、計算結果としてvl
が出力されるとする。
If a change in the variable pitch propeller 4 is requested based on the motion calculation result during the motion of the vehicle 1, the calculation result is vl
Suppose that is output.

この信号は多重伝送装置親局7及び子局2を介し、■2
として、サーボアンプ9へ入力される。
This signal is transmitted via the multiplex transmission device master station 7 and slave station 2.
The signal is input to the servo amplifier 9 as follows.

サーボアンプ9では、このV2とポテンショメータ5か
らの信号v3を比較し、それに応じた出力を電流lとし
てサーボバルブ3へ供給する。
The servo amplifier 9 compares this V2 with the signal v3 from the potentiometer 5, and supplies the corresponding output to the servo valve 3 as a current l.

このサーボバルブ3の弁開度は入力端子Iに依存するた
め、可変ピッチプロペラ4への供給油量を変化させるこ
とによりプロペラピッチを変えることになる。そして可
変ピッチプロペラ4を定回転機に取付けておくことによ
り、プロペラピッチの変化は、水中航走体の推進力変化
(コントロール)となる。
Since the opening degree of the servo valve 3 depends on the input terminal I, the propeller pitch is changed by changing the amount of oil supplied to the variable pitch propeller 4. By attaching the variable pitch propeller 4 to a constant rotating machine, a change in the propeller pitch becomes a change (control) in the propulsive force of the underwater vehicle.

なお、この一連の作動中、可変ピッチプロペラ4のピッ
チ角をポテンショメータ5で常時検出しておき、その値
をフィードバック電圧v3としてサーボアンプ9ヘフイ
ードバツクしている。
During this series of operations, the pitch angle of the variable pitch propeller 4 is constantly detected by the potentiometer 5, and the detected value is fed back to the servo amplifier 9 as a feedback voltage v3.

[発明が解決しようとする課題] 近年急速に海洋開発が進められ、水中航走体および海中
作業膜は大型化するとともに、海中の1点に停止するな
どの精密な動きが要求され、その制御法としては計算機
による制御が確立しつつある。
[Problem to be solved by the invention] In recent years, ocean development has progressed rapidly, and underwater vehicles and underwater working membranes have become larger and require precise movement such as stopping at a single point underwater, and their control is becoming increasingly difficult. As a method, computer control is becoming established.

ところが第2図に示すように、全体系には計算機を導入
しているものの推進力(可変ピッチプロペラ作動)をコ
ントロールするための制御系には、サーボアンプによる
サーボ系が使用されている。
However, as shown in Figure 2, although a computer is installed in the overall system, a servo system using a servo amplifier is used as the control system for controlling the propulsive force (variable pitch propeller operation).

このサーボ系の中枢であるサーボアンプは、経時変化と
温度変化により、微妙な0点ドリフトとゲイン変化を生
じるため、定期的に調整(較正)しながら使用されてい
る。
The servo amplifier, which is the core of this servo system, causes subtle zero-point drift and gain changes due to changes over time and temperature, so it is regularly adjusted (calibrated) before use.

これら調整(較正)の、やり方は通常航走体の耐圧容器
を割り、再調整した後、復旧(気密確認)作業している
が、航走体が大型化し、精密化する程、これらの作業が
煩わしくなってきた。
Normally, these adjustments (calibrations) are performed by breaking the pressure vessel of the vehicle, readjusting it, and then performing restoration (airtightness check), but as the vehicle becomes larger and more precise, these operations become more difficult. It's becoming bothersome.

本発明は、これらの問題点を解決するソフトウェアサー
ボを提供することを目的とする。
The present invention aims to provide a software servo that solves these problems.

C課題を解決するための手段] 本発明に係る水中航走体のソフトウェアサーボは、可変
ピッチプロペラで推進する水中航走体の制御装置におい
て、水中航走体1に多重伝送装置子局2とサーボバルブ
3とポテンショメータ5を組込むとともに、船上装置6
として多重伝送装置親局7と制御部8を具備し、前記多
重伝送装置子局2はケーブルで多重伝送装置親局7にケ
ーブルで結合され、多重伝送装置親局7から入力した信
号を可変ピッチプロペラ4のピッチ角を制御するサーボ
バルブ3に送るとともに、可変ピッチプロペラのピッチ
角の検出信号をポテンショメータ5から入力し、多重伝
送装置親局7へ出力し、前記多重伝送装置7は、航走体
1内のポテンショメータ5からの信号を多重伝送装置2
を介して入力し、制御部8のA/D変換器12にフィー
ドバック信号として出力し、前記制御部8は計算機11
とA/D変換器12とサーボ計算部13からなり、サー
ボ計算部13は、計算機11による運動計算結果の電圧
と、A/D変換器12を介して入力したポテンショメー
タ5からのフィードバック電圧を比較し、その偏差に応
じた電流を算出し、多重伝送装置親局7を介して多重伝
送装置子局2に出力することを特徴とする。
Means for Solving Problem C] The software servo for an underwater vehicle according to the present invention is a control device for an underwater vehicle propelled by a variable pitch propeller, in which an underwater vehicle 1 is connected to a multiplex transmission device slave station 2. In addition to incorporating the servo valve 3 and potentiometer 5, the onboard device 6
The multiplex transmission device master station 7 is equipped with a multiplex transmission device master station 7 and a control section 8, and the multiplex transmission device slave station 2 is connected to the multiplex transmission device master station 7 by a cable, and the signal inputted from the multiplex transmission device master station 7 is controlled at a variable pitch. A detection signal of the pitch angle of the variable pitch propeller is sent to the servo valve 3 that controls the pitch angle of the propeller 4, and is inputted from the potentiometer 5 and output to the multiplex transmission device master station 7. Multiplex transmission device 2 for signals from potentiometer 5 in body 1
and outputs it as a feedback signal to the A/D converter 12 of the control unit 8, and the control unit 8
, an A/D converter 12 , and a servo calculation section 13 , and the servo calculation section 13 compares the voltage resulting from the motion calculation by the computer 11 with the feedback voltage from the potentiometer 5 input via the A/D converter 12 . The present invention is characterized in that a current corresponding to the deviation is calculated and outputted to the multiplex transmission device slave station 2 via the multiplex transmission device master station 7.

[作用] 水中航走体の運動中の可変ピッチプロペラのピッチ角を
、ポテンショメータでとらえ、その値を多重伝送装置を
介し、船上装置制御部の計算機へフィードバックし、サ
ーボ計算(偏差に対するサーボバルブ電流計算)を行な
わせ、計算結果を再び多重伝送装置及びサーボバルブを
介して可変ピッチプロペラへ与えることにより、航走体
の推力をコントロールする。
[Function] The pitch angle of the variable pitch propeller during the motion of the underwater vehicle is captured by a potentiometer, and the value is fed back to the computer in the onboard equipment control unit via the multiplex transmission device, and the servo calculation (servo valve current for deviation) is performed. The thrust of the vehicle is controlled by performing calculations) and applying the calculation results to the variable pitch propeller again via the multiplex transmission device and servo valve.

[実施例コ 本発明の実施例を第1図に示す。第1図において、(1
)〜(7)は前記従来のものと同じであるので説明を省
略する。
[Example] An example of the present invention is shown in FIG. In Figure 1, (1
) to (7) are the same as those of the prior art, so their explanation will be omitted.

制御部8のサーボ計算部13はA/D変換器12を介し
て入力したポテンショメータ5からのフィードバック電
圧と、計算機11による運動計算結果の電圧を比較し、
その偏差に応じた電流を算出し、多重伝送装置(7,2
)を介しサーボバルブ3へ出力する。
The servo calculation unit 13 of the control unit 8 compares the feedback voltage from the potentiometer 5 input via the A/D converter 12 with the voltage of the motion calculation result by the computer 11,
The current according to the deviation is calculated and the multiplex transmission device (7, 2
) to the servo valve 3.

上記の様に構成されたシステムで、航走体1の運動計算
結果により、推力を変えるために、可変ピッチプロペラ
4の変化が要求された場合には、まず可変ピッチプロペ
ラ4の現在のピッチ角をポテンショメータ5で検出し、
多重伝送装置子局2、親局7およびA/D変換器12を
介し、フィードバック信号V2として制御部8に出力す
る。次いで■ (指令電圧)−v2(フィードバック電
圧)■ の計算を行ない、その偏差に応じた電流を計算機内のテ
ーブルにより計算し、多重伝送装置親局7、子局2を介
して、サーボバルブ3へ出力する。
In the system configured as described above, when a change in the variable pitch propeller 4 is required in order to change the thrust based on the motion calculation result of the vehicle 1, first the current pitch angle of the variable pitch propeller 4 is is detected by potentiometer 5,
The signal is output to the control section 8 as a feedback signal V2 via the multiplex transmission device slave station 2, the master station 7, and the A/D converter 12. Next, calculate ■ (command voltage) - v2 (feedback voltage) ■, calculate the current according to the deviation using a table in the computer, and send it to the servo valve 3 via the multiplex transmission device master station 7 and slave station 2. Output to.

このサーボバルブ3の弁開度は供給電流Iにより調整さ
れ、この弁開度に応じた油】が可変ピッチプロペラ4に
流れて、プロペラのピッチ角が変化する。
The valve opening of the servo valve 3 is adjusted by the supply current I, and oil corresponding to the valve opening flows into the variable pitch propeller 4, changing the pitch angle of the propeller.

なお、変化したプロペラのピッチ角は常時ポテンショメ
ータうで検出されており、制御部8内でVl−V2にな
れば、サーボバルブ3への電流が0となり、可変ピッチ
プロペラ4のピッチ角の変化は停止する。
Note that the changed pitch angle of the propeller is constantly detected by a potentiometer, and when the value becomes Vl-V2 in the control unit 8, the current to the servo valve 3 becomes 0, and the change in the pitch angle of the variable pitch propeller 4 is stopped. Stop.

上記一連の作動により、航走体1の推力がコントロール
されることとなる。
Through the series of operations described above, the thrust of the vehicle 1 is controlled.

そのプログラム・フローチャートを第1図(C)に示す
The program flowchart is shown in FIG. 1(C).

[発明の効果コ 本発明は前述のように構成されているので以下に記載す
るような効果を奏する。
[Effects of the Invention] Since the present invention is configured as described above, it produces the following effects.

(1)可変ピッチプロペラのフィードバック信号を船上
装置の計算機と結合し、サーボバルブの制御系を)薄酸
することにより、時経変化および温度変化により0点ド
リフと、ゲイン変化を生じていたサーボアンプを航走体
の耐圧容器から取除くことが出来る。
(1) By combining the feedback signal of the variable pitch propeller with a computer onboard equipment, and by diluting the control system of the servo valve, the servo valve, which has been causing zero point drift and gain changes due to changes over time and temperature, can be The amplifier can be removed from the vehicle's pressure vessel.

(2)制御部のサーボ計算部でサーボバルブの制御系を
構成し、サーボバルブを作動させることが可能になるこ
とから、誤差(ドリフト)などの調整は船上装置のキー
ボードにより行なうことができる。
(2) Since the servo calculation section of the control section constitutes the control system of the servo valve, and it becomes possible to operate the servo valve, adjustments for errors (drift) etc. can be made using the keyboard of the onboard device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す図、第2図は従来例を示
す図である。 1・・・航走体、2・・・多重伝送装置(子局)、3・
・・サーボバルブ、4・・・可変ピッチプロペラ、5・
・・ポテンショメータ、6・・・船上装置、7・・・多
重伝送装置(親局)、8・・・制御部、9・・・サーボ
アンプ、10・・・制御部、11・・・計算機、12・
・・A/D変換器、13・・・サーボ計算部。
FIG. 1 is a diagram showing an embodiment of the present invention, and FIG. 2 is a diagram showing a conventional example. 1... Navigation vehicle, 2... Multiplex transmission device (slave station), 3...
...Servo valve, 4...Variable pitch propeller, 5.
... Potentiometer, 6... Onboard device, 7... Multiplex transmission device (master station), 8... Control unit, 9... Servo amplifier, 10... Control unit, 11... Computer, 12・
... A/D converter, 13... Servo calculation section.

Claims (1)

【特許請求の範囲】 可変ピッチプロペラで推進する水中航走体の制御装置に
おいて、 水中航走体(1)に多重伝送装置子局(2)とサーボバ
ルブ(3)とポテンショメータ(5)を組込むとともに
、船上装置(6)として多重伝送装置親局(7)と制御
部(8)を具備し、 前記多重伝送装置子局(2)はケーブルで多重伝送装置
親局(7)にケーブルで結合され、多重伝送装置親局(
7)から入力した信号を可変ピッチプロペラ(4)のピ
ッチ角を制御するサーボバルブ(3)に送るとともに、
可変ピッチプロペラのピッチ角の検出信号をポテンショ
メータ(5)から入力し、多重伝送装置親局(7)へ出
力し、 前記多重伝送装置(7)は、航走体(1)内のポテンシ
ョメータ(5)からの信号を多重伝送装置(2)を介し
て入力し、制御部(8)のA/D変換器(12)にフィ
ードバック信号として出力し、 前記制御部(8)は計算機(11)とA/D変換器(1
2)とサーボ計算部(13)からなり、サーボ計算機(
13)は、計算機(11)による運動計算結果の電圧と
、A/D変換器(12)を介して入力したポテンション
メータ(5)からのフィードバック電圧を比較し、その
偏差に応じた電流を算出し、多重伝送装置親局(7)を
介して多重伝送装置子局(2)に出力することを特徴と
する水中航走体のソフトウェアサーボ。
[Claims] In a control device for an underwater vehicle propelled by a variable pitch propeller, a multiple transmission device slave station (2), a servo valve (3), and a potentiometer (5) are incorporated into the underwater vehicle (1). In addition, the onboard device (6) includes a multiplex transmission device master station (7) and a control unit (8), and the multiplex transmission device slave station (2) is connected to the multiplex transmission device master station (7) by a cable. and the multiplex transmission equipment master station (
7) is sent to the servo valve (3) that controls the pitch angle of the variable pitch propeller (4),
A detection signal of the pitch angle of the variable pitch propeller is input from the potentiometer (5) and output to the multiplex transmission device master station (7), and the multiplex transmission device (7) is connected to the potentiometer (5) in the vehicle (1). ) is input through the multiplex transmission device (2) and output as a feedback signal to the A/D converter (12) of the control section (8), and the control section (8) is connected to the computer (11). A/D converter (1
2) and a servo calculation section (13), the servo computer (
13) compares the voltage resulting from the motion calculation by the computer (11) with the feedback voltage from the potentiometer (5) input via the A/D converter (12), and generates a current according to the deviation. A software servo for an underwater vehicle, characterized in that it calculates and outputs the calculated data to a multiplex transmission device slave station (2) via a multiplex transmission device master station (7).
JP26211289A 1989-10-09 1989-10-09 Software servo for underwater vehicles Pending JPH03125693A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26211289A JPH03125693A (en) 1989-10-09 1989-10-09 Software servo for underwater vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26211289A JPH03125693A (en) 1989-10-09 1989-10-09 Software servo for underwater vehicles

Publications (1)

Publication Number Publication Date
JPH03125693A true JPH03125693A (en) 1991-05-29

Family

ID=17371207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26211289A Pending JPH03125693A (en) 1989-10-09 1989-10-09 Software servo for underwater vehicles

Country Status (1)

Country Link
JP (1) JPH03125693A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8522375B2 (en) 2007-10-09 2013-09-03 Baby Trend Inc. Bed side sleeper for infants

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8522375B2 (en) 2007-10-09 2013-09-03 Baby Trend Inc. Bed side sleeper for infants

Similar Documents

Publication Publication Date Title
JP5042906B2 (en) Ship automatic steering system
JP3645038B2 (en) Aircraft flight control equipment
CN105785974B (en) A kind of course fault-tolerant control system towards drive lacking Autonomous Underwater Vehicle
JPH06509198A (en) Adaptive control system input limits
US5833177A (en) Autopilot/flight director overspeed protection system
US6289270B1 (en) Method for generating connecting paths which can be used for guiding a vehicle to a predetermined target path
JP2000264296A (en) Flight control device for helicopter
CN108519736A (en) A kind of USV track followings contragradience sliding-mode control
CN102681537B (en) Failure diagnosis device and method for chip course control system
DE102004025029B4 (en) System and method for initial synchronization of steering wheel and front wheels in a steer-by-wire system
US4758958A (en) Method and apparatus for trimming and stabilizing an aircraft
CN105836085A (en) Control method and device of adjustable pitch propeller
US4089287A (en) Method and apparatus for the automatic positioning of a ship to minimize the influence of external disturbance forces
JP2824443B2 (en) Preparative liquid chromatography equipment
CN112180915A (en) ROS-based double-thrust unmanned ship motion control system and control method
JPH03125693A (en) Software servo for underwater vehicles
DE102004008203B4 (en) System and method for initial alignment of the wheels of a motor vehicle steer-by-wire assembly
JP2008213682A (en) Automatic steering device for vessel
JPH0858696A (en) Automatic ship position holding system for twin-screw ship
US3665281A (en) Autopilot for ship
US10545175B2 (en) Electrical measurement system and method for establishing a desired total offset
JPH07103202A (en) Valve positioner
CN110294074B (en) Scientific investigation ship with big dipper differential signal dynamic positioning system
Kvam et al. Optimal ship maneuvering using Bryson and Ho’s time varying LQ controller
US3824380A (en) Device for varying the thrust of a pivotable screw on a ship