[go: up one dir, main page]

JPH0312315A - Method for refining inert gas - Google Patents

Method for refining inert gas

Info

Publication number
JPH0312315A
JPH0312315A JP1145684A JP14568489A JPH0312315A JP H0312315 A JPH0312315 A JP H0312315A JP 1145684 A JP1145684 A JP 1145684A JP 14568489 A JP14568489 A JP 14568489A JP H0312315 A JPH0312315 A JP H0312315A
Authority
JP
Japan
Prior art keywords
catalyst
gas
inert gas
regeneration
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1145684A
Other languages
Japanese (ja)
Other versions
JP2796731B2 (en
Inventor
Kazuhiro Hishinuma
菱沼 一弘
Minoru Morita
稔 森田
Kazuyoshi Kibe
木部 一義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Oxygen Co Ltd
Nippon Sanso Corp
Original Assignee
Japan Oxygen Co Ltd
Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Oxygen Co Ltd, Nippon Sanso Corp filed Critical Japan Oxygen Co Ltd
Priority to JP1145684A priority Critical patent/JP2796731B2/en
Publication of JPH0312315A publication Critical patent/JPH0312315A/en
Application granted granted Critical
Publication of JP2796731B2 publication Critical patent/JP2796731B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Gas Separation By Absorption (AREA)

Abstract

PURPOSE:To reduce the amt. of hydrogen in refined gas by absorbing a trace amt. of oxygen with a catalyst in the refining process of inert gas and at the same time regenerating the catalyst by using regenerated gas. CONSTITUTION:A catalyst tower is packed with copper or nickel catalyst, through which inert gas containing a trace amt. of oxygen is passed. In this process, the source inert gas is brought into contact with the catalyst at higher temp. than room temp., to remove the oxygen by absorption, and thus the inert gas is refined. At the same time, a part of the refined gas, or a part of the refined gas and a part of the source inert gas is used as the regenerated gas. This regenerated gas is mixed with hydrogen prior to the regeneration process and used to regenerate the catalyst at high temp. In the post process of regeneration the regenerated gas is used to purge hydrogen remaining in the catalyst.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、不活性ガスの精製方法に関し、詳しくは、窒
素等の不活性ガス中に含有する微量な酸素ガスを除去し
て精製する方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for purifying an inert gas, and more specifically, a method for purifying an inert gas such as nitrogen by removing trace amounts of oxygen gas contained therein. Regarding.

〔従来の技術〕[Conventional technology]

一般に、窒素等の不活性ガス中に含有される微量酸素を
除去して乾燥した精製ガスを得る方法としては、該不活
性ガスを銅及び/又はニッケル系の触媒と接触させて触
媒中の金属元素と酸素とを反応させて吸収除去する方法
、あるいは不活性ガスに水素を混合してパラジウム系触
媒に接触させ、水素と酸素とを反応させて水分とし、こ
の水分を乾燥器により除去する方法が用いられている。
In general, a method for obtaining dry purified gas by removing trace amounts of oxygen contained in an inert gas such as nitrogen is to bring the inert gas into contact with a copper and/or nickel-based catalyst. A method in which an element and oxygen are reacted and absorbed and removed, or a method in which hydrogen is mixed with an inert gas and brought into contact with a palladium-based catalyst, the hydrogen and oxygen are reacted to form moisture, and this moisture is removed using a dryer. is used.

上記鋼及び/又はニッケル系の触媒を用いて不活性ガス
中の微量酸素を除去する方法では、通常、上記触媒を充
填した2塔切替え式の触媒塔を使用し、原料不活性ガス
を一方の触媒塔に導入して常温あるいは高温で触媒と接
触させて微量酸素を除去するとともに、他方の触媒塔に
水素を導入して高温で触媒に接触させ、触媒に吸収され
た酸素を水素で水分に変換して触媒の再生を行っている
In the method of removing trace oxygen from inert gas using the steel and/or nickel-based catalyst described above, a two-column switching type catalyst tower filled with the above catalyst is usually used, and the raw material inert gas is transferred to one side. Hydrogen is introduced into the catalyst tower and brought into contact with the catalyst at room temperature or high temperature to remove trace amounts of oxygen, while hydrogen is introduced into the other catalyst tower and brought into contact with the catalyst at high temperature, and the oxygen absorbed by the catalyst is converted into moisture using hydrogen. The catalyst is regenerated by converting it.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

このような従来法において、銅及び/又はニッケル系の
触媒を使用して常温精製、高温再生する方法では、精製
と再生との間に触媒塔の温度を上下させるためのエネル
ギーが多く必要となるという問題がある。
In such conventional methods, using copper and/or nickel-based catalysts for room-temperature purification and high-temperature regeneration, a large amount of energy is required to raise and lower the temperature of the catalyst tower between purification and regeneration. There is a problem.

また銅及び/又はニッケル系の触媒を使用して高温精製
、高温再生する方法では、熱交換器を設置して熱回収す
ることにより、加温するためのエネルギーを少なくでき
るが、再生で使用した水素の一部が触媒中に吸収されて
残留し、これが精製ガス中に混入するという問題がある
In addition, in the method of high-temperature refining and high-temperature regeneration using copper and/or nickel-based catalysts, the energy required for heating can be reduced by installing a heat exchanger and recovering heat. There is a problem in that some of the hydrogen is absorbed into the catalyst and remains, which is mixed into the purified gas.

一方、パラジウム系の触媒を用いる方法では、理論量以
上の水素を原料不活性ガスに混合するため、精製ガス中
に水素が残留するという問題や、生成した水分を除去す
るための乾燥器が必要になり、装置が複雑になるという
問題がある。さらに、パラジウム系の触媒を使う場合に
おいて、精製ガス中の残留水素を除去するために、パラ
ジウム系触媒の後に銅及び/又はニッケル系の触媒を設
置して、その再生には酸素を使い、精製ガス中に含まれ
る水素と銅及び/又はニッケル系の触媒に吸収されてい
る酸素とを反応させて水分とし、これを乾燥器により除
去する方法もあるが、装置がさらに複雑になるという問
題がある。
On the other hand, in the method using palladium-based catalysts, more than the theoretical amount of hydrogen is mixed with the raw material inert gas, so there are problems with hydrogen remaining in the purified gas and the need for a dryer to remove the generated moisture. There is a problem that the device becomes complicated. Furthermore, when using a palladium-based catalyst, a copper and/or nickel-based catalyst is installed after the palladium-based catalyst in order to remove residual hydrogen from the purified gas, and oxygen is used to regenerate the catalyst. There is a method in which the hydrogen contained in the gas reacts with the oxygen absorbed by a copper and/or nickel-based catalyst to form moisture, and this is removed using a dryer, but this method has the problem of making the equipment more complicated. be.

そこで本発明は、不活性ガス中の微量酸素や残留水素を
効率よく除去し、乾燥した精製ガスを容易に得ることの
できる不活性ガスの精製方法を提供することを目的とし
ている。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide an inert gas purification method that can efficiently remove trace amounts of oxygen and residual hydrogen in an inert gas and easily obtain dry purified gas.

〔課題を解決するための手段〕[Means to solve the problem]

上記17た目的を達成するために、本発明の不活性ガス
の精製方法は、第1の構成として、微量酸素を含有する
不活性ガスを、銅及び/又はニッケル系の触媒を充填し
た触媒塔を通して、前記微量酸素を該触媒に吸収させて
除去する不活性ガスの精製方法において、原料不活性ガ
スを常温よりも高い温度で触媒と接触させる精製工程で
精製ガスを得るとともに、前記触媒塔の再生工程は、該
精製ガスの一部あるいは精製ガスの一部と前記原料不活
性ガスの一部とを切替えて再生ガスとし、再生工程の前
段には該再生ガスに水素を混入して高温で触媒と接触さ
せて触媒を再生し、再生工程の後段には前記再生ガスを
用いて、触媒塔内に残留する水素、水分及び触媒中に吸
収された水素をパージすることを特徴としている。
In order to achieve the above 17 objects, the inert gas purification method of the present invention includes, as a first configuration, an inert gas containing a trace amount of oxygen in a catalyst column filled with a copper and/or nickel catalyst. In the inert gas purification method in which the trace amount of oxygen is absorbed by the catalyst and removed through the catalyst, purified gas is obtained in a purification step in which the raw material inert gas is brought into contact with the catalyst at a temperature higher than room temperature, and the catalyst column is In the regeneration process, a part of the purified gas or a part of the purified gas and a part of the raw material inert gas are used as regeneration gas, and in the first stage of the regeneration process, hydrogen is mixed into the regeneration gas and heated at high temperature. The catalyst is brought into contact with the catalyst to regenerate it, and in the latter stage of the regeneration step, the regeneration gas is used to purge hydrogen remaining in the catalyst column, moisture, and hydrogen absorbed in the catalyst.

また本発明の第2の構成は、上記第1の構成において、
前記触媒塔の再生工程に使用するガスとして、触媒再生
ステップおよびパージステップに前記精製ガスの一部を
使用することを特徴とじている。
Further, a second configuration of the present invention is, in the above-mentioned first configuration,
A part of the purified gas is used in the catalyst regeneration step and the purge step as the gas used in the catalyst tower regeneration step.

第3の構成は、上記第1の構成において、前記触媒塔の
再生工程に使用するガスとして、触媒再生ステップおよ
びパージステップの前段に原料不活性ガスの一部を、パ
ージステップの後段に前記精製ガスの一部を使用するこ
とを特徴としている。
In the third configuration, in the first configuration, a part of the raw material inert gas is used in the catalyst regeneration step and the purge step before the catalyst regeneration step and the purification process is performed after the purge step as the gas used in the catalyst column regeneration step. It is characterized by the use of a portion of gas.

第4の構成は、上記第1の構成において、前記触媒塔の
再生工程に使用するガスとして、触媒再生ステップおよ
びパージステップの後段に前記精製ガスの一部を、パー
ジステップの前段に原料不活性ガスの一部を使用するこ
とを特徴としている。
A fourth configuration is that in the first configuration, as a gas used in the regeneration process of the catalyst column, a part of the purified gas is supplied after the catalyst regeneration step and the purge step, and a part of the purified gas is inactivated before the purge step. It is characterized by the use of a portion of gas.

第5の構成は、上記第1の構成において、前記原料不活
性ガスの流量と該原料不活性ガス中の酸素濃度とを測定
して触媒に吸収された酸素量または触媒に吸収された酸
素量および触媒再生ステップにおける再生ガス中の酸素
量を算出し、該酸素量をもとにして前記再生ガスに混入
する水素の混入量を制御することを特徴としている。
In a fifth configuration, in the first configuration, the amount of oxygen absorbed by the catalyst or the amount of oxygen absorbed by the catalyst is determined by measuring the flow rate of the raw material inert gas and the oxygen concentration in the raw material inert gas. The present invention is characterized in that the amount of oxygen in the regeneration gas in the catalyst regeneration step is calculated, and the amount of hydrogen mixed into the regeneration gas is controlled based on the amount of oxygen.

さらに第6の構成は、上記第1の構成において、前記再
生工程中のパージステップは、該触媒塔の温度を一時的
に、精製時の温度よりも30〜100℃高くしてパージ
を行い、次いで精製時の温度まで降温してパージを行う
ことを特徴としている。
Further, in a sixth configuration, in the first configuration, the purge step during the regeneration step temporarily raises the temperature of the catalyst column by 30 to 100°C higher than the temperature during purification. It is characterized in that the temperature is then lowered to the purification temperature and purging is performed.

〔作 用〕[For production]

上記第1の構成のごとく、精製ガスの一部あるいは精製
ガスの一部と前記原料不活性ガスの一部とを切替えて再
生ガスとして触媒を再生し、この再生ガスを用いて再生
後に触媒塔内に残留する水素、水分及び触媒中に吸収さ
れた水素をパージすることにより、精製ガスへの水素の
混入量を低減できる。
As in the first configuration above, a part of the purified gas or a part of the purified gas and a part of the raw material inert gas are switched to regenerate the catalyst as regenerated gas, and this regenerated gas is used to regenerate the catalyst tower after regeneration. By purging residual hydrogen, moisture, and hydrogen absorbed into the catalyst, the amount of hydrogen mixed into the purified gas can be reduced.

第2の構成では、再生工程を全て精製ガスの一部を用い
て行うので操作が簡易になる。
In the second configuration, the entire regeneration process is performed using part of the purified gas, which simplifies the operation.

第3の構成では、再生工程のほとんどを原料不活性ガス
を用いて行うので、再生効率が良く触媒の負荷が軽くな
る。
In the third configuration, since most of the regeneration process is performed using the raw material inert gas, the regeneration efficiency is high and the load on the catalyst is light.

さらに第4の構成では、パージステップの前段で微量酸
素を含有する原料不活性ガスの一部をパージガスとして
使用するから、触媒から放出された水素が酸素と結合す
るので、これらの水素が再び触媒に吸収されることを防
止できる。またパージステップの後段には前記精製ガス
の一部を使用するので水分も確実にパージすることがで
きる。
Furthermore, in the fourth configuration, a part of the raw material inert gas containing a trace amount of oxygen is used as a purge gas before the purge step, so that the hydrogen released from the catalyst combines with oxygen, so that these hydrogens are returned to the catalyst. can be prevented from being absorbed. Furthermore, since a portion of the purified gas is used in the subsequent stage of the purge step, moisture can also be reliably purged.

また第5の構成のごとく、触媒に吸収された酸素量を算
出して前記再生ガスに混入する水素の混入量を制御する
ことにより、触媒の再生を確実に行えるとともに、残留
水素量を低減することができる。
Furthermore, as in the fifth configuration, by calculating the amount of oxygen absorbed by the catalyst and controlling the amount of hydrogen mixed into the regeneration gas, the catalyst can be regenerated reliably and the amount of residual hydrogen can be reduced. be able to.

第6の構成においては、パージステップ中の触媒塔の温
度を一時的に高くするから、触媒に吸収されている水素
の放出を促進して、より確実な水素のパージを行うこと
ができる。
In the sixth configuration, since the temperature of the catalyst tower is temporarily raised during the purge step, the release of hydrogen absorbed in the catalyst is promoted and hydrogen purge can be performed more reliably.

従って、触媒と接触させて精製した精製ガス中に混入す
る水素や水分の量を低減でき、良質な不活性ガスを得る
ことができる。
Therefore, it is possible to reduce the amount of hydrogen and moisture mixed into the purified gas that has been purified by contacting with the catalyst, and it is possible to obtain high-quality inert gas.

〔実施例〕〔Example〕

次に、この発明を図示の系統図に基づいて説明する。 Next, the present invention will be explained based on the illustrated system diagram.

図は本発明の方法を適用した精製装置の一例を示すもの
であり、酸素が100 ppm含まれている原料不活性
ガスを2ONrr+’/hの流量で導入して精製する場
合について説明する。また、切替え使用する触媒塔3a
、3bについては、一方の触媒塔3aが精製工程、他方
の触媒塔3bが再生工程の場合で説明する。
The figure shows an example of a purification apparatus to which the method of the present invention is applied, and a case will be described in which purification is performed by introducing a raw material inert gas containing 100 ppm of oxygen at a flow rate of 2ONrr+'/h. In addition, the catalyst tower 3a to be used selectively
, 3b will be explained assuming that one catalyst tower 3a is in the purification process and the other catalyst tower 3b is in the regeneration process.

原料不活性ガスGは、原料ガス倶給管1を通り、加熱器
2で精製温度、例えば200−300℃まで加熱された
後に弁21aを通り、切替え使用される触媒塔3aに導
入される。各触媒塔3a、3bには、銅及び/又はニッ
ケル系の触媒が充填されており、原料不活性ガス中の微
量酸素は、触媒金属に吸収されて1 ppi以下まで除
去される。精製ガスFは、弁22aを通って精製ガス供
給管4より供給される。
The raw material inert gas G passes through the raw material gas supply pipe 1 and is heated by the heater 2 to a refining temperature, for example, 200-300° C., and then passes through the valve 21a and is introduced into the catalyst column 3a to be used in a switched manner. Each catalyst column 3a, 3b is filled with a copper- and/or nickel-based catalyst, and trace amounts of oxygen in the raw material inert gas are absorbed by the catalyst metal and removed to 1 ppi or less. Purified gas F is supplied from purified gas supply pipe 4 through valve 22a.

上記触媒塔3a、3bは、例えば12時間の切替え式に
なっており、一方の触媒塔3aに原料不活性ガスGが流
れて精製を行っている場合には、他方の触媒塔3bでは
再生工程が行われる。この触媒塔の再生工程は、減圧ス
テップ、触媒再生ステップ、パージステップ、加圧ステ
ップの4ステツブにより行われる。
The catalyst towers 3a and 3b are, for example, of a 12-hour switching type, and when the raw material inert gas G is flowing into one catalyst tower 3a for purification, the other catalyst tower 3b is used for the regeneration process. will be held. This catalyst tower regeneration process is performed in four steps: a pressure reduction step, a catalyst regeneration step, a purge step, and a pressurization step.

精製工程が終了した触媒塔3bの減圧ステップにおいて
は、弁21b、22bを閉じ、弁23bを開いて触媒塔
3b内の圧力を再生ガス排出管5を通して大気圧まで減
圧する。
In the step of reducing the pressure of the catalyst tower 3b after the purification process, the valves 21b and 22b are closed, the valve 23b is opened, and the pressure inside the catalyst tower 3b is reduced to atmospheric pressure through the regeneration gas discharge pipe 5.

次に触媒再生ステップでは、弁24,25bを開け、前
記触媒筒3aから精製ガス供給管4に導出されている精
製ガスFの一部、I  Nrr?/hを再生ガスRとし
て再生ガス供給管6aを介して取出すとともに、これに
弁26を開けた水素ガス供給管7より水素Hを0.01
6 Nrr?/h添加し、さらに加熱器8で所定の再生
温度まで加熱して触媒塔3bに導入する。水素Hは、触
媒に吸収された酸素と反応して水分を生成し、該水分や
未反応の水素IIを伴った再生後のガスは、弁23bを
通って再生ガス排出管5より排出される。
Next, in the catalyst regeneration step, the valves 24 and 25b are opened, and a portion of the purified gas F being led out from the catalyst cylinder 3a to the purified gas supply pipe 4, I Nrr? /h is taken out as regeneration gas R through the regeneration gas supply pipe 6a, and 0.01 hydrogen H is taken out from the hydrogen gas supply pipe 7 with the valve 26 opened.
6 Nrr? /h, further heated to a predetermined regeneration temperature with a heater 8, and introduced into the catalyst column 3b. Hydrogen H reacts with oxygen absorbed by the catalyst to produce moisture, and the regenerated gas together with the moisture and unreacted hydrogen II is discharged from the regenerated gas exhaust pipe 5 through the valve 23b. .

また、上記原料ガス供給管1には、流量計9及び酸素計
10が設置されており、記憶・演算器11で触媒塔3a
、3bに流入する酸素量を計算。
Further, a flow meter 9 and an oxygen meter 10 are installed in the raw material gas supply pipe 1, and a memory/calculator 11 is used to control the catalyst tower 3a.
, calculate the amount of oxygen flowing into 3b.

記憶し、再生に必要な水素添加量となるように調節器1
2及び調節弁13で水素量を調節する。例えば、パージ
ガスとして精製ガスFのみを使用し、精製工程で触媒塔
3a、3bに導入された原料不活性ガスGの流量が2O
Nrrl’/h、その酸素濃度が、1001)pllで
一定とすると、触媒に吸収されている酸素量は、 20  Nrn’/h xlooppm X12t+−
〇。024Nrri’ となる。この酸素を水に変換させるために触媒再生ステ
ップで必要となる水素の量は、 0.024  Nrrl’X2XK−o、048Nry
l’XK(但し、式中のKは1以上の定数である。)と
なる。
Adjust the regulator 1 so that the amount of hydrogen added is memorized and required for regeneration.
2 and a control valve 13 to adjust the amount of hydrogen. For example, if only the purified gas F is used as the purge gas, the flow rate of the raw material inert gas G introduced into the catalyst towers 3a and 3b in the purification process is 2O
Nrrl'/h, and assuming that the oxygen concentration is constant at 1001) pll, the amount of oxygen absorbed by the catalyst is: 20 Nrn'/h xlooppm X12t+-
〇. 024Nrri'. The amount of hydrogen required in the catalyst regeneration step to convert this oxygen to water is: 0.024 Nrrl'X2XK-o, 048Nry
l'XK (where K in the formula is a constant of 1 or more).

さらにこの水素量を再生時間の3時間で加えるには、K
−1とすれば、 0、 048 Nrri’÷3h −0,016Nrr
?/hとなる。
Furthermore, in order to add this amount of hydrogen in 3 hours of regeneration time, K
-1, 0, 048 Nrri'÷3h -0,016Nrr
? /h.

従って、上記のごとく水素流量が0.016  Nrr
l’/hとなるように調節弁13の開度を調節すること
により、酸素を水に変換するのに必要十分な水素を供給
することができ、過剰な水素の添加による不都合や、触
媒の再生を十分に行えない等の問題を防止できる。尚、
一般的には、上記定数には1より大きく設定され、僅か
に多く水素を混入することで触媒の再生を確実に行うよ
うにすべきである。
Therefore, as mentioned above, the hydrogen flow rate is 0.016 Nrr
By adjusting the opening degree of the control valve 13 so that the opening rate is 1'/h, it is possible to supply sufficient hydrogen to convert oxygen into water, thereby avoiding inconveniences due to the addition of excessive hydrogen and damage to the catalyst. Problems such as insufficient reproduction can be prevented. still,
Generally, the above constant should be set greater than 1 to ensure regeneration of the catalyst by incorporating slightly more hydrogen.

上記触媒再生ステップを3時間かけて行った後のパージ
ステップは、弁26を閉じて水素Hの導入を停止し、触
媒塔3b内に残留する水分や水素を前記精製ガスからな
る再生ガスRINnf/hでパージする。
In the purge step after performing the above catalyst regeneration step over a period of 3 hours, the valve 26 is closed to stop the introduction of hydrogen H, and the water and hydrogen remaining in the catalyst column 3b are removed from the regeneration gas RINnf/ Purge with h.

このとき、加熱器8の加熱温度を精製温度よりも30〜
100℃高くして触媒塔3bを高温に加熱することによ
り、触媒に吸収された水素を放出しやすくすることがで
きる。
At this time, the heating temperature of the heater 8 is set to 30 to 30°C higher than the refining temperature.
By heating the catalyst tower 3b to a high temperature by increasing the temperature by 100° C., hydrogen absorbed in the catalyst can be easily released.

触媒に吸収された水素を放出させるのに十分な時間、こ
の場合は3時間加熱した後は、加熱器8の加熱温度を触
媒塔3bがもとの精製時と同じ温度になるように戻して
、触媒塔3bの温度を降温させながらパージを続ける。
After heating for a sufficient time to release the hydrogen absorbed by the catalyst, in this case 3 hours, the heating temperature of the heater 8 is returned to the same temperature as the catalyst column 3b during the original purification. , the purging is continued while lowering the temperature of the catalyst tower 3b.

再生効率をさらに向上させる場合には、このパージステ
ップの前段で上記精製ガスFの代わりに、弁27を開け
て再生ガス供給管6bより原料不活性ガスGの一部を再
生ガスRとして触媒塔3bに導入する。これにより、触
媒から放出された水素が原料不活性ガスG中の酸素と結
合するので、これらの水素が再び触媒に吸収されること
を防止することができる。この原料不活性ガスGによる
バジを終えた後には、弁27を閉じ、弁24を開いて再
生ガス供給管6aより前記同様に精製ガスFの一部I 
 Nrr’r/hを再生ガスRとして導入し、触媒塔3
bをパージする。また再生工程の最初から、即ち触媒再
生ステップからパージステップの前段迄原料不活性ガス
を使用することにより、再生効率が向上するとともに操
作が簡略化される。
In order to further improve the regeneration efficiency, the valve 27 is opened and a part of the raw material inert gas G is supplied as the regeneration gas R from the regeneration gas supply pipe 6b to the catalyst tower instead of the purified gas F at the pre-stage of this purge step. 3b. Thereby, the hydrogen released from the catalyst combines with the oxygen in the raw material inert gas G, so that it is possible to prevent these hydrogens from being absorbed into the catalyst again. After finishing the purification with the raw material inert gas G, the valve 27 is closed, the valve 24 is opened, and a portion of the purified gas F is supplied from the regeneration gas supply pipe 6a in the same manner as described above.
Nrr'r/h is introduced as regeneration gas R, and the catalyst tower 3
Purge b. Further, by using the raw material inert gas from the beginning of the regeneration process, that is, from the catalyst regeneration step to the stage before the purge step, the regeneration efficiency is improved and the operation is simplified.

パージステップ終了後は、弁23bを閉じて加圧ステッ
プを行い、触媒塔3bの圧力が精製時の圧力になるまで
再生ガスR(精製ガスF)で加圧する。
After the purge step is completed, the valve 23b is closed and a pressurization step is performed, and the catalyst tower 3b is pressurized with regeneration gas R (purified gas F) until the pressure in the catalyst tower 3b reaches the pressure at the time of purification.

以上の操作を、触媒塔3a、3b及び各弁21a〜27
を切替えて繰り返すことにより、酸素1pp−以下、水
素1 ppm以下の乾燥した不活性ガスを連続して得る
ことができる。また、上記再生工程中、弁23a、25
aは閉じ状態である。
The above operations are performed on the catalyst towers 3a, 3b and each valve 21a to 27.
By switching and repeating the steps, dry inert gas containing 1 ppm or less of oxygen and 1 ppm or less of hydrogen can be continuously obtained. Also, during the regeneration process, the valves 23a, 25
a is in a closed state.

尚、本発明の方法は、上記実施例に示す系統に限らず、
不活性ガスの種類や処理量等により適宜に構成された精
製装置に適用することが可能である。
Note that the method of the present invention is not limited to the systems shown in the above examples,
It is possible to apply the present invention to a purification apparatus that is appropriately configured depending on the type of inert gas, throughput, etc.

〔発明の効果〕〔Effect of the invention〕

以上の説明で明らかなように、本発明の不活性ガスの精
製方法は、含有する微量酸素を鋼及び/又はニッケル系
の触媒に吸収させて除去した後、精製ガスの一部あるい
は精製ガスの一部と前記原料不活性ガスの一部とを切替
えて再生ガスとし、この再生ガスを用いて触媒の再生を
行うとともに、触媒の再生後に触媒塔内に残留する水素
、水分及び触媒中に吸収された水素をパージするから、
精製ガスへの水素等の混入量を低減できる。
As is clear from the above explanation, in the inert gas purification method of the present invention, a portion of the purified gas or a portion of the purified gas is removed after the contained trace oxygen is absorbed by a steel and/or nickel catalyst. A part of the raw material inert gas is switched to a part of the raw material inert gas to be used as regeneration gas, and this regeneration gas is used to regenerate the catalyst, and the hydrogen and moisture remaining in the catalyst column after catalyst regeneration are absorbed into the catalyst. purge the hydrogen that has been
The amount of hydrogen, etc. mixed into purified gas can be reduced.

また触媒に吸収された酸素量を算出して前記再生ガスに
混入する水素の混入量を制御することにより、触媒を再
生するのに必要十分な水素を供給することができ、触媒
の再生を確実に行えるとともに、触媒塔内に残留する水
素量を低減することができる。
In addition, by calculating the amount of oxygen absorbed by the catalyst and controlling the amount of hydrogen mixed into the regeneration gas, it is possible to supply enough hydrogen to regenerate the catalyst, ensuring catalyst regeneration. It is possible to reduce the amount of hydrogen remaining in the catalyst column.

さらにパージステップ中の触媒塔の温度を一時的に高く
することにより、触媒に吸収されている水素の放出を促
進して、より確実な水素のパージを行うことができる。
Furthermore, by temporarily increasing the temperature of the catalyst tower during the purge step, the release of hydrogen absorbed in the catalyst can be promoted, and hydrogen can be purged more reliably.

加えてパージステップの前段で微量酸素を含有する原料
不活性ガスをパージガスとして使用することにより、触
媒から放出された水素を酸素と結合させて、これらの水
素が再び触媒に吸収されることを防止できる。またパー
ジステップの後段には前記精製ガスの一部を使用するの
で生成した水分も確実にパージすることができる。
In addition, by using a raw material inert gas containing trace amounts of oxygen as a purge gas before the purge step, the hydrogen released from the catalyst is combined with oxygen, preventing these hydrogen from being absorbed into the catalyst again. can. Furthermore, since a portion of the purified gas is used in the latter stage of the purge step, the generated moisture can also be reliably purged.

従って、本発明によれば、微量酸素を含有する原料不活
性ガスを触媒と接触させて精製した精製ガス中に混入す
る水素や水分の量を低減でき、水素、酸素がそれぞれ許
容濃度以下の乾燥した精製ガスが安定して連続的に得ら
れる。
Therefore, according to the present invention, it is possible to reduce the amount of hydrogen and moisture mixed into the purified gas that is purified by contacting the raw material inert gas containing a trace amount of oxygen with a catalyst, and dry the hydrogen and oxygen to below the allowable concentrations. Purified gas can be obtained stably and continuously.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明を適用した精製装置の系統図である。 1・・・原料ガス供給管  3a、3b・・・触媒塔4
・・・精製ガス供給管  5・・・再生ガス排出管6a
、6b・・・再生ガス洪給管  7・・・水素ガス供給
管  9・・・流量計  10・・・酸素計  11・
・・記憶・演算器  12・・・調節器  13・・・
調節弁G・・・原料不活性ガス  F・・・精製ガス 
 R・・・再生ガス
The figure is a system diagram of a purification apparatus to which the present invention is applied. 1... Raw material gas supply pipe 3a, 3b... Catalyst tower 4
... Purified gas supply pipe 5 ... Regeneration gas discharge pipe 6a
, 6b... Regeneration gas supply pipe 7... Hydrogen gas supply pipe 9... Flow meter 10... Oxygen meter 11.
...Memory/calculator 12...Adjuster 13...
Control valve G: Raw material inert gas F: Purified gas
R...Regeneration gas

Claims (1)

【特許請求の範囲】 1、微量酸素を含有する不活性ガスを、銅及び/又はニ
ッケル系の触媒を充填した触媒塔を通して、前記微量酸
素を該触媒に吸収させて除去する不活性ガスの精製方法
において、原料不活性ガスを常温よりも高い温度で触媒
と接触させる精製工程で精製ガスを得るとともに、前記
触媒塔の再生工程は、該精製ガスの一部あるいは精製ガ
スの一部と前記原料不活性ガスの一部とを切替えて再生
ガスとし、再生工程の前段には該再生ガスに水素を混入
して高温で触媒と接触させて触媒を再生し、再生工程の
後段には前記再生ガスを用いて、触媒塔内に残留する水
素、水分及び触媒中に吸収された水素をパージすること
を特徴とする不活性ガスの精製方法。 2、請求項1記載の不活性ガスの精製方法において、前
記触媒塔の再生工程に使用するガスとして、触媒再生ス
テップおよびパージステップに前記精製ガスの一部を使
用することを特徴とする不活性ガスの精製方法。 3、請求項1記載の不活性ガスの精製方法において、前
記触媒塔の再生工程に使用するガスとして、触媒再生ス
テップおよびパージステップの前段に原料不活性ガスの
一部を、パージステップの後段に前記精製ガスの一部を
使用することを特徴とする不活性ガスの精製方法。 4、請求項1記載の不活性ガスの精製方法において、前
記触媒塔の再生工程に使用するガスとして、触媒再生ス
テップおよびパージステップの後段に前記精製ガスの一
部を、パージステップの前段に原料不活性ガスの一部を
使用することを特徴とする不活性ガスの精製方法。 5、請求項1記載の不活性ガスの精製方法において、前
記原料不活性ガスの流量と該原料不活性ガス中の酸素濃
度とを測定して触媒に吸収された酸素量または触媒に吸
収された酸素量および触媒再生ステップにおける再生ガ
ス中の酸素量を算出し、該酸素量をもとにして前記再生
ガスに混入する水素の混入量を制御することを特徴とす
る不活性ガスの精製方法。 6、請求項1記載の不活性ガスの精製方法において、前
記再生工程中のパージステップは、該触媒塔の温度を一
時的に、精製時の温度よりも30〜100℃高くしてパ
ージを行い、次いで精製時の温度まで降温してパージを
行うことを特徴とする不活性ガスの精製方法。
[Claims] 1. Purification of an inert gas by passing an inert gas containing a trace amount of oxygen through a catalyst column filled with a copper and/or nickel catalyst, and removing the trace oxygen by absorbing the trace oxygen into the catalyst. In the method, a purified gas is obtained in a purification step in which a raw material inert gas is brought into contact with a catalyst at a temperature higher than room temperature, and a regeneration step of the catalyst column includes a part of the purified gas or a part of the purified gas and the raw material. In the first stage of the regeneration process, hydrogen is mixed into the regeneration gas and brought into contact with the catalyst at high temperature to regenerate the catalyst, and in the second stage of the regeneration process, the regeneration gas is A method for purifying an inert gas, characterized in that hydrogen remaining in a catalyst column, moisture, and hydrogen absorbed in a catalyst are purged using a catalyst column. 2. The inert gas purification method according to claim 1, wherein a part of the purified gas is used in the catalyst regeneration step and the purge step as the gas used in the catalyst column regeneration step. Gas purification method. 3. In the inert gas purification method according to claim 1, as the gas used in the regeneration step of the catalyst column, a part of the raw material inert gas is used before the catalyst regeneration step and the purge step, and a part of the raw material inert gas is used after the purge step. A method for purifying an inert gas, characterized in that a part of the purified gas is used. 4. In the inert gas purification method according to claim 1, as the gas used in the regeneration step of the catalyst column, a part of the purified gas is added after the catalyst regeneration step and the purge step, and a part of the purified gas is added to the raw material before the purge step. A method for purifying an inert gas, characterized by using a part of the inert gas. 5. In the inert gas purification method according to claim 1, the flow rate of the raw material inert gas and the oxygen concentration in the raw material inert gas are measured to determine the amount of oxygen absorbed by the catalyst or the amount of oxygen absorbed by the catalyst. A method for purifying an inert gas, comprising calculating the amount of oxygen and the amount of oxygen in the regeneration gas in the catalyst regeneration step, and controlling the amount of hydrogen mixed into the regeneration gas based on the amount of oxygen. 6. In the inert gas purification method according to claim 1, the purging step during the regeneration step is performed by temporarily raising the temperature of the catalyst column by 30 to 100°C higher than the temperature during purification. A method for purifying an inert gas, the method comprising: then lowering the temperature to the purification temperature and purging.
JP1145684A 1989-06-08 1989-06-08 Purification method of inert gas Expired - Fee Related JP2796731B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1145684A JP2796731B2 (en) 1989-06-08 1989-06-08 Purification method of inert gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1145684A JP2796731B2 (en) 1989-06-08 1989-06-08 Purification method of inert gas

Publications (2)

Publication Number Publication Date
JPH0312315A true JPH0312315A (en) 1991-01-21
JP2796731B2 JP2796731B2 (en) 1998-09-10

Family

ID=15390697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1145684A Expired - Fee Related JP2796731B2 (en) 1989-06-08 1989-06-08 Purification method of inert gas

Country Status (1)

Country Link
JP (1) JP2796731B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5635148A (en) * 1991-06-06 1997-06-03 Arizona Board Of Regents On Behalf Of The University Of Arizona Reactive membrane for filtration and purification of gases of impurities and method utilizing the same
EP0835687A2 (en) * 1996-10-09 1998-04-15 Air Products And Chemicals, Inc. Regeneration of adsorbent beds
US5829139A (en) * 1995-05-03 1998-11-03 Pall Corporation Method for forming a reactive medium
US7465692B1 (en) 2000-03-16 2008-12-16 Pall Corporation Reactive media, methods of use and assemblies for purifying
US9782766B2 (en) 2015-12-18 2017-10-10 Corning Incorporated Regeneration process for metal catalyst based gas purifiers
CN110980662A (en) * 2019-12-28 2020-04-10 南京宝雅气体有限公司 Catalytic deoxidation process for producing high-purity nitrogen

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5635148A (en) * 1991-06-06 1997-06-03 Arizona Board Of Regents On Behalf Of The University Of Arizona Reactive membrane for filtration and purification of gases of impurities and method utilizing the same
US5637544A (en) * 1991-06-06 1997-06-10 Arizona Board Of Regents On Behalf Of The University Of Arizona Reactive membrane for filtration and purification of gases of impurities and method utilizing the same
US5829139A (en) * 1995-05-03 1998-11-03 Pall Corporation Method for forming a reactive medium
US6066591A (en) * 1995-05-03 2000-05-23 Pall Corporation Reactive medium for purifying fluids
EP0835687A2 (en) * 1996-10-09 1998-04-15 Air Products And Chemicals, Inc. Regeneration of adsorbent beds
EP0835687A3 (en) * 1996-10-10 1999-05-12 Air Products And Chemicals, Inc. Regeneration of adsorbent beds
US7465692B1 (en) 2000-03-16 2008-12-16 Pall Corporation Reactive media, methods of use and assemblies for purifying
US9782766B2 (en) 2015-12-18 2017-10-10 Corning Incorporated Regeneration process for metal catalyst based gas purifiers
CN110980662A (en) * 2019-12-28 2020-04-10 南京宝雅气体有限公司 Catalytic deoxidation process for producing high-purity nitrogen

Also Published As

Publication number Publication date
JP2796731B2 (en) 1998-09-10

Similar Documents

Publication Publication Date Title
JP3471801B2 (en) Method for removing sulfur compounds present in residual gas of the Claus type sulfur factory residual gas type and recovering the compounds in sulfur form
US5676921A (en) Method for the recovery of elemental sulfur from a gas mixture containing H2 S
KR100760502B1 (en) Method for Producing Carbon Monoxide by Reverse Conversion Using a Modified Catalyst
EP0142911A1 (en) Process for producing and recovering elemental sulfur from acid gas (1111111)
US4180554A (en) Method for removal of sulfur deposited on a Claus catalyst
US4462977A (en) Recovery of elemental sulfur from sour gas
RU2142403C1 (en) Method of oxidation of h2s to sulfur
JPH0312315A (en) Method for refining inert gas
JPH02180614A (en) Process for refining high temperature reducing gas
JP4473348B2 (en) Method of removing sulfur compound H (lower 2), SO (lower 2), COS and / or CS (lower 2) contained in sulfur plant waste gas and recovering the compound in the form of sulfur
JP5403685B2 (en) Argon gas purification method and purification apparatus
JPS62502462A (en) Temperature-controlled ammonia synthesis method
JP2018510777A (en) Method for removing sulfur compounds from gas by hydrogenation process and direct oxidation process
US6652826B1 (en) Process for elimination of low concentrations of hydrogen sulfide in gas mixtures by catalytic oxidation
JP6695375B2 (en) Purified gas manufacturing apparatus and purified gas manufacturing method
JP4079695B2 (en) Carburizing atmosphere gas generator and method
JP3300896B2 (en) How to remove trace oxygen
JPH0975666A (en) Waste ozone decomposition apparatus
EP0835687B1 (en) Regeneration of adsorbent beds
JPS5943401B2 (en) How to recombine oxygen and hydrogen
JP2005289709A (en) Hydrogen producing apparatus and its driving method
JPS6379713A (en) Sulfur recovery method using metallic oxide absorbent
JP2864419B2 (en) Exhaust gas treatment method in copper kneading
US20020176816A1 (en) In-line sulfur extraction process
JPS6058287B2 (en) Atmospheric gas production equipment

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees