JPH0312304A - Method for refining gaseous hydride - Google Patents
Method for refining gaseous hydrideInfo
- Publication number
- JPH0312304A JPH0312304A JP1144108A JP14410889A JPH0312304A JP H0312304 A JPH0312304 A JP H0312304A JP 1144108 A JP1144108 A JP 1144108A JP 14410889 A JP14410889 A JP 14410889A JP H0312304 A JPH0312304 A JP H0312304A
- Authority
- JP
- Japan
- Prior art keywords
- copper
- oxygen
- gas
- hydride
- gaseous hydride
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 150000004678 hydrides Chemical class 0.000 title claims abstract description 51
- 238000000034 method Methods 0.000 title claims abstract description 21
- 238000007670 refining Methods 0.000 title description 12
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 35
- 239000001301 oxygen Substances 0.000 claims abstract description 35
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 35
- OMZSGWSJDCOLKM-UHFFFAOYSA-N copper(II) sulfide Chemical compound [S-2].[Cu+2] OMZSGWSJDCOLKM-UHFFFAOYSA-N 0.000 claims abstract description 17
- 239000007789 gas Substances 0.000 claims description 60
- RBFQJDQYXXHULB-UHFFFAOYSA-N arsane Chemical compound [AsH3] RBFQJDQYXXHULB-UHFFFAOYSA-N 0.000 abstract description 10
- 239000003054 catalyst Substances 0.000 abstract description 9
- 239000012535 impurity Substances 0.000 abstract description 9
- 239000004065 semiconductor Substances 0.000 abstract description 8
- 238000004519 manufacturing process Methods 0.000 abstract description 7
- 239000011261 inert gas Substances 0.000 abstract description 4
- 229910000070 arsenic hydride Inorganic materials 0.000 abstract 1
- 238000006555 catalytic reaction Methods 0.000 abstract 1
- 239000010949 copper Substances 0.000 description 18
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 17
- 229910052802 copper Inorganic materials 0.000 description 17
- 238000000746 purification Methods 0.000 description 13
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 12
- 239000005751 Copper oxide Substances 0.000 description 11
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 11
- 229910000431 copper oxide Inorganic materials 0.000 description 11
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 11
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 10
- 239000001257 hydrogen Substances 0.000 description 9
- 229910052739 hydrogen Inorganic materials 0.000 description 9
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 description 8
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 4
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 4
- 229910000073 phosphorus hydride Inorganic materials 0.000 description 4
- SPVXKVOXSXTJOY-UHFFFAOYSA-N selane Chemical compound [SeH2] SPVXKVOXSXTJOY-UHFFFAOYSA-N 0.000 description 4
- 229910000058 selane Inorganic materials 0.000 description 4
- 229910000077 silane Inorganic materials 0.000 description 4
- 238000005486 sulfidation Methods 0.000 description 4
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 229910021536 Zeolite Inorganic materials 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- -1 etc. Chemical compound 0.000 description 3
- 238000011049 filling Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 238000012856 packing Methods 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 238000005987 sulfurization reaction Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 239000010457 zeolite Substances 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 229910000029 sodium carbonate Inorganic materials 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000004438 BET method Methods 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 239000005749 Copper compound Substances 0.000 description 1
- 241001124569 Lycaenidae Species 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000003610 charcoal Substances 0.000 description 1
- 150000003841 chloride salts Chemical class 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 235000014987 copper Nutrition 0.000 description 1
- 229940116318 copper carbonate Drugs 0.000 description 1
- 150000001880 copper compounds Chemical group 0.000 description 1
- 229910000365 copper sulfate Inorganic materials 0.000 description 1
- XTVVROIMIGLXTD-UHFFFAOYSA-N copper(II) nitrate Chemical class [Cu+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O XTVVROIMIGLXTD-UHFFFAOYSA-N 0.000 description 1
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 1
- GEZOTWYUIKXWOA-UHFFFAOYSA-L copper;carbonate Chemical compound [Cu+2].[O-]C([O-])=O GEZOTWYUIKXWOA-UHFFFAOYSA-L 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 235000011118 potassium hydroxide Nutrition 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 235000017550 sodium carbonate Nutrition 0.000 description 1
- 235000011121 sodium hydroxide Nutrition 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- OBSZRRSYVTXPNB-UHFFFAOYSA-N tetraphosphorus Chemical compound P12P3P1P32 OBSZRRSYVTXPNB-UHFFFAOYSA-N 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
Landscapes
- Separation Of Gases By Adsorption (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Silicon Compounds (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は水素化物ガスの精製方法に関し、さらに詳細に
は水素化物ガス中に不純物として含有される酸素を極低
濃度まで除去しうる水素化物ガスの精製方法に関する。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for purifying hydride gas, and more particularly, to a method for purifying hydride gas, and more particularly, to a method for purifying hydride gas, and more specifically to a method for purifying hydride gas, which can remove oxygen contained as an impurity in hydride gas to an extremely low concentration. Relating to a gas purification method.
アルシン、ホスフィン、セレン化水素、シランおよびジ
ボランなどの水素化物ガスはガリウム−砒素(GaAs
) 、ガリウム−りん(GaP)などの化合物半導体
などを製造するための原料およびイオン注入用ガスなど
として重要なものであり、その使用量が年々増加しつつ
あると同時に半導体の高度集積化に伴い、不純物の含有
量の極めて低いものが要求されている。Hydride gases such as arsine, phosphine, hydrogen selenide, silane and diborane are
), is important as a raw material for manufacturing compound semiconductors such as gallium-phosphorous (GaP), and as a gas for ion implantation, and its usage is increasing year by year, and at the same time as semiconductors become more highly integrated. , extremely low content of impurities is required.
半導体製造時に使用される水素化物ガスは一般的には純
水素化物ガスの他、水素ガスまたは不活性ガスで稀釈さ
れた形態で市販されている。Hydride gases used in semiconductor manufacturing are generally commercially available in diluted form with hydrogen gas or inert gas, in addition to pure hydride gas.
これらの水素化物ガス中には不純物として酸素および水
分などが含有されており、このうち水分は合成ゼオライ
トなどの脱湿剤により除去することが可能である。These hydride gases contain impurities such as oxygen and moisture, of which moisture can be removed using a dehumidifying agent such as synthetic zeolite.
市販の精製水素化物ガス中の酸素含有量は通常は10p
pm以下であるが、最近のボンベ入りの水素化物ガスな
どでは、その酸素含有量は0,1〜0.5ppmと比較
的低いものも市販されている。The oxygen content in commercially available purified hydride gas is usually 10p.
pm or less, but recent cylinder-packed hydride gases with relatively low oxygen contents of 0.1 to 0.5 ppm are also commercially available.
水素化物ガス中に含有される酸素を効率よく除去する方
法についての公知技術は殆ど見当ならないが、アルシン
に対して吸着能を有する物質として活性炭、合成ゼオラ
イトにアルシンを接触させて酸素をippm以下まで除
去するアルシンの精製方法が提案されている(特開昭6
2−78116号公報)。There are almost no known techniques for efficiently removing oxygen contained in hydride gas, but activated carbon is a substance that has an adsorption capacity for arsine, and synthetic zeolite is brought into contact with arsine to reduce oxygen to below ippm. A purification method for removing arsine has been proposed (Japanese Unexamined Patent Application Publication No. 1989-1999)
2-78116).
しかしながら、酸素含有量が1 ppmを切る程度では
最近の半導体製造プロセスにおける要求に充分に対応す
ることはできず、さらに、O8lppm以下とすること
が強く望まれている。However, an oxygen content of less than 1 ppm cannot sufficiently meet the demands of recent semiconductor manufacturing processes, and furthermore, it is strongly desired to have an oxygen content of less than 8 lppm.
また、これらのガスはボンベの接続時や配管の切替時な
ど半導体製造装置への供給過程において空気など不純物
の混入による汚染もあるため、装置の直前で不純物を最
終的に除去することが望ましい。In addition, these gases can be contaminated by impurities such as air during the supply process to semiconductor manufacturing equipment, such as when connecting cylinders or switching piping, so it is desirable to finally remove impurities immediately before the equipment.
本発明者らは、水素化物ガス中に含有される酸素を極低
濃度まで効率よく除去するべく鋭意研究を重ねた結果、
水素化物ガスを銅の硫化物と接触させることにより、酸
素濃度を0.lppm以下、さらには0.01ppm以
下まで除去しうることを見い出し、本発明を完成した。As a result of intensive research to efficiently remove oxygen contained in hydride gas to an extremely low concentration, the present inventors found that
By contacting hydride gas with copper sulfide, the oxygen concentration is reduced to 0. The present invention was completed based on the discovery that it is possible to remove 1ppm or less, and even 0.01ppm or less.
すなわち本発明は、粗水素化物ガスを銅の硫化物と接触
させて、該粗水素化物ガス中に含有される酸素を除去す
ることを特徴とする水素化物ガスの精製方法である。That is, the present invention is a method for purifying a hydride gas, which is characterized by bringing the crude hydride gas into contact with copper sulfide to remove oxygen contained in the crude hydride gas.
本発明は水素化物ガス単独、水素(水素ガスペース)お
よび窒素、アルゴンなどの不活性ガス(不活性ガスペー
ス)で稀釈された水素化物ガス(以下総称して粗水素化
物ガスと記す)中に含有される酸素の除去に適用される
。The present invention is applied to hydride gas alone, hydrogen (hydrogen gas space), and hydride gas diluted with an inert gas (inert gas space) such as nitrogen or argon (hereinafter collectively referred to as crude hydride gas). Applicable for removing contained oxygen.
水素化物ガスはアルシン、ホスフィン、セレン化水素、
シランおよびジボランなどであり、主に半導体製造プロ
セスなどで使用される水素化物ガスである。Hydride gases include arsine, phosphine, hydrogen selenide,
These include silane and diborane, and are hydride gases mainly used in semiconductor manufacturing processes.
本発明において銅の硫化物とはCu2S、 CuSなど
として一般的に知られている硫化銅および銅に硫黄がそ
の他の種々な形態で結合したものである。In the present invention, copper sulfide refers to copper sulfide commonly known as Cu2S, CuS, etc., and sulfur combined with copper in various other forms.
銅の硫化物を得るには種々な方法があるが、これらのう
ちでも簡便な方法として例えば銅に硫化水素を接触させ
ることによっても容易に硫化物を得ることができる。こ
の場合の銅としては金属銅または銅の酸化物など還元さ
れ易い銅化合物を主成分とするものであればよい。また
、銅以外の金属成分としてクロム、鉄、コバルトなどが
少量含有されていていもよい。There are various methods for obtaining copper sulfide, and one of the simplest methods is, for example, by bringing copper into contact with hydrogen sulfide. The copper in this case may be any metal whose main component is a copper compound that is easily reduced, such as metallic copper or a copper oxide. Further, a small amount of chromium, iron, cobalt, etc. may be contained as metal components other than copper.
これらの銅は単独で用いてもよく、また、触媒単体など
に担持させた形で用いてもよいが、銅の表面とガスとの
接触効率を高める目的などから、通常は触媒担体などに
担持させた形態が好ましい。These coppers may be used alone or supported on a single catalyst, but for the purpose of increasing the contact efficiency between the copper surface and the gas, they are usually supported on a catalyst carrier. It is preferable that the
また、銅の酸化物を得るには種々な方法があるが、例え
ば銅の硝酸塩、硫酸塩、塩化物、有機酸塩などに苛性ソ
ーダ、苛性カリ、炭酸ナトリウム、アンモニアなどのア
ルカリを加えて酸化物の中間体を沈殿させ、得られた沈
殿物を焼成するなどの方法がある。In addition, there are various methods to obtain copper oxides. For example, an alkali such as caustic soda, caustic potash, sodium carbonate, or ammonia is added to copper nitrates, sulfates, chlorides, or organic acid salts to obtain oxides. There are methods such as precipitating an intermediate and sintering the obtained precipitate.
これらは、通常は、押出し成型、打錠成型などで成型体
とされ、そのまま、または、必要に応じて適当な大きさ
に破砕して使用される。成型方法としては乾式法あるい
は湿式法を用いることができ、その際、少量の水、滑材
などを使用してもよい。These are usually made into molded bodies by extrusion molding, tablet molding, etc., and are used as they are or, if necessary, after being crushed into an appropriate size. A dry method or a wet method can be used as a molding method, and in this case, a small amount of water, a lubricant, etc. may be used.
さらに、市販の酸化銅触媒など種々のものがあるのでそ
れらから選択したものを使用してもよい。Furthermore, there are various commercially available copper oxide catalysts, and one selected from these may be used.
、要は還元銅、酸化銅などが微細に分散されて、その表
面積が大きくガスとの接触効率の高い形態のものであれ
ばよい。In short, it is sufficient that reduced copper, copper oxide, etc. are finely dispersed, the surface area is large, and the contact efficiency with gas is high.
触媒の比表面積としては通常は、BET法で10〜30
0 m” / gの範囲のもの、好ましくは30〜25
0 m2/ gの範囲のものである。The specific surface area of the catalyst is usually 10 to 30 by the BET method.
0 m”/g, preferably 30-25
It is in the range of 0 m2/g.
また、銅の含有量は金属銅換算で通常は、5〜95wt
%、好ましくは20〜95wt%である。In addition, the copper content is usually 5 to 95 wt in terms of metallic copper.
%, preferably 20 to 95 wt%.
銅の含有量が5wt%よりも少なくなると脱酸素能力が
低くなり、また、95wt%よりも高くなると水素によ
る還元の際にシンタリングが生じて活性が低下する虞れ
がある。If the copper content is less than 5 wt%, the deoxidizing ability will be low, and if it is higher than 95 wt%, sintering may occur during reduction with hydrogen, which may reduce the activity.
銅の硫化は通常は、銅、酸化銅などに硫化水素を接触さ
せることによっておこなうことができるが、酸化銅など
の場合には、あらかじめ水素還元によって銅としてもよ
い。Copper sulfidation can usually be carried out by bringing copper, copper oxide, etc. into contact with hydrogen sulfide, but in the case of copper oxide, etc., it may be converted into copper by hydrogen reduction in advance.
水素還元に際しては、例えば350℃以下程度で水素−
窒素の混合ガスを空筒線速度(LV)1 cm/ se
c程度で通すことによっておこなえるが、発熱反応であ
るため温度が急上昇しないよう注意が必要である。また
、還元を水素ベースの硫化水素でおこなうことにより、
硫化も同時におこなうことができるので好都合である。For hydrogen reduction, for example, hydrogen-
A mixed gas of nitrogen at a vacuum linear velocity (LV) of 1 cm/se
This can be done by passing the reaction at a temperature of approximately In addition, by performing reduction with hydrogen-based hydrogen sulfide,
This is convenient because sulfurization can be carried out at the same time.
硫化は通常は、銅または酸化銅を精製筒などの筒に充填
し、これに硫化水素または硫化水素含有ガスを通すこと
によっておこなわれる。Sulfurization is usually carried out by filling a cylinder such as a refining cylinder with copper or copper oxide and passing hydrogen sulfide or a hydrogen sulfide-containing gas through the cylinder.
硫化に用いる硫化水素の濃度は、通常は0.1%以上、
好ましくは1%以上のものが用いられる。硫化水素濃度
が0.1%よりも低くなると反応を終了させるまでに時
間を要し不経済である。The concentration of hydrogen sulfide used for sulfidation is usually 0.1% or more,
Preferably, 1% or more is used. When the hydrogen sulfide concentration is lower than 0.1%, it takes time to complete the reaction, which is uneconomical.
硫化は常温でおこなうことができるが、発熱反応であり
、硫化水素濃度が高い程温度が上昇し易いため、通常は
250°C以下、好ましくは200℃以下に保たれるよ
うガスの流速を調節しながらおこなうことが好ましい。Sulfurization can be carried out at room temperature, but it is an exothermic reaction, and the higher the hydrogen sulfide concentration, the more likely the temperature will rise, so the gas flow rate is usually adjusted to keep it below 250°C, preferably below 200°C. It is preferable to do this while
硫化の終了は発熱量の減少および筒の出口からの硫化水
素の流出量の増加などによって知ることができる。The completion of sulfiding can be detected by a decrease in calorific value and an increase in the amount of hydrogen sulfide flowing out from the outlet of the cylinder.
本発明において、硫化された銅をあらためて別の精製筒
に充填し、これに粗水素化物ガスを通して酸素の除去精
製をおこなってもよいが硫化金物は毒性が強く取扱に細
心の配慮を要することなどから、硫化は最初から水素化
物ガスの精製筒でおこない、硫化終了後、引き続いて粗
水素化物ガスを供給して酸素除去精製をおこなうことが
好ましい。In the present invention, the sulfurized copper may be refilled in a separate refining cylinder and the crude hydride gas passed therethrough to remove oxygen, but sulfide metals are highly toxic and require careful handling. Therefore, it is preferable to carry out sulfidation from the beginning in a hydride gas refining column, and after sulfiding is completed, to perform oxygen removal purification by subsequently supplying crude hydride gas.
水素化物ガスの精製は、通常は、銅の硫化物が充填され
た精製筒に粗水素化物ガスを流すことによっておこなわ
れ、粗水素化物ガスが銅の硫化物と接触することによっ
て粗水素化物ガス中に不純物として含有される酸素が除
去される。The purification of hydride gas is usually carried out by flowing the crude hydride gas through a purification cylinder filled with copper sulfide, and the crude hydride gas is converted into crude hydride gas by contacting with copper sulfide. Oxygen contained therein as an impurity is removed.
本発明に適用される粗水素化物ガス中の酸素濃度は通常
は1100pp以下である。酸素濃度がこれよりも高く
なると発熱量が増加するため条件によっては除熱手段が
必要となる。The oxygen concentration in the crude hydride gas applied to the present invention is usually 1100 pp or less. If the oxygen concentration is higher than this, the amount of heat generated increases, so depending on the conditions, heat removal means may be required.
精製筒に充填される銅の硫化物の充填長は、実用上通常
は50〜1500mmである。充填長が50mmよりも
短くなると酸素除去率が低下する虞れがあり、また、1
500mmよりも長くなると圧力損失が大きくなり過ぎ
る虞れがある。The length of the copper sulfide filled in the refining cylinder is practically 50 to 1500 mm. If the filling length is shorter than 50 mm, there is a risk that the oxygen removal rate will decrease;
If the length is longer than 500 mm, the pressure loss may become too large.
精製時の粗水素化物ガスの空筒線速度(LV)は供給さ
れる粗水素化物ガス中の酸素濃度および操作条件などに
よって異なり一概に特定はできないが、通常は100c
m/ sec以下、好ましくは30cm/ sec以下
である。The cylinder linear velocity (LV) of the crude hydride gas during purification varies depending on the oxygen concentration in the supplied crude hydride gas and operating conditions, and cannot be unconditionally determined, but it is usually 100c.
m/sec or less, preferably 30 cm/sec or less.
水素化物ガスと銅の硫化物との接触温度は精製筒の入口
に供給されるガスの温度で、200℃以下程度、好まし
くは0〜100℃であり、通常は常温でよく特に加熱や
冷却は必要としない。The contact temperature between the hydride gas and the copper sulfide is the temperature of the gas supplied to the inlet of the refining cylinder, which is about 200°C or less, preferably 0 to 100°C, and usually room temperature is sufficient, especially without heating or cooling. do not need.
圧力にも特に制限はなく常圧、減圧、加圧のいずれでも
処理が可能であるが、通常は20Kg/co(abs以
下、好ましくは0.1〜10Kg/ cut absで
ある。There is no particular restriction on the pressure, and the treatment can be carried out at normal pressure, reduced pressure, or increased pressure, but it is usually 20 kg/co (abs or less, preferably 0.1 to 10 kg/cut abs).
また、水素化物ガス中に少量の水分が含有されていても
脱酸素能力には特に悪影響を及ぼすことはなく、さらに
担体などを用いている場合には、その種類によっては水
分も同時に除去される。Furthermore, even if a small amount of water is contained in the hydride gas, it does not have any particular negative effect on the deoxidizing ability, and if a carrier is used, depending on the type of carrier, water may also be removed at the same time. .
本発明において銅の硫化物による酸素除去工程に、必要
に応じて合成ゼオライトなどの脱湿剤による水分除去工
程を適宜組合せることも可能であり、これによって水分
も完全に除去され、極めて高純度の精製水素化物ガスを
得ることができる。In the present invention, it is also possible to appropriately combine the oxygen removal process using copper sulfide with a moisture removal process using a dehumidifying agent such as synthetic zeolite, as required, and this completely removes moisture, resulting in extremely high purity. of purified hydride gas can be obtained.
本発明によって、従来除去が困難であった粗水素化物ガ
ス中の酸素を0.IPPm以下、さらには0.01pp
m以下のような極低濃度まで除去することができ、半導
体製造工業などで要望されている超高純度の精製水素化
物ガスを得ることが可能となった。According to the present invention, oxygen in crude hydride gas, which has been difficult to remove in the past, can be reduced to 0. IPPm or less, even 0.01pp
It has become possible to remove the hydride gas to an extremely low concentration of less than m, making it possible to obtain purified hydride gas of ultra-high purity, which is required in the semiconductor manufacturing industry.
実施例1〜5
市販の酸化銅触媒(日産ガードラー■製、G108)を
用いた。このものは担体としてSiO□を使用し、Cu
として30wt%であり、直径5mm、高さ 4.5m
mの成型体である。Examples 1 to 5 A commercially available copper oxide catalyst (manufactured by Nissan Girdler, G108) was used. This one uses SiO□ as a carrier and Cu
30wt%, diameter 5mm, height 4.5m
It is a molded body of m.
この酸化銅触媒を8〜10meshに破砕したちの85
−を内径19mm、長さ400mmの石英製の精製筒に
充填長300mm (充填密度1.0g/m)に充填し
た。This copper oxide catalyst is crushed into 8 to 10 mesh pieces.
- was packed into a quartz refining cylinder with an inner diameter of 19 mm and a length of 400 mm to a filling length of 300 mm (packing density of 1.0 g/m).
(銅の硫化物)
この精製筒に10vo1%の硫化水素を含有する水素を
510cc/ min (L V = 3 cm /
sec )で流して銅の硫化をおこなった。このときの
室温は25℃であったが、硫化による発熱で筒の出口の
ガスの温度は約35°Cに上昇した。その後出ロガスの
温度は徐々に低下し、8時間後には室温に戻り、硫化処
理を終了した。そのままさらに3時間水素パージをおこ
ない水素化物ガスの精製に備えた。同様にして計5本の
精製筒を準備した。(Copper sulfide) Hydrogen containing 10vol 1% hydrogen sulfide was supplied to this refining cylinder at a rate of 510cc/min (L V = 3 cm/
sec) to sulfurize the copper. The room temperature at this time was 25°C, but the temperature of the gas at the exit of the cylinder rose to about 35°C due to heat generated by sulfidation. Thereafter, the temperature of the emitted log gas gradually decreased, returning to room temperature after 8 hours, and the sulfiding treatment was completed. Hydrogen purge was continued for another 3 hours to prepare for purification of hydride gas. A total of five refining cylinders were prepared in the same manner.
(各水素化物ガスの精製)
引き続いて、これらの精製筒のそれぞれに酸素を含有す
る水素ベースのアルシン、ホスフィン、セレン化水素、
シランまたはジボランを1700cc/ min (L
V = 10cm / sec )で流して黄燐発光
式酸素分析計(測定下限濃度0.01ppm )を用い
て出口ガス中の酸素濃度を測定しなところ、酸素は検出
されずいずれも0.01ppm以下であった。精製を始
めてから100分後においても出口ガスの酸素濃度は0
.01PpIII以下であった。それぞれの結果を第1
表に示す。(Purification of each hydride gas) Subsequently, in each of these purification cylinders, oxygen-containing hydrogen-based arsine, phosphine, hydrogen selenide,
Silane or diborane at 1700cc/min (L
V = 10 cm/sec) and measured the oxygen concentration in the outlet gas using a yellow phosphorus luminescent oxygen analyzer (lower limit of measurement concentration 0.01 ppm), no oxygen was detected and both values were below 0.01 ppm. there were. Even 100 minutes after the start of purification, the oxygen concentration in the outlet gas is 0.
.. 01PpIII or less. The first result of each
Shown in the table.
第1表
比較例1
活性炭(耶子殻炭)を8〜24meshに破砕したもの
48gを実施例1におけると同じ精製筒に300mm(
充填密度0.57g/ mfl )充填し、ヘリウム気
流中270〜290°Cで4時間加熱処理した後、室温
に冷却した。Table 1 Comparative Example 1 48 g of activated carbon (Yoshiki charcoal) crushed into 8-24 meshes was placed in the same refining tube as in Example 1 with a diameter of 300 mm (
The tube was packed with a packing density of 0.57 g/mfl, heated at 270 to 290 °C for 4 hours in a helium stream, and then cooled to room temperature.
この精製筒に実施例1で用いたと同じアルシン10vo
1%および不純物として0.12ppmの酸素を含有す
る水素ベースの粗アルシンを1700cc/min (
L V = 10cm / sec )で流して出口ガ
ス中の酸素濃度を測定したところ0.12ppmであり
、そのまま2時間流し続けたが変化は見られなかった。The same arsine 10vo as used in Example 1 was added to this purification cylinder.
Hydrogen-based crude arsine containing 1% and 0.12 ppm oxygen as impurity was fed at 1700 cc/min (
The oxygen concentration in the outlet gas was measured as 0.12 ppm, and no change was observed even though the flow continued for 2 hours.
実施例6〜10
〈酸化銅触媒の調製)
硫酸銅の20wt、%水溶液に炭酸ソーダの20wt%
水溶液をpH9〜10になるまで加え、塩基性炭酸銅の
結晶を析出させた。この結晶を繰返し濾過、洗浄し、空
気気流中130°Cで乾燥させた後、300℃で焼成し
て酸化銅を生成させた。Examples 6 to 10 (Preparation of copper oxide catalyst) 20 wt % aqueous solution of copper sulfate and 20 wt % sodium carbonate
An aqueous solution was added until the pH became 9 to 10, and basic copper carbonate crystals were precipitated. The crystals were repeatedly filtered, washed, dried at 130°C in a stream of air, and then calcined at 300°C to produce copper oxide.
この酸化銅にアルミナゾル(触媒化成工業■製Cata
loid−AS−2)を混合し、ニーダ−で混疎しな。Alumina sol (Catalyst Chemical Industry Co., Ltd.) was added to this copper oxide.
(loid-AS-2) and mix with a kneader.
続いて空気中130°Cで乾燥させ、さらに、350℃
で焼成し、焼成物を破砕して顆粒状とした。このものを
打錠成型にて6市φX4mmHの円筒状のベレットに成
型した。これを破砕して振いにかけ、12〜24mes
hのものを集めた。Subsequently, it was dried in air at 130°C, and further dried at 350°C.
The fired product was crushed into granules. This product was molded into a cylindrical pellet of 6 cities φ x 4 mmH by tablet molding. Crush this and shake it, 12-24 mes
I collected h.
(銅の硫化物)
このものを実施例1で使用したと同じ精製筒に8577
112 (65g、充填密度2.6g/彪)充填し、こ
れに3vo 1%の硫化水素含有する窒素を510cc
/min (LV= 3cm/sec )で8時間流し
て銅の硫化をおこない、計5本の精製筒を準備した。(Copper sulfide) This product was placed in the same refining tube as used in Example 1.
112 (65 g, packing density 2.6 g/Biao) was filled with 510 cc of nitrogen containing 3vo 1% hydrogen sulfide.
/min (LV=3cm/sec) for 8 hours to sulfurize copper, and a total of five refining cylinders were prepared.
(水素化物ガスの精製)
この精製筒のそれぞれに不純物として酸素を含有する窒
素ベースのアルシン、ホスフィン、セレン化水素、シラ
ンまたはジボランを1700cc/ min (L V
= 10cm / sec )で流して出口ガス中の
酸素濃度を測定したところ、0.01ppm以下であっ
た。この状態で100分流し続けたが、出口ガス中の酸
素は常に0.01ppm以下であった。(Purification of hydride gas) Nitrogen-based arsine, phosphine, hydrogen selenide, silane, or diborane containing oxygen as an impurity is added to each of these purification columns at 1700 cc/min (L V
= 10 cm/sec) and the oxygen concentration in the outlet gas was measured and found to be 0.01 ppm or less. Although the flow continued for 100 minutes in this state, the oxygen content in the outlet gas was always 0.01 ppm or less.
それぞれの結果を第2表に示す。The respective results are shown in Table 2.
Claims (1)
物ガス中に含有される酸素を除去することを特徴とする
水素化物ガスの精製方法。A method for purifying hydride gas, which comprises bringing crude hydride gas into contact with copper sulfide to remove oxygen contained in the crude hydride gas.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1144108A JP2700413B2 (en) | 1989-06-08 | 1989-06-08 | Hydride gas purification method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1144108A JP2700413B2 (en) | 1989-06-08 | 1989-06-08 | Hydride gas purification method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0312304A true JPH0312304A (en) | 1991-01-21 |
JP2700413B2 JP2700413B2 (en) | 1998-01-21 |
Family
ID=15354373
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1144108A Expired - Fee Related JP2700413B2 (en) | 1989-06-08 | 1989-06-08 | Hydride gas purification method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2700413B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000020330A1 (en) * | 1998-10-02 | 2000-04-13 | Aeronex, Inc. | Method and apparatus for purification of hydride gas streams |
JP2007246342A (en) * | 2006-03-16 | 2007-09-27 | Taiyo Nippon Sanso Corp | Method for producing hydrogen selenide |
-
1989
- 1989-06-08 JP JP1144108A patent/JP2700413B2/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000020330A1 (en) * | 1998-10-02 | 2000-04-13 | Aeronex, Inc. | Method and apparatus for purification of hydride gas streams |
US6241955B1 (en) | 1998-10-02 | 2001-06-05 | Aeronex, Inc. | Method and apparatus for purification of hydride gas streams |
JP2007246342A (en) * | 2006-03-16 | 2007-09-27 | Taiyo Nippon Sanso Corp | Method for producing hydrogen selenide |
Also Published As
Publication number | Publication date |
---|---|
JP2700413B2 (en) | 1998-01-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4976942A (en) | Method for purifying gaseous hydrides | |
EP0523525A1 (en) | Process for purification of gaseous organometallic compounds | |
JP2732262B2 (en) | How to purify arsine | |
JPH0312304A (en) | Method for refining gaseous hydride | |
JP2700412B2 (en) | Hydride gas purification method | |
JP3522785B2 (en) | Purification method of carbon dioxide | |
JP2640521B2 (en) | Hydrogen sulfide purification method | |
JP3260786B2 (en) | Steam purification method | |
JP2651611B2 (en) | Hydride gas purification method | |
JPH05124813A (en) | Refining method of gaseous ammonia | |
JP2700402B2 (en) | Hydride gas purification method | |
KR0148367B1 (en) | Method for purifying gaseous hydrides | |
JP3154340B2 (en) | Method for purifying germanium hydride | |
JPH04144910A (en) | Purification of disilane | |
JP2837201B2 (en) | Purification method of acid gas | |
JP3217854B2 (en) | Organic metal purification method | |
JP3292251B2 (en) | Steam purification method | |
JP2700401B2 (en) | Hydride gas purification method | |
JP2700398B2 (en) | Hydride gas purification method | |
JP2700399B2 (en) | Hydride gas purification method | |
JP3260779B2 (en) | Purification method of aromatic hydrocarbon vapor | |
JP2640517B2 (en) | Purification method of hydrogen selenide | |
JP2700396B2 (en) | Purification method of diborane | |
JP2592312B2 (en) | Phosphine purification method | |
JP3154339B2 (en) | Method for purifying germanium hydride |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |