JPH03120871A - Manufacturing method of thin film transistor - Google Patents
Manufacturing method of thin film transistorInfo
- Publication number
- JPH03120871A JPH03120871A JP25938589A JP25938589A JPH03120871A JP H03120871 A JPH03120871 A JP H03120871A JP 25938589 A JP25938589 A JP 25938589A JP 25938589 A JP25938589 A JP 25938589A JP H03120871 A JPH03120871 A JP H03120871A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- film
- thin film
- manufacturing
- sio2
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000010409 thin film Substances 0.000 title claims description 23
- 238000004519 manufacturing process Methods 0.000 title claims description 11
- 239000010408 film Substances 0.000 claims description 58
- 239000007789 gas Substances 0.000 claims description 50
- 238000000034 method Methods 0.000 claims description 34
- 238000004544 sputter deposition Methods 0.000 claims description 19
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 8
- 239000004065 semiconductor Substances 0.000 claims description 5
- 229910052786 argon Inorganic materials 0.000 claims description 4
- 230000005669 field effect Effects 0.000 claims description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 2
- 239000001301 oxygen Substances 0.000 claims description 2
- 229910052760 oxygen Inorganic materials 0.000 claims description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 37
- 239000000758 substrate Substances 0.000 description 24
- 235000012239 silicon dioxide Nutrition 0.000 description 20
- 229910052681 coesite Inorganic materials 0.000 description 17
- 229910052906 cristobalite Inorganic materials 0.000 description 17
- 239000000377 silicon dioxide Substances 0.000 description 17
- 229910052682 stishovite Inorganic materials 0.000 description 17
- 229910052905 tridymite Inorganic materials 0.000 description 17
- 239000012535 impurity Substances 0.000 description 7
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 6
- 238000000137 annealing Methods 0.000 description 6
- 238000000151 deposition Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 239000011521 glass Substances 0.000 description 6
- 229910052710 silicon Inorganic materials 0.000 description 6
- 239000010703 silicon Substances 0.000 description 6
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 5
- 239000013078 crystal Substances 0.000 description 5
- 230000008021 deposition Effects 0.000 description 5
- 239000001257 hydrogen Substances 0.000 description 5
- 229910052739 hydrogen Inorganic materials 0.000 description 5
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 5
- 239000010453 quartz Substances 0.000 description 5
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 4
- 229910021417 amorphous silicon Inorganic materials 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 4
- 239000011229 interlayer Substances 0.000 description 4
- 239000010410 layer Substances 0.000 description 4
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 3
- 238000005229 chemical vapour deposition Methods 0.000 description 3
- 229910001873 dinitrogen Inorganic materials 0.000 description 3
- 150000004767 nitrides Chemical class 0.000 description 3
- 229910000077 silane Inorganic materials 0.000 description 3
- 239000007790 solid phase Substances 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000001307 helium Substances 0.000 description 2
- 229910052734 helium Inorganic materials 0.000 description 2
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 238000005468 ion implantation Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 2
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- YXTPWUNVHCYOSP-UHFFFAOYSA-N bis($l^{2}-silanylidene)molybdenum Chemical compound [Si]=[Mo]=[Si] YXTPWUNVHCYOSP-UHFFFAOYSA-N 0.000 description 1
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 1
- 229910001634 calcium fluoride Inorganic materials 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- -1 hydrogen ions Chemical class 0.000 description 1
- 238000005984 hydrogenation reaction Methods 0.000 description 1
- GPRLSGONYQIRFK-UHFFFAOYSA-N hydron Chemical compound [H+] GPRLSGONYQIRFK-UHFFFAOYSA-N 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910021344 molybdenum silicide Inorganic materials 0.000 description 1
- 229910000069 nitrogen hydride Inorganic materials 0.000 description 1
- 238000005025 nuclear technology Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 238000009832 plasma treatment Methods 0.000 description 1
- 239000012495 reaction gas Substances 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
Landscapes
- Formation Of Insulating Films (AREA)
- Thin Film Transistor (AREA)
- Recrystallisation Techniques (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、薄膜半導体装置の製造方法に関わり、特に、
絶縁ゲート型電界効果トランジスタあるいはTFT(T
hin Film Transistc)r)のゲ
ート絶縁膜の形成方法に関する。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing a thin film semiconductor device, and in particular,
Insulated gate field effect transistor or TFT
The present invention relates to a method for forming a gate insulating film of hin Film Transistc)r).
[従来の技術]
近年、 5OI(Silicon On In
5ulator)あるいは、三次元ICや、大型液晶表
示パネルや、高速で高解像度の密着型イメージセンサ等
へのニーズが高まるにつれて、低温で良質のゲート絶縁
膜を形成する技術が重要となってきた。熱酸化法は、9
00〜1200°C程度の高温プロセスであるため、
(1)安価なガラス基板上に素子を形成できない。 (
2)不純物の横拡散、 (3)三次元ICでは下層部の
素子に悪影響(不純物の拡散など)を与える等の問題が
ある。[Prior art] In recent years, 5OI (Silicon On In
Alternatively, as the need for three-dimensional ICs, large liquid crystal display panels, high-speed, high-resolution contact image sensors, etc. increases, technology for forming high-quality gate insulating films at low temperatures has become important. Thermal oxidation method is 9
Because it is a high temperature process of about 00 to 1200°C,
(1) Elements cannot be formed on inexpensive glass substrates. (
2) Lateral diffusion of impurities; (3) Three-dimensional ICs have problems such as adverse effects (diffusion of impurities, etc.) on the underlying elements.
現在、CVD法や、光CVD法や、プラズマCVD法な
どでゲート酸化膜を形成する技術が検討されている。Currently, techniques for forming a gate oxide film using a CVD method, a photo-CVD method, a plasma CVD method, or the like are being considered.
[発明が解決しようとする課題]
しかしながら、従来の方法で形成した酸化膜は、ゲート
絶縁耐圧が低く、界面準位密度が高いというような問題
点があるs pOl y−S iやゲート酸化膜が圧
縮応力を持つとき優れたTPT特性が得られるという説
がある。しがし、前記各mCVD法により形成された酸
化膜は応力をほとんど持たない、また、放電ガスとして
02ガスを用いたスパッタ法では優れた膜質のSiO2
膜が得られるが、成膜速度が遅いという問題点がある。[Problems to be Solved by the Invention] However, oxide films formed by conventional methods have problems such as low gate dielectric breakdown voltage and high interface state density. There is a theory that excellent TPT characteristics can be obtained when the material has compressive stress. However, the oxide films formed by each mCVD method have almost no stress, and the sputtering method using 02 gas as the discharge gas produces SiO2 of excellent film quality.
Although a film can be obtained, there is a problem that the film formation rate is slow.
本発明は、この様な問題点を解決し、優れたゲート酸化
膜を形成して良好なトランジスタ特性を有する電界効果
トランジスタや薄膜トランジスタを実現することを目的
としている。An object of the present invention is to solve these problems and realize a field effect transistor or a thin film transistor having good transistor characteristics by forming an excellent gate oxide film.
〔課題を解決するための手段]
本発明の薄膜半導体装置の製造方法は、 (1)絶縁ゲ
ート型電界効果トランジスタの製造方法に於て、ゲート
絶縁膜をスパッタ法により形成することを特徴とする。[Means for Solving the Problems] The method for manufacturing a thin film semiconductor device of the present invention is characterized in that: (1) in the method for manufacturing an insulated gate field effect transistor, a gate insulating film is formed by a sputtering method; .
さらに、 (2) 前記スパッタ法は、ターゲットとし
てSiを用いることを特徴とする。Furthermore, (2) the sputtering method is characterized in that Si is used as a target.
さらに、 (3) 前記スパッタ法は、第1段階は放電
ガスとして02(酸素)ガスのみを用い、続いて第2段
階では放電ガスとして02ガスとAr(アルゴン)ガス
の混合ガスを用いる2段階スパッタ法であることを特徴
とする。Furthermore, (3) the sputtering method is a two-step process in which only 02 (oxygen) gas is used as the discharge gas in the first stage, and then a mixed gas of 02 gas and Ar (argon) gas is used as the discharge gas in the second stage. It is characterized by being a sputtering method.
[実施例コ
第1図(a)に於て、1−1は非晶質絶縁基板である0
石英基板あるいはガラス基板などが用いられる。5i0
2で覆われたSi基板を用いることもある。石英基板あ
るいはSiO2で覆われたSi基板を用いる場合は12
00℃の高温プロセスにも耐えることができるが、ガラ
ス基板を用いる場合は軟化温度が低いために約600°
C以下の低温プロセスに制限される。はじめに非晶質絶
縁基板1−1上に非晶質シリコン薄膜1−2を堆積させ
る。該非晶質シリコン薄膜1−2は一様で、微小な結晶
子は含まれておらず結晶成長の核が全く存在しないこと
が望ましい。堆積方法としてはEB (Electro
n Beam)蒸着法やスパッタ法やCVD法や光C
VD法やプラズマCVD法がある。プラズマCVD法は
、光起電力素子や、フォトダイオードや、感光ドラムな
どを作製する場合によく用いられる方法である。非晶質
シリコン薄膜を堆積させるには、シランガス(SiH4
)をヘリウムガス(H,)あるいは水素ガス(H2)で
適した温度に希釈し、高周波電圧を印加して、分解堆積
させる。プラズマCVD法の場合は、基板温度が500
°C以下でも成膜できる。また、デボ直前に水素プラズ
マあるいはアルゴンプラズマ処理を行えば、基板表面の
清浄化と成膜を連続的に行うことができる。その後、4
00°C〜500℃のアニールを行い非晶質シリコンで
膜から水素を放出させる。[Example 1 In FIG. 1(a), 1-1 is an amorphous insulating substrate 0
A quartz substrate, a glass substrate, or the like is used. 5i0
A Si substrate covered with 2 may be used. 12 when using a quartz substrate or a Si substrate covered with SiO2
It can withstand a high temperature process of 00°C, but when using a glass substrate, the softening temperature is low, so it can withstand a high temperature process of about 600°
Limited to low temperature processes below C. First, an amorphous silicon thin film 1-2 is deposited on an amorphous insulating substrate 1-1. It is desirable that the amorphous silicon thin film 1-2 is uniform, does not contain minute crystallites, and does not have any nuclei for crystal growth. The deposition method is EB (Electro
n Beam) evaporation method, sputtering method, CVD method, and optical C
There are VD method and plasma CVD method. The plasma CVD method is a method often used for producing photovoltaic elements, photodiodes, photosensitive drums, and the like. To deposit amorphous silicon thin films, silane gas (SiH4
) is diluted with helium gas (H, ) or hydrogen gas (H2) to an appropriate temperature, and a high frequency voltage is applied to decompose and deposit it. In the case of plasma CVD method, the substrate temperature is 500℃.
Films can be formed even below °C. Further, if hydrogen plasma or argon plasma treatment is performed immediately before the deposition, cleaning of the substrate surface and film formation can be performed continuously. After that, 4
Annealing is performed at 00°C to 500°C to release hydrogen from the amorphous silicon film.
次に、前記シリコン薄膜1−2を同相成長させる。固相
成長方法は、石英管による炉アニールが便利である。ア
ニール雰囲気としては、窒素ガス、水素ガス、アルゴン
ガス、ヘリウムガスなどを用いる。lXl0−’からl
Xl0−IIITorrの高真空雰囲気でアニールを行
ってもよい。同相成長アニール温度は500℃〜700
℃とする。この様な低温アニールでは選択的に、結晶成
長の活性化エネルギーの小さな結晶方位を持つ結晶粒の
みが成長し、しかもゆっくりと大きく成長する。第1図
(b)において、1−3は固相成長したシリコン薄膜を
示しており、1−4は結晶粒界を示している。Next, the silicon thin film 1-2 is grown in phase. As a solid phase growth method, furnace annealing using a quartz tube is convenient. As the annealing atmosphere, nitrogen gas, hydrogen gas, argon gas, helium gas, etc. are used. lXl0-' to l
Annealing may be performed in a high vacuum atmosphere of Xl0-III Torr. In-phase growth annealing temperature is 500℃~700℃
℃. In such low-temperature annealing, only crystal grains having a crystal orientation with a small activation energy for crystal growth grow selectively, and moreover, they grow slowly and to a large size. In FIG. 1(b), reference numeral 1-3 indicates a silicon thin film grown in a solid phase, and reference numeral 1-4 indicates a crystal grain boundary.
次に前記固相成長したシリコン薄膜1−3をフォトリソ
グラフィ法によりバターニングして第1図(C)に示す
ように島状にする。Next, the solid-phase grown silicon thin film 1-3 is patterned by photolithography to form an island shape as shown in FIG. 1(C).
スパッタ方式としてはプラズマをターゲット近傍に圧縮
してスパッタを行うマグネトロン方式が広く用いられて
いる。ターゲットとしてはSiを用いる。スパッタ開始
からの第1段階では、放電ガスとして02ガスのみを用
い優れた膜質のSiO2膜を薄く形成する。該第1層目
のSiO2膜を1−5とする。スバツタ工程の第2段階
では、前記第1H目のSiO2膜1−5が数十A〜数数
百影形成れたところで、反応チャンバー内にArガスを
混合し放電ガスとして02ガスとArガスの混合ガスを
用いることによって成膜速度を高める。この様にして第
2層目のSiO,+膜1−6を形成する。As a sputtering method, a magnetron method is widely used in which sputtering is performed by compressing plasma near a target. Si is used as the target. In the first step from the start of sputtering, only O2 gas is used as a discharge gas to form a thin SiO2 film of excellent quality. The first layer of SiO2 film is designated as 1-5. In the second step of the sputtering process, when the first H-th SiO2 film 1-5 has been formed with a shadow of several tens to several hundreds of amps, Ar gas is mixed in the reaction chamber, and 02 gas and Ar gas are mixed as a discharge gas. The deposition rate is increased by using a mixed gas. In this manner, a second layer of SiO,+ film 1-6 is formed.
反応ガスとして02ガス単体を用いた場合は、反応チャ
ンバー内の内圧や、02ガス流量によって5i02の膜
質を制御する。o2ガスとArガスの混合ガスの場合は
、前記内圧や前記流量のほかに、02ガスとArガスと
の混合比を変えることによってSiO2の膜質を制御す
る。この様な2段階スパッタ法によれば、薄膜トランジ
スタの特性に大きな影響を及ぼす5i−SiO2界面近
傍に緻密で表面形状の滑らかな5102膜が得られ、界
面近傍にSiO2が形成された後は堆積速度を高めて膜
厚を厚くする。スパッタ中の基板温度は、数十〜数百℃
である。その後、600°C以下の低温で熱処理しても
よい。成膜されたゲート酸化膜は、熱処理することによ
ってより緻密で界面準位の少ない優れた膜となる。When 02 gas alone is used as the reaction gas, the film quality of 5i02 is controlled by the internal pressure in the reaction chamber and the flow rate of 02 gas. In the case of a mixed gas of O2 gas and Ar gas, the quality of the SiO2 film is controlled by changing the mixing ratio of O2 gas and Ar gas, in addition to the internal pressure and flow rate. According to such a two-step sputtering method, a dense 5102 film with a smooth surface shape can be obtained near the 5i-SiO2 interface, which has a large effect on the characteristics of thin film transistors, and after SiO2 is formed near the interface, the deposition rate is low. increase the film thickness. The substrate temperature during sputtering is several tens to hundreds of degrees Celsius.
It is. Thereafter, heat treatment may be performed at a low temperature of 600°C or lower. The formed gate oxide film becomes a finer film with fewer interface states by heat treatment.
次に第1図(f)に示されるように、ゲート電極1−7
を形成する6 該ゲート電極材料としては多結晶シリコ
ン薄膜、あるいはモリブデンシリサイド、あるいはアル
ミニュウムやクロムなどのような金属膜、あるいはIT
OやSnO2などのような透明性導電膜などを用いるこ
とができる。成膜方法としては、CVD法、スパッタ法
、真空蒸着法、等の方法があるが、ここでの詳しい説明
は省略する。Next, as shown in FIG. 1(f), the gate electrode 1-7
6 The gate electrode material may be polycrystalline silicon thin film, molybdenum silicide, metal film such as aluminum or chromium, or IT.
A transparent conductive film such as O or SnO2 can be used. Film forming methods include CVD, sputtering, vacuum evaporation, and the like, but detailed description thereof will be omitted here.
続いて第1図(g)に示すように、前記ゲートWil−
7をマスクとして不純物をイオン注入し、自己整合的に
ソース領域1−8およびドレイン領域1−9を形成する
。前記不純物としては、Nchトランジスタを作製する
場合はPoあるいはAS゛を用い、Pcht−ランリス
タを作製する場合はB゛等を用いる。不純物添加方法と
しては、イオン注入法の他に、レーザードーピング法あ
るいはプラズマドーピング法などの方法がある。1−1
0で示される矢印は不純物のイオンビームを表している
。前記非晶質絶縁基板1−1として石英基板を用いた場
合には熱拡散法を使うことができる。不純物21度は、
lXl015からlXl0”’am−3程度とする。Subsequently, as shown in FIG. 1(g), the gate Wil-
Using 7 as a mask, impurity ions are implanted to form a source region 1-8 and a drain region 1-9 in a self-aligned manner. As the impurity, Po or AS' is used when manufacturing an Nch transistor, and B' or the like is used when manufacturing a Pcht-run lister. In addition to ion implantation, methods for adding impurities include laser doping, plasma doping, and other methods. 1-1
The arrow indicated by 0 represents the impurity ion beam. When a quartz substrate is used as the amorphous insulating substrate 1-1, a thermal diffusion method can be used. Impurity 21 degrees is
It is set to about lXl015 to lXl0''am-3.
続いて第1図(h)に示されるように、層間絶縁膜1−
11を積層する。該層間絶縁膜材料としては、酸化膜あ
るいは窒化膜などを用いる。絶縁性が良好ならば膜厚は
いくらでもよいが、数千人から数μm程度が普通である
。窒化膜の形成方法としては、LPCVD法あるいはプ
ラズマCVD法などが簡単である。反応には、アンモニ
アガス(NH3)とシランガスと窒素ガスとの混合ガス
、あるいはシランガスと窒素ガスとの混合ガスなどを用
いる。Subsequently, as shown in FIG. 1(h), an interlayer insulating film 1-
11 is stacked. As the interlayer insulating film material, an oxide film, a nitride film, or the like is used. The film thickness may be any thickness as long as the insulation is good, but it is usually from several thousand to several micrometers. A simple method for forming the nitride film is the LPCVD method or the plasma CVD method. For the reaction, a mixed gas of ammonia gas (NH3), silane gas, and nitrogen gas, or a mixed gas of silane gas and nitrogen gas, etc. is used.
ここで、水素プラズマ法、あるいは水素イオン注入法、
あるいはプラズマ窒化膜からの水素の拡散法などの方法
で水素イオンを導入すると、ゲート酸化膜界面などに存
在するダングリングボンドなどの欠陥が不活性化される
。この様な水素化工程は、層間絶縁膜1−10を積層す
る前におこなってもよい。Here, hydrogen plasma method or hydrogen ion implantation method,
Alternatively, if hydrogen ions are introduced by a method such as hydrogen diffusion from a plasma nitride film, defects such as dangling bonds existing at the gate oxide film interface are inactivated. Such a hydrogenation step may be performed before laminating the interlayer insulating film 1-10.
次に第1図(i)に示すように、前記層間絶縁膜及びゲ
ート絶縁膜にコンタク)・ホールを形成し、コンタクト
電極を形成しソース電極1−12およびドレイン電極1
−13とする。該ソース電極及びドレイン電極は、アル
ミニュウムなどの金属材料で形成する。この様にして3
膜トランジスタが形成される。Next, as shown in FIG. 1(i), contact holes are formed in the interlayer insulating film and the gate insulating film, contact electrodes are formed, and source electrodes 1-12 and drain electrodes 1-1 are formed.
-13. The source electrode and drain electrode are formed of a metal material such as aluminum. In this way 3
A membrane transistor is formed.
[発明の効果]
従来、放電ガスがArガス単体だったので堆積されたS
iO2膜の表面状態はスパッタ圧依存性が大きく、圧力
の増大とともに表面の荒れが激しかった。02ガスを用
いるとスパッタダメージが減少することが知られている
。本発明によれば、ターゲットとしてSiを用い、5i
−SiO2界面付近には放電ガスとして02ガス単体で
スパッタされたSiO2膜を薄く堆積させるので表面形
状が非常に滑らかで熱酸化SiO2膜と同程度の緻密な
SiO2膜が界面近傍に形成される。その後はArガス
を混合して堆積速度を高めてSiO2膜を堆積させるの
で、優れた特性を有するゲート絶縁膜を短時間で形成す
ることが可能になる。[Effect of the invention] Conventionally, the discharge gas was Ar gas alone, so the deposited S
The surface state of the iO2 film was highly dependent on the sputtering pressure, and the surface became more rough as the pressure increased. It is known that sputter damage is reduced by using 02 gas. According to the present invention, using Si as a target, 5i
Since a thin SiO2 film sputtered using 02 gas as a discharge gas is deposited near the -SiO2 interface, a SiO2 film with a very smooth surface and as dense as a thermally oxidized SiO2 film is formed near the interface. Thereafter, the SiO2 film is deposited by mixing Ar gas to increase the deposition rate, making it possible to form a gate insulating film with excellent characteristics in a short time.
スパッタ時の内圧によりSiO2膜の膜質を制御するこ
とが可能であり、内圧を低くすると緻密な膜となる。The film quality of the SiO2 film can be controlled by the internal pressure during sputtering, and lowering the internal pressure results in a denser film.
02ガスとArガスの混合比を変えることによりSiO
2膜の組成比を制御することができる。By changing the mixing ratio of 02 gas and Ar gas, SiO
The composition ratio of the two films can be controlled.
放電ガスとしてArガス単体を用いて堆積されたSiO
2膜の絶縁耐圧は約2 M V / c mと低いのに
対し、本発明のようにO2ガスを混合することにより絶
縁耐圧を著しく向上でき、その値は約7MV / c
mとなり熱酸化SiO2膜とほぼ同程度となる。SiO deposited using Ar gas alone as discharge gas
The dielectric strength voltage of two films is low at about 2 MV/cm, but by mixing O2 gas as in the present invention, the dielectric strength voltage can be significantly improved, and its value is about 7 MV/cm.
m, which is almost the same as that of the thermally oxidized SiO2 film.
O2ガスとArガスの混合ガスを用いて堆積された5i
C)2膜の比抵抗は約5X1015Ω・Cmであり、熱
酸化SiO2膜と同程度の非常に優れた絶縁性を有して
いる。5i deposited using a mixed gas of O2 gas and Ar gas
The specific resistance of C) 2 film is approximately 5×10 15 Ω·Cm, and has very excellent insulation properties comparable to that of a thermally oxidized SiO 2 film.
数十〜数百°Cの基板温度で堆積可能なので、軟化温度
の低いガラス基板を用いることもできる。Since deposition can be performed at a substrate temperature of several tens to hundreds of degrees Celsius, a glass substrate with a low softening temperature can also be used.
低温で熱酸化SiO2膜に近い特性を有するゲート絶縁
膜を得ることができるので、SOI技術の発展に大きく
寄与するものである。工程数はまったく瑠えない、60
0℃以下の低温のプロセスでも作製が可能なので、価格
が安くて耐熱温度が低いガラス基板をもちいることがで
きる。優れたシリコン薄膜が得られるのにかかわらずコ
ストアップとはならない。Since it is possible to obtain a gate insulating film having properties close to those of thermally oxidized SiO2 films at low temperatures, it will greatly contribute to the development of SOI technology. The number of steps is completely unknown, 60
Since it can be manufactured using a low-temperature process of 0° C. or lower, it is possible to use a glass substrate that is inexpensive and has a low heat-resistant temperature. Even though an excellent silicon thin film can be obtained, the cost does not increase.
本発明によって得られたゲート絶縁膜と大粒径多結晶シ
リコン薄膜を用いて薄膜トランジスタを作成すると、優
れた特性が得られる。従来に比べて、薄膜トランジスタ
のON電流は増大しOFF電流は小さくなる。またスレ
ッシュホルド電圧も小さくなりトランジスタ特性が大き
く改善される。When a thin film transistor is made using the gate insulating film obtained according to the present invention and a large-grain polycrystalline silicon thin film, excellent characteristics can be obtained. Compared to the conventional art, the ON current of the thin film transistor increases and the OFF current decreases. In addition, the threshold voltage is also reduced, and transistor characteristics are greatly improved.
NチャネルとPチャネルとの特性の不釣合いさも改善さ
れる。The imbalance in characteristics between the N channel and the P channel is also improved.
非晶質絶縁基板上に優れた特性の薄膜トランジスタを作
製することが可能となるので、ドライバー回路を同一基
板上に集積したアクティブマトリクス基板に応用した場
合にも十分な高速動作が実現される。さらに、電源電圧
の低減、消費電流の低減、信頼性の向上に対して大きな
効果がある。Since it is possible to fabricate thin film transistors with excellent characteristics on an amorphous insulating substrate, sufficient high-speed operation can be achieved even when applied to an active matrix substrate in which a driver circuit is integrated on the same substrate. Furthermore, it has great effects on reducing power supply voltage, reducing current consumption, and improving reliability.
また、600℃以下の低温プロセスによる作製も可能な
ので、アクティブマトリクス基板の低価格化及び大面積
化に対してもその効果は大きい。In addition, since it is possible to manufacture by a low-temperature process at 600° C. or lower, this is highly effective in reducing the cost and increasing the area of active matrix substrates.
本発明を、充電変換素子とその走査回路を同一チップ内
に集積した密着型イメージセンサ−に応用した場合には
、読み取り速度の高速化、高解像度化、さらに階調をと
る場合に非常に大きな効果をうみだす、高解像度化が達
成されるとカラー読み取り用密着型イメージセンサ−へ
の応用も容易となる。もちろん電源電圧の低減、消費電
流の低減、信頼性の向上に対してもその効果は大きい。When the present invention is applied to a contact image sensor in which a charging conversion element and its scanning circuit are integrated on the same chip, it is possible to increase the reading speed, increase the resolution, and increase the gradation. Once high resolution is achieved, which produces this effect, it will be easier to apply it to contact type image sensors for color reading. Of course, this has great effects in reducing power supply voltage, reducing current consumption, and improving reliability.
また低温プロセスによって作製することができるので、
密着型イメージセンサ−チップの長尺化が可能となり、
−本のチップでA4サイズあるいはA3サイズの様な大
型ファクシミリ用の読み取り装置を実現できる。従って
、センサーチップの二本継ぎのような手数がかかり信頼
性の悪い技術を回避することができ、実装歩留りも向上
される。Also, since it can be produced by a low-temperature process,
Close-contact image sensor chip can be made longer,
- A reading device for large facsimile machines such as A4 size or A3 size can be realized using a book chip. Therefore, it is possible to avoid the troublesome and unreliable technique of joining two sensor chips, and the mounting yield is also improved.
石英基板やガラス基板だけではなく、サファイア基板(
A1203)あルイはM g O・A 12ch。In addition to quartz and glass substrates, sapphire substrates (
A1203) Arui is MgO・A 12ch.
BP、CaF2等の結晶性絶縁基板も用いることができ
る。Crystalline insulating substrates such as BP and CaF2 can also be used.
以上実施例では薄膜トランジスタを例として説明したが
、通常のMOSトランジスタやバイポーラトランジスタ
あるいはへテロ接合バイポーラトランジスタなど薄膜を
利用した素子に対しても、本発明を応用することができ
る。また、三次元デバイスのようなS○工核技術利用し
た素子に対しても、本発明を応用することができる。Although the above embodiments have been explained using thin film transistors as an example, the present invention can also be applied to elements using thin films such as ordinary MOS transistors, bipolar transistors, and heterojunction bipolar transistors. Further, the present invention can also be applied to elements using S○ engineering nuclear technology, such as three-dimensional devices.
第1図(a)から(i)は、本発明の実施例を示す工程
断面図である。
1−3 ; シリコン薄膜
1−5 ; 第1層目の5i02膜
1−6 ; 第2層目のSiO2膜
以上FIGS. 1(a) to 1(i) are process cross-sectional views showing an embodiment of the present invention. 1-3; Silicon thin film 1-5; First layer 5i02 film 1-6; Second layer SiO2 film or higher
Claims (3)
於て、ゲート絶縁膜をスパッタ法により形成することを
特徴とする薄膜半導体装置の製造方法。(1) A method for manufacturing a thin film semiconductor device, which is characterized in that a gate insulating film is formed by a sputtering method in the method for manufacturing an insulated gate field effect transistor.
ることを特徴とする請求項1記載の薄膜半導体装置の製
造方法。(2) The method for manufacturing a thin film semiconductor device according to claim 1, wherein the sputtering method uses Si as a target.
_2(酸素)ガスのみを用い、続いて第2段階では放電
ガスとしてO_2ガスとAr(アルゴン)ガスの混合ガ
スを用いる2段階スパッタ法であることを特徴とする請
求項1記載の薄膜半導体装置の製造方法。(3) In the sputtering method, the first step is to use O as the discharge gas.
The thin film semiconductor device according to claim 1, characterized in that the method is a two-step sputtering method using only _2 (oxygen) gas and then using a mixed gas of O_2 gas and Ar (argon) gas as a discharge gas in the second step. manufacturing method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25938589A JP2794833B2 (en) | 1989-10-04 | 1989-10-04 | Method for manufacturing thin film transistor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25938589A JP2794833B2 (en) | 1989-10-04 | 1989-10-04 | Method for manufacturing thin film transistor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03120871A true JPH03120871A (en) | 1991-05-23 |
JP2794833B2 JP2794833B2 (en) | 1998-09-10 |
Family
ID=17333407
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25938589A Expired - Fee Related JP2794833B2 (en) | 1989-10-04 | 1989-10-04 | Method for manufacturing thin film transistor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2794833B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5998838A (en) * | 1997-03-03 | 1999-12-07 | Nec Corporation | Thin film transistor |
US6465284B2 (en) | 1993-07-27 | 2002-10-15 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and method for manufacturing the same |
US20110232123A1 (en) * | 2008-12-22 | 2011-09-29 | Demarco Francis W | Freeze Dryer Slot Door Actuator and Method |
-
1989
- 1989-10-04 JP JP25938589A patent/JP2794833B2/en not_active Expired - Fee Related
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6465284B2 (en) | 1993-07-27 | 2002-10-15 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and method for manufacturing the same |
US5998838A (en) * | 1997-03-03 | 1999-12-07 | Nec Corporation | Thin film transistor |
US6258638B1 (en) | 1997-03-03 | 2001-07-10 | Nec Corporation | Method of manufacturing thin film transistor |
US6444508B1 (en) | 1997-03-03 | 2002-09-03 | Nec Corporation | Method of manufacturing thin film transistor |
US6703267B2 (en) | 1997-03-03 | 2004-03-09 | Nec Corporation | Method of manufacturing thin film transistor |
US20110232123A1 (en) * | 2008-12-22 | 2011-09-29 | Demarco Francis W | Freeze Dryer Slot Door Actuator and Method |
US8640358B2 (en) | 2008-12-22 | 2014-02-04 | Ima Life North America Inc. | Freeze dryer slot door actuator and method |
Also Published As
Publication number | Publication date |
---|---|
JP2794833B2 (en) | 1998-09-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2917392B2 (en) | Method for manufacturing semiconductor device | |
JP2982792B2 (en) | Method for manufacturing thin film transistor | |
JP2505736B2 (en) | Method for manufacturing semiconductor device | |
JP3178715B2 (en) | Method for manufacturing thin film semiconductor device | |
JP2917388B2 (en) | Method for manufacturing semiconductor device | |
JPH04152624A (en) | Manufacture of thin film semiconductor device | |
JPH03120871A (en) | Manufacturing method of thin film transistor | |
JPH0393273A (en) | Method for manufacturing thin film semiconductor devices | |
JP2867402B2 (en) | Method for manufacturing semiconductor device | |
JPH034564A (en) | Manufacturing method of semiconductor device | |
JPH02194620A (en) | Crystal growth method of semiconductor thin film | |
JP2751420B2 (en) | Method for manufacturing semiconductor device | |
JPH09139499A (en) | Method for manufacturing thin film transistor | |
JP3333187B2 (en) | Method for manufacturing thin film semiconductor device | |
JPH03104209A (en) | Manufacture of semiconductor device | |
JPH03241874A (en) | Method for manufacturing thin film semiconductor devices | |
JP2995833B2 (en) | Method for manufacturing thin film semiconductor device | |
JPH02140916A (en) | Manufacturing method of thin film transistor | |
JPH03241873A (en) | Method for manufacturing thin film semiconductor devices | |
JPH04286370A (en) | Manufacturing method of thin film transistor | |
JP3185790B2 (en) | Method for manufacturing thin film semiconductor device | |
JP3185789B2 (en) | Method for manufacturing thin film semiconductor device | |
JPH03289129A (en) | Method for manufacturing thin film semiconductor devices | |
JPH0284772A (en) | Manufacturing method of semiconductor device | |
JP2805830B2 (en) | Method for manufacturing semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |