JPH03120409A - Crystal oscillation type film thickness gauge - Google Patents
Crystal oscillation type film thickness gaugeInfo
- Publication number
- JPH03120409A JPH03120409A JP25709389A JP25709389A JPH03120409A JP H03120409 A JPH03120409 A JP H03120409A JP 25709389 A JP25709389 A JP 25709389A JP 25709389 A JP25709389 A JP 25709389A JP H03120409 A JPH03120409 A JP H03120409A
- Authority
- JP
- Japan
- Prior art keywords
- film thickness
- temperature
- crystal
- natural frequency
- vapor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000013078 crystal Substances 0.000 title claims abstract description 62
- 230000010355 oscillation Effects 0.000 title claims description 11
- 238000005259 measurement Methods 0.000 claims abstract description 17
- 239000010408 film Substances 0.000 claims description 74
- 239000010409 thin film Substances 0.000 claims description 4
- 230000015572 biosynthetic process Effects 0.000 abstract description 9
- 238000007740 vapor deposition Methods 0.000 abstract description 7
- 238000001514 detection method Methods 0.000 abstract description 3
- 239000002923 metal particle Substances 0.000 abstract description 3
- 239000002184 metal Substances 0.000 abstract 1
- 239000000843 powder Substances 0.000 abstract 1
- 238000010438 heat treatment Methods 0.000 description 7
- 239000000758 substrate Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 238000000034 method Methods 0.000 description 3
- 238000001771 vacuum deposition Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- LTPBRCUWZOMYOC-UHFFFAOYSA-N beryllium oxide Inorganic materials O=[Be] LTPBRCUWZOMYOC-UHFFFAOYSA-N 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001659 ion-beam spectroscopy Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 238000002294 plasma sputter deposition Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
Landscapes
- Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
- Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の目的〕
(産業上の利用分野)
本発明は、成膜装置の膜厚モニタとして利用されている
水晶発振式膜厚計に関する。DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a crystal oscillation type film thickness meter used as a film thickness monitor in a film forming apparatus.
(従来の技術)
一般に、真空蒸着法においては、膜厚の監視や制御が必
要になる。なぜならば、蒸発源の方向分布特性、飛翔、
付着を理想どお抄に行わせることはすこぶる困難である
。そのため、モニタ基板上の監視によって蒸着を要する
実際の基板上の膜厚を制御することが行われている。こ
の場合、モニタ基板としては水晶が用いられている。そ
うして、このモニタ基板に蒸着膜が付着したときの水晶
の固有振動数の変化に基づいて膜厚測定を行っている。(Prior Art) In general, vacuum evaporation methods require monitoring and control of film thickness. This is because the directional distribution characteristics of the evaporation source, flight,
It is extremely difficult to achieve ideal adhesion. Therefore, the thickness of the film on the actual substrate that requires vapor deposition is controlled by monitoring on a monitor substrate. In this case, crystal is used as the monitor substrate. Then, the film thickness is measured based on the change in the natural frequency of the crystal when the vapor deposited film is attached to the monitor substrate.
(発明が解決しようとする課題)
ところで、上記水晶の固有振動数の変化は、温度依存性
を有しており、成膜時の放射熱影響による膜厚ドリフト
の原因となっている。そこで、このような放射熱影響を
なくすために、従来においては、■温度係数の小さい方
位でカットした水晶の利用、■水晶基板の周)に水冷パ
イプを設は水晶の温度上昇防止、■銀ペースト焼付けし
たベリリアスペーサを水晶裏面に設け、水晶の温度変化
を抑制1等を行っている。(Problems to be Solved by the Invention) Incidentally, the change in the natural frequency of the crystal has temperature dependence, and is a cause of film thickness drift due to the influence of radiant heat during film formation. Therefore, in order to eliminate such radiant heat effects, in the past, the following methods were used: ■ Using crystal cut in a direction with a small temperature coefficient, ■ Installing a water cooling pipe around the crystal substrate to prevent the temperature of the crystal from rising, ■ Using silver A beryllia spacer baked with paste is provided on the back side of the crystal to suppress temperature changes in the crystal.
しかしながら、上記0項に対しては、高融点物質成膜時
には、高い放射熱影響により、膜厚計の膜厚ドリフトが
顕著に生じる。また、上記0項に対して、水冷パイプを
設けても水晶への放射熱照射は構造的に避けられないた
め、温度上昇防止にも限界がある。さらに、上記0項に
対して、水晶の温度変化を効果的に抑制できる温度範囲
に制約を受ける。However, with respect to the above-mentioned 0 term, when forming a film of a high-melting point substance, a film thickness drift of the film thickness gauge occurs significantly due to the influence of high radiation heat. In addition, with respect to the above item 0, even if a water cooling pipe is provided, radiant heat irradiation to the crystal cannot be avoided structurally, so there is a limit to the prevention of temperature rise. Furthermore, with respect to the above-mentioned 0 term, there are restrictions on the temperature range in which temperature changes in the crystal can be effectively suppressed.
本発明は、これら諸般の事情を勘案してなされたもので
、水晶振動子の温度変化に基因する膜厚ドリフトをなく
した高精度の水晶発振式膜厚計を提供することを目的と
する〇
〔発明の構成〕
(課題を解決するための手段と作用)
薄膜が被着される水晶板を有する膜厚測定部と、水晶板
を加熱して所定の温度に維持する水晶温度制御部と、薄
膜の膜厚測定を行う膜厚測定部とを有し、一定温度にて
膜厚測定を行うようKして、膜厚測定精度を向上させる
ようにしたものである。The present invention has been made in consideration of these various circumstances, and an object of the present invention is to provide a highly accurate crystal oscillation type film thickness meter that eliminates film thickness drift caused by temperature changes in the crystal oscillator. [Structure of the Invention] (Means and Effects for Solving the Problems) A film thickness measuring section having a crystal plate on which a thin film is applied, a crystal temperature control section heating the crystal plate and maintaining it at a predetermined temperature, The apparatus includes a film thickness measurement section that measures the thickness of a thin film, and is configured to perform film thickness measurement at a constant temperature to improve film thickness measurement accuracy.
(実施例) 以下、本発明の一実施例を図面を参照して詳述する。(Example) Hereinafter, one embodiment of the present invention will be described in detail with reference to the drawings.
第1図は、本発明の一実施例の水晶発振式膜厚計を示し
ている。この膜厚計は、円筒状の膜厚測定部(1)と、
との膜厚測定部(1)における固有振動数変化Δf4C
基づいて膜厚dを演算する膜厚演算部(2)と、この膜
厚演算部(2) において算出された膜厚データを表示
する膜厚表示部(3)と、膜厚測定部t1)の一部をな
す水晶板(13の温度を一定の温度に制御する水晶温度
制御部(5)とからなっている。しかして、膜厚測定部
(1)は、有底円筒状の支持体(6)と、この支持体(
6ンの開口部に同軸かつ着脱自在に連設され中央部に貫
通孔(7)が設けられた円筒状の熱シールドキャップ(
8)と、この熱シールドキャップ(8)の内側に装着さ
れ中央部に貫通孔(7)K連通する貫通孔(7a)が設
けられた断熱部材(9)と、熱シールドキャップ(8)
の支持体(6)への連設部位近傍に固定された鍔部顛と
、この鍔部顛に熱シールドキャップ(8)に同軸となる
ように延設された円筒部αυとを有する保持リングQ3
と、上記保持リング(130円筒部(11)の先端に着
脱自在に接着された水晶板α騰と、この水晶板a3と断
熱部材(9)との間に介挿され水晶板α3を円筒部(1
1)K弾性的に抑圧する複数の板ばねα祷・・・とから
なっている。一方、水晶温度制御部(5)は、水晶板t
i湯の内側主面に近接して配設された電熱線aSと、水
晶板C13の一部に着脱自在に取付けられた例えば熱電
対などの温度センサ顛と、この温度センサaQからの温
度検出信号STに基づいて電熱線a!9への印加電流を
増減し水晶板αJの温度を例えば150℃±0.1℃と
なるように制御する温度コントローラa?)とからなっ
ている。さらに、膜厚演算部(2)は、水晶板(13の
両面に高周波電圧を印加し、その結果として生じる振動
に基づいて蒸着膜α榎の付着に基因する固有振動数変化
Δfを求め、さらにこの固有振動数変化Δfに基づいて
蒸着膜α樽の膜厚dを求めるものである。また、膜厚表
示部(3)は、前記膜厚データと、このときの温度セン
サαeによシ測定された温度データとが表示されるよう
になっている。FIG. 1 shows a crystal oscillation type film thickness meter according to an embodiment of the present invention. This film thickness meter includes a cylindrical film thickness measurement part (1),
Natural frequency change Δf4C in the film thickness measurement part (1) with
a film thickness calculation unit (2) that calculates the film thickness d based on the film thickness calculation unit (2), a film thickness display unit (3) that displays the film thickness data calculated in the film thickness calculation unit (2), and a film thickness measurement unit t1). It consists of a crystal temperature control section (5) that controls the temperature of a crystal plate (13) to a constant temperature. (6) and this support (
A cylindrical heat shield cap (7) coaxially and removably connected to the opening of 6 and having a through hole (7) in the center.
8), a heat insulating member (9) that is attached to the inside of the heat shield cap (8) and has a through hole (7a) in the center that communicates with the through hole (7) K, and a heat shield cap (8).
A retaining ring having a flange part fixed near the part connected to the support body (6), and a cylindrical part αυ extending from the flange part coaxially with the heat shield cap (8). Q3
, the crystal plate α is removably glued to the tip of the retaining ring (130) and the cylindrical part (11), and the crystal plate α3 is inserted between the crystal plate a3 and the heat insulating member (9). (1
1) Consists of a plurality of leaf springs α that elastically suppress K. On the other hand, the crystal temperature control section (5) controls the crystal plate t.
A heating wire aS disposed close to the inner main surface of the hot water, a temperature sensor such as a thermocouple detachably attached to a part of the crystal plate C13, and temperature detection from this temperature sensor aQ. Based on signal ST, heating wire a! Temperature controller a? increases or decreases the current applied to crystal plate αJ to control the temperature of crystal plate αJ to, for example, 150°C ± 0.1°C. ). Furthermore, the film thickness calculation unit (2) applies a high frequency voltage to both sides of the crystal plate (13), calculates the natural frequency change Δf due to the adhesion of the deposited film α based on the resulting vibration, and further The film thickness d of the deposited film α barrel is determined based on this natural frequency change Δf.Furthermore, the film thickness display section (3) displays the film thickness data and the temperature sensor αe measured at this time. temperature data is displayed.
つぎに、上記構成の水晶発振式膜厚計の作動について述
べる。Next, the operation of the crystal oscillation type film thickness meter having the above configuration will be described.
まず、膜厚測定部(1)を真空蒸着室内に設置する。First, the film thickness measuring section (1) is installed in a vacuum deposition chamber.
つぎに、蒸着源から例えば電子ビーム加熱などKよシ蒸
着金属粒子を放射させる。このとき、水晶板α四は、あ
らかじめ例えば150℃の設定温度T(lK水晶温度制
御部(5)により制御される電熱線a!9に一通電させ
ることによシ昇温しておく。したがって、水晶板峙の固
有振動数foは、この設定温度のものに固定される。し
かして、水晶板0上には、徐々に、蒸着金属粒子が付着
し、蒸着tm−が形成される。Next, the vapor-deposited metal particles are radiated from the vapor deposition source using, for example, electron beam heating. At this time, the temperature of the crystal plate α4 is raised in advance by energizing the heating wire a!9, which is controlled by the crystal temperature control section (5), at a set temperature T (lK) of, for example, 150°C. , the natural frequency fo of the crystal plate 0 is fixed at this set temperature.Thus, vapor deposited metal particles gradually adhere to the crystal plate 0, forming a vapor deposit tm-.
この蒸着膜α砂の成長に従って固有振動数fは変化し、
蒸着膜部を被着しないときの水晶板α尋の固有振動数f
、と蒸着膜(18を被着しているときの水晶板a3の固
有振動数fとの差である固有振動数変化Δfも徐々に変
化する。一方、水晶板Q謙は、蒸着金属粒子が衝突する
に伴って主として蒸着源の放射熱影響によシ徐々に昇温
するが、この温度上昇は温度センナαQから出力された
温度検出信号8Tを入力した温度コントローラaηによ
シ検出され、設定温度T0からの温度上昇ΔTを解消す
るように、電熱線a!9への蓮電量工を調節する。その
結果、水晶板0は、蒸着膜端形成中、所定の設定温度に
保持される。したがって、固有振動数変化Δfは、常に
設定温度ToKおけるものとなる。そして、この固有振
動数変化Δfを示す電気信号SFが、膜厚演算部(2)
K入力し、この固有振動数変化ΔfK基づいて膜厚dが
演算される。この演算された膜厚dは、水晶板αjの温
度変化に基因する誤差を含んでいない。なぜならば、水
晶板(13は、常に設定温度T。K維持されているとと
もに1固有振動数変化Δfから膜厚dへの変換式中の常
数は、設定温度ToK水晶板0があ石ことを前提として
いるからである。かくして、求められた膜厚d及び水晶
板(13の温度T、は、膜厚表示部(3)にて表示され
る。ちなみに、第2図は、蒸着時間と膜厚の関係を示す
もので、実線はこの実施例の膜厚計による測定データ、
破線は従来技術による測定データであるが、膜厚誤差Δ
dを生じているのがわかる。The natural frequency f changes as the deposited film α sand grows,
Natural frequency f of the crystal plate α when no vapor deposited film is applied
The natural frequency change Δf, which is the difference between the natural frequency f of the crystal plate a3 when the vapor deposited film (18) is applied, also gradually changes. As the collision occurs, the temperature gradually rises mainly due to the radiation heat effect of the vapor deposition source, but this temperature rise is detected by the temperature controller aη, which inputs the temperature detection signal 8T output from the temperature sensor αQ, and the temperature is set. The amount of electricity applied to the heating wire a!9 is adjusted so as to eliminate the temperature rise ΔT from the temperature T0.As a result, the crystal plate 0 is maintained at a predetermined set temperature during the formation of the end of the deposited film. Therefore, the natural frequency change Δf is always at the set temperature ToK.The electric signal SF indicating this natural frequency change Δf is sent to the film thickness calculating section (2).
K is input, and the film thickness d is calculated based on this natural frequency change ΔfK. This calculated film thickness d does not include an error caused by a temperature change of the crystal plate αj. This is because the crystal plate (13) is always maintained at the set temperature T.K, and the constant in the conversion formula from 1 natural frequency change Δf to film thickness d is This is because the obtained film thickness d and the temperature T of the crystal plate (13) are displayed in the film thickness display section (3). It shows the relationship between thickness, and the solid line is the measurement data by the film thickness meter of this example,
The broken line is the measurement data using the conventional technology, and the film thickness error Δ
It can be seen that d is occurring.
このように、この実施例の水晶発振式膜厚計は、電熱線
αωにより水晶板(13を設定温度T。K維持した状態
で、蒸着膜部の膜厚測定を行うようにしているので、水
晶板0の温度変化に伴う膜厚測定誤差がなくなシ、膜厚
dの高精度測定が可能となる。As described above, the crystal oscillation type film thickness meter of this embodiment measures the film thickness of the deposited film portion while maintaining the crystal plate (13) at the set temperature T.K using the heating wire αω. Film thickness measurement errors due to temperature changes of the crystal plate 0 are eliminated, and the film thickness d can be measured with high accuracy.
その結果、真空蒸着における膜厚のモニタ、を確実に行
うことができるようKなるため、膜厚の制御を高精度で
行うことができる。As a result, the film thickness can be reliably monitored during vacuum evaporation, so the film thickness can be controlled with high precision.
なお、上記実施例は、単層膜の形成について例示してい
るが、人工格子を形成し回折格子として作用する多層膜
の形成に本発明の水晶発振式膜厚計を適用した場合に顕
著に奏効する。Note that although the above embodiments illustrate the formation of a single layer film, the crystal oscillation type film thickness meter of the present invention is noticeably applied to the formation of a multilayer film that forms an artificial lattice and acts as a diffraction grating. Effective.
さらに、この発明の水晶発振式膜厚計は、真空蒸着に限
ることなく、イオングレーティング、イオンビームスパ
ッタ、プラズマスパッタ、グラス−r CVD (Ch
emical Vapour Deposit ion
:化学蒸着)等、種々の薄膜形成プロセスにも適用で
きる。Furthermore, the crystal oscillation type film thickness meter of the present invention is applicable not only to vacuum deposition but also to ion grating, ion beam sputtering, plasma sputtering, glass-r CVD (Ch
chemical vapor deposition
It can also be applied to various thin film formation processes such as (chemical vapor deposition).
本発明の水晶発振式膜厚計は、成膜中水晶板を一定温度
に維持するようKしているので、モニタ板である水晶板
の温度変化に伴う膜厚測定誤差がなくなり、膜厚の高精
度測定を安定して行うことができる。その結果、成膜時
の膜厚モニタを正確に行うことができるようKなり、成
膜プロセスの制御が確実となる。Since the crystal oscillation type film thickness meter of the present invention maintains the crystal plate at a constant temperature during film formation, there is no film thickness measurement error caused by temperature changes of the crystal plate, which is a monitor plate, and the film thickness can be measured easily. High-precision measurements can be performed stably. As a result, the film thickness can be accurately monitored during film formation, and the film formation process can be controlled reliably.
第1図は本発明の一実施例の水晶発振式膜厚計の構成図
、第2図は同じく作動説明のためのグラフである。
(l):膜厚測定部。
(2):膜厚演算部。
(5):水晶温度制御部。
α3:水晶板。FIG. 1 is a block diagram of a crystal oscillation type film thickness meter according to an embodiment of the present invention, and FIG. 2 is a graph for explaining the operation. (l): Film thickness measurement section. (2): Film thickness calculation section. (5): Crystal temperature control section. α3: Crystal plate.
Claims (1)
晶板を加熱して所定の温度に維持する水晶温度制御部と
、上記水晶板に被着した薄膜の膜厚測定を上記水晶板の
固有振動数の変化に基づいて行う膜厚測定部とを具備す
ることを特徴とする水晶発振式膜厚計。a film thickness measurement unit having a crystal plate on which a thin film is deposited; a crystal temperature control unit that heats the crystal plate and maintains it at a predetermined temperature; A crystal oscillation type film thickness meter comprising: a film thickness measurement section that performs film thickness measurement based on changes in the natural frequency of a plate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25709389A JPH03120409A (en) | 1989-10-03 | 1989-10-03 | Crystal oscillation type film thickness gauge |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25709389A JPH03120409A (en) | 1989-10-03 | 1989-10-03 | Crystal oscillation type film thickness gauge |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03120409A true JPH03120409A (en) | 1991-05-22 |
Family
ID=17301641
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25709389A Pending JPH03120409A (en) | 1989-10-03 | 1989-10-03 | Crystal oscillation type film thickness gauge |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03120409A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2416209B (en) * | 2003-04-21 | 2006-10-11 | Tangidyne Corp | Method and apparatus for measuring film thickness and film thickness growth |
US7275436B2 (en) | 2003-04-21 | 2007-10-02 | Tangidyne Corporation | Method and apparatus for measuring film thickness and film thickness growth |
-
1989
- 1989-10-03 JP JP25709389A patent/JPH03120409A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2416209B (en) * | 2003-04-21 | 2006-10-11 | Tangidyne Corp | Method and apparatus for measuring film thickness and film thickness growth |
US7275436B2 (en) | 2003-04-21 | 2007-10-02 | Tangidyne Corporation | Method and apparatus for measuring film thickness and film thickness growth |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Greenspan et al. | Speed of sound in water by a direct method | |
Behrndt | Long-term operation of crystal oscillators in thin-film deposition | |
Wiese et al. | Energy influx measurements with an active thermal probe in plasma-technological processes | |
GB2125171A (en) | A method of sensing the amount of a thin film deposited during an ion plating process | |
Behrndt et al. | Automatic control of film-deposition rate with the crystal oscillator for preparation of alloy films | |
Mueller et al. | Direct gravimetric calibration of a quartz crystal microbalance | |
Pei et al. | In situ thin film thickness measurement with acoustic Lamb waves | |
JP3310430B2 (en) | Measuring device and measuring method | |
JPH0749270A (en) | Temperature sensor | |
Doyle et al. | Implementation of a system of optical calibration based on pyroelectric radiometry | |
JPH03120409A (en) | Crystal oscillation type film thickness gauge | |
JP2860144B2 (en) | Plate temperature measuring device | |
JP2009174027A (en) | Vacuum deposition apparatus | |
JPS6328862A (en) | Method for controlling film thickness | |
Pei et al. | In situ thin film thickness measurement using ultrasonics waves | |
Weise et al. | A multifunctional plasma and deposition sensor for the characterization of plasma sources for film deposition and etching | |
JPH0722482A (en) | Film thickness measuring apparatus and thin film forming apparatus using the same | |
JP2906420B2 (en) | Thickness gauge for vapor deposition equipment | |
JPH0320465A (en) | Film thickness monitor with temperature compensation function | |
JPH06331641A (en) | Device and method for detecting flow rate | |
JPH01129966A (en) | High temperature heating sputtering method | |
JPH02305963A (en) | Material evaporation rate detector and material evaporation rate controller for ion plating device | |
JPS61138106A (en) | Film thickness monitor | |
Emelyanov et al. | Application of the Piezoelectric Quartz Microweighting Method to Control the Evaporation Rate of the Active Substance of Impregnated Cathodes | |
JPH0438425A (en) | Thermal flow sensor |