JPH0311898A - Wave transmitter-receiver - Google Patents
Wave transmitter-receiverInfo
- Publication number
- JPH0311898A JPH0311898A JP14695889A JP14695889A JPH0311898A JP H0311898 A JPH0311898 A JP H0311898A JP 14695889 A JP14695889 A JP 14695889A JP 14695889 A JP14695889 A JP 14695889A JP H0311898 A JPH0311898 A JP H0311898A
- Authority
- JP
- Japan
- Prior art keywords
- diaphragm
- piezoelectric member
- cylinder
- slits
- transducer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000463 material Substances 0.000 claims description 17
- 230000004323 axial length Effects 0.000 claims 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 7
- 102100027340 Slit homolog 2 protein Human genes 0.000 abstract description 4
- 101710133576 Slit homolog 2 protein Proteins 0.000 abstract description 4
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 abstract description 3
- 239000013013 elastic material Substances 0.000 abstract description 2
- 239000002184 metal Substances 0.000 abstract description 2
- 239000013535 sea water Substances 0.000 abstract description 2
- 229920003002 synthetic resin Polymers 0.000 abstract description 2
- 239000000057 synthetic resin Substances 0.000 abstract description 2
- 238000009413 insulation Methods 0.000 abstract 1
- 230000000694 effects Effects 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 239000007799 cork Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 230000000241 respiratory effect Effects 0.000 description 1
Landscapes
- Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
- Transducers For Ultrasonic Waves (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明はソーナーに使用する送受波器に関し、特に低周
波数、高濠率、そして高耐水圧性の小型好性化送受波器
に関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a transducer for use in sonar, and more particularly to a small-sized hydrophilic transducer having a low frequency, high moat rate, and high water pressure resistance.
従来、この種の送受波器は第4図のように円筒形圧電材
10を電気機械変換素子(以下、交換素子と略称する)
として積層し、それらの外面又は内外面に絶縁シース1
1を設けた構造であった。Conventionally, this type of transducer uses a cylindrical piezoelectric material 10 as an electromechanical transducer (hereinafter abbreviated as a switching element) as shown in FIG.
laminated as an insulating sheath on their outer or inner surface
It had a structure with 1.
そして特に、送波音圧を高く得るために円筒形圧電材1
0の呼吸振動モードによる共振を利用して送信周波数を
設定していた。In particular, in order to obtain a high transmitted sound pressure, the cylindrical piezoelectric material 1
The transmission frequency was set using resonance due to the respiratory vibration mode of 0.
このような従来の送受波器においては、円筒形圧電材l
Oの剛性が高いために共振周波数が高くなる傾向にある
。共振周波数を低くしようとすると、外径が大きくなり
、重量も増加するという欠点がある。また、共振周波数
から離れた低周波数において使用すると1機械インピー
ダンスの力率が悪くなり、変換能率が低下する。その結
果、高い送波音圧が得られない。In such a conventional transducer, a cylindrical piezoelectric material l
Since the rigidity of O is high, the resonance frequency tends to become high. Attempting to lower the resonant frequency has the drawback of increasing the outer diameter and weight. Furthermore, when used at a low frequency far from the resonant frequency, the power factor of one mechanical impedance deteriorates and the conversion efficiency decreases. As a result, high transmitted sound pressure cannot be obtained.
電気機械変換素子の剛性を下げつつ、低い共振周波数を
得るために、第5図に示すように振動板20に圧電材2
1を貼り合わせてたわみ振動を行なわせ、振動板20の
外面から送音するようにした送受波器が知られている。In order to obtain a low resonant frequency while reducing the rigidity of the electromechanical transducer, a piezoelectric material 2 is added to the diaphragm 20 as shown in FIG.
A transducer is known in which the diaphragm 20 is laminated together to cause flexural vibration and sound is transmitted from the outer surface of the diaphragm 20.
この送受波器においては、位相の反転した音波の短絡現
象を防止するために、振動板20の内面側がし壺音ケー
ス22で密閉されている。短絡現象を完全に防止するた
めに振動板20の内面を空気室にすると、振動板20の
剛性が低いために耐水圧性を高くすることができない、
耐水圧性を上げるために液体23を充填し、し牟音ケー
ス22で振動板20の内面からの音波をし壺音すること
もで5る。しかしこの音波は、低周波であるためにじゃ
音ケース22の厚みが大きくなり、大型で重量の大きな
送受波器になるという欠点がある。In this transducer, the inner surface of the diaphragm 20 is sealed with a sound case 22 in order to prevent a short-circuit phenomenon of sound waves with inverted phases. If the inner surface of the diaphragm 20 is made into an air chamber in order to completely prevent the short-circuit phenomenon, the diaphragm 20 has low rigidity and cannot be made highly resistant to water pressure.
It is also possible to fill the liquid 23 in order to increase water pressure resistance, and to emit sound waves from the inner surface of the diaphragm 20 in the sound case 22. However, since this sound wave has a low frequency, the thickness of the sound case 22 becomes large, resulting in a large and heavy transducer.
[解決すべき課題]
本発明は、低周波数であり、高能率であり、高耐水圧性
であり、しかも小型軽量である送受波器を提供すること
を課題とする。[Problems to be Solved] An object of the present invention is to provide a transducer that has a low frequency, high efficiency, high water pressure resistance, and is small and lightweight.
[課題の解決手段及び作用]
本発明の送受波器は、円筒体の両端部を除いた中央部に
軸方向に複数のスリy )を設け、これらの各スリット
間の部材を振動板とし、この振動板の内外面のうち少な
くとも一面に圧電材を貼り付け、内外面及び端面に絶縁
シースを設けた構造を有し1円筒体の軸方向が約半波長
から1波反の長さを有している。[Means for Solving the Problems and Effects] The transducer of the present invention is provided with a plurality of slits in the axial direction in the center of the cylindrical body excluding both ends, and the member between these slits is used as a diaphragm, This diaphragm has a structure in which a piezoelectric material is pasted on at least one of the inner and outer surfaces, and an insulating sheath is provided on the inner and outer surfaces and the end surfaces, and the axial direction of one cylinder has a length of approximately half a wavelength to one wave. are doing.
本発明による構造は、たわみ振動を利用することにより
低周波数の共振を得て、円筒状に配列された振動板の内
面から放射される音波を、振動板自体が隔壁となって構
成する音2を管の内部で位相を遅らせて外部に伝搬させ
ることにより、内外面から放射される音波の短絡現象を
防止し、高t@率で小型軽量な送受波器を実現するもの
である。The structure according to the present invention obtains low-frequency resonance by utilizing flexural vibration, and the sound wave radiated from the inner surface of the diaphragm arranged in a cylindrical shape is generated by the diaphragm itself acting as a partition wall. By delaying the phase inside the tube and propagating it to the outside, short-circuiting of the sound waves radiated from the inner and outer surfaces is prevented, and a small and lightweight transducer with a high t@ rate is realized.
[実施例] 次に本発明について図面を参照して説明する。[Example] Next, the present invention will be explained with reference to the drawings.
第1図は本発明の一実施例の部分断面を含む斜視図であ
る。同図において、金属や合成樹脂等の弾性材料を用い
た円筒体1の中央部に1軸方向に複数のスリット2を設
けである。そして、各スリット間の部材を振動板3とす
る。振動板3は剛性を下げてあり、更に圧電材4を貼り
付は易くするためにその断面を長方形に整形しである。FIG. 1 is a perspective view, partially in section, of an embodiment of the present invention. In the figure, a plurality of slits 2 are provided in a uniaxial direction at the center of a cylindrical body 1 made of an elastic material such as metal or synthetic resin. The member between each slit is used as a diaphragm 3. The diaphragm 3 has a reduced rigidity, and its cross section is shaped into a rectangle to facilitate attachment of the piezoelectric material 4.
振動板3の内側には、第2図に示すように、圧電材4が
貼り付けられる。振動板3及び圧電材4は電気信号によ
る各振動板3の振動方向が互いに揃うように、例えば第
2図のように接続され、リード線6により電気信号を入
力するための端子を引き出す。A piezoelectric material 4 is pasted on the inside of the diaphragm 3, as shown in FIG. The diaphragm 3 and the piezoelectric material 4 are connected, for example, as shown in FIG. 2, so that the directions of vibration of each diaphragm 3 due to electric signals are aligned with each other, and a terminal for inputting an electric signal is drawn out by a lead wire 6.
スリット2の部分には、内部を空気室とするか、又は振
動板の共振に影響を与えないようにするために、柔軟な
緩衝材、例えばコルク等を充填することができる。これ
ら円筒体l、スリット2、振動板3及び圧電材4から成
る構造体の内外面及び端面には、この構造体を海水から
it気的に保護するための絶縁シース5がモールド等に
より設けられている。The slit 2 can be filled with a flexible cushioning material, such as cork, in order to make the inside an air chamber or not to affect the resonance of the diaphragm. An insulating sheath 5 is provided by molding or the like on the inner and outer surfaces and end surfaces of the structure consisting of the cylindrical body 1, slit 2, diaphragm 3, and piezoelectric material 4 to protect the structure from seawater. ing.
圧電材4を貼り付けた振動板3のたわみ共振と同じ周波
数の電気信号をリード線6から加えると、圧電材4は圧
電効果により軸方向へ伸縮する。このとき、圧電材4と
振動板3との間に軸方向への伸縮のズレが生じ、これが
たわみ共振の駆動力となって、両者が径方向に第3図の
点線又は−点鎖線のように振動する。この振動により、
振動板3の内外面に逆位相の音波が放射される。これら
の音波のうち内面に放射された音波は、音響管の側壁(
すなわち振動板3)が同位相で振動しているため、振動
板3を透過することなく上下の端面に伝搬する。伝搬時
間による位相の遅れにより、内面に放射された音波は外
面から放射された音波と同位相に調整される。この結果
、内外面から放射された音波の短絡現象は効率良く防止
される。スリット2の幅は、互いに隣り合う振動板3が
たわみ振動時に接触しない程度の寸法(約0゜1〜1m
m程度)で良い、絶縁シース5を適宜、厚くすることに
より、高耐水圧性の送受波器とすることができる。When an electric signal having the same frequency as the flexural resonance of the diaphragm 3 to which the piezoelectric material 4 is attached is applied from the lead wire 6, the piezoelectric material 4 expands and contracts in the axial direction due to the piezoelectric effect. At this time, a shift in expansion and contraction in the axial direction occurs between the piezoelectric material 4 and the diaphragm 3, and this becomes a driving force for flexural resonance, causing both to move in the radial direction as indicated by the dotted line or the -dotted chain line in Fig. 3. It vibrates. This vibration causes
Sound waves with opposite phases are radiated to the inner and outer surfaces of the diaphragm 3. Among these sound waves, the sound waves radiated to the inner surface are caused by the side walls of the acoustic tube (
That is, since the diaphragm 3) vibrates in the same phase, it propagates to the upper and lower end surfaces without passing through the diaphragm 3. Due to the phase delay caused by the propagation time, the sound waves radiated to the inner surface are adjusted to have the same phase as the sound waves radiated from the outer surface. As a result, short-circuit phenomena of sound waves radiated from the inner and outer surfaces can be efficiently prevented. The width of the slit 2 is such that adjacent diaphragms 3 do not come into contact with each other during flexural vibration (approximately 0°1 to 1 m).
By making the insulating sheath 5 appropriately thick, it is possible to obtain a transducer with high water pressure resistance.
なお、円筒体1の軸方向の長さは、約半波長から1波長
に設定されている。Note that the length of the cylindrical body 1 in the axial direction is set to approximately half a wavelength to one wavelength.
[発明の効果〕
本発明によれば、振動板及び圧電材をたわみ共振させる
と共に、振動板で音響管を構成しているので、低周波数
、高能率、そして高耐水圧性の小や軽量な送受波器を得
ることができる。[Effects of the Invention] According to the present invention, since the diaphragm and the piezoelectric material are deflected and resonated, and the diaphragm constitutes the acoustic tube, a small and lightweight transmitter/receiver with low frequency, high efficiency, and high water pressure resistance can be achieved. You can get a wave device.
第1図は本発明に係る送受波器の一実施例の部分破断斜
視図、第2図は第1図におけるII −II線に従った
断面図、第3図はたわみ共振時の振動板及び圧電材を示
す図、第4図及び第5図は従来の送受波器を示す斜視図
である。FIG. 1 is a partially cutaway perspective view of an embodiment of a transducer according to the present invention, FIG. 2 is a sectional view taken along line II-II in FIG. 1, and FIG. The figures showing the piezoelectric material, FIGS. 4 and 5 are perspective views showing a conventional transducer.
Claims (1)
てそれらのスリット間に形成された振動板と、これらの
振動板の内外面のうち少なくとも一面に固定される圧電
材と、振動板及び圧電材を覆う絶縁シースとを有し、上
記円筒体の軸方向の長さが約半波長から1波長であるこ
とを特徴とする送受波器。A diaphragm formed between the slits by providing a plurality of slits in the axial direction of a cylindrical body, a piezoelectric material fixed to at least one of the inner and outer surfaces of these diaphragms, and a diaphragm and a piezoelectric material. A transducer comprising an insulating sheath covering the cylindrical body, and an axial length of the cylindrical body is about half a wavelength to one wavelength.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14695889A JPH0311898A (en) | 1989-06-09 | 1989-06-09 | Wave transmitter-receiver |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14695889A JPH0311898A (en) | 1989-06-09 | 1989-06-09 | Wave transmitter-receiver |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0311898A true JPH0311898A (en) | 1991-01-21 |
Family
ID=15419431
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14695889A Pending JPH0311898A (en) | 1989-06-09 | 1989-06-09 | Wave transmitter-receiver |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0311898A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002541697A (en) * | 1999-04-02 | 2002-12-03 | レイセオン・カンパニー | Passive pressure compensation system and method for acoustic transducer |
JP2003003303A (en) * | 2001-06-20 | 2003-01-08 | Keiko Suzuki | Wrap skirt, coat, and coat set each for kimono |
EP1976330A2 (en) | 2007-03-27 | 2008-10-01 | NEC Corporation | Bending vibration type sound transmitter |
US8115367B2 (en) * | 2007-11-26 | 2012-02-14 | Sii Nanotechnology Inc. | Piezoelectric actuator provided with a displacement meter, piezoelectric element, and positioning device |
US8169126B2 (en) | 2008-03-21 | 2012-05-01 | Nec Corporation | Low frequency oscillator, the omni-directional type low frequency underwater acoustic transducer using the same and the cylindrical radiation type low frequency underwater acoustic transducer using the same |
JP2013055551A (en) * | 2011-09-05 | 2013-03-21 | Nec Corp | Bent type echo sounder transducer |
-
1989
- 1989-06-09 JP JP14695889A patent/JPH0311898A/en active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002541697A (en) * | 1999-04-02 | 2002-12-03 | レイセオン・カンパニー | Passive pressure compensation system and method for acoustic transducer |
JP2003003303A (en) * | 2001-06-20 | 2003-01-08 | Keiko Suzuki | Wrap skirt, coat, and coat set each for kimono |
EP1976330A2 (en) | 2007-03-27 | 2008-10-01 | NEC Corporation | Bending vibration type sound transmitter |
JP2008244895A (en) * | 2007-03-27 | 2008-10-09 | Nec Corp | Bending-type wave transmitter/receiver |
EP1976330A3 (en) * | 2007-03-27 | 2013-05-08 | NEC Corporation | Bending vibration type sound transmitter |
US8515101B2 (en) | 2007-03-27 | 2013-08-20 | Nec Corporation | Bending vibration type sound transmitter |
US8115367B2 (en) * | 2007-11-26 | 2012-02-14 | Sii Nanotechnology Inc. | Piezoelectric actuator provided with a displacement meter, piezoelectric element, and positioning device |
US8169126B2 (en) | 2008-03-21 | 2012-05-01 | Nec Corporation | Low frequency oscillator, the omni-directional type low frequency underwater acoustic transducer using the same and the cylindrical radiation type low frequency underwater acoustic transducer using the same |
JP2013055551A (en) * | 2011-09-05 | 2013-03-21 | Nec Corp | Bent type echo sounder transducer |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0835462B1 (en) | Electrodynamic driving means for acoustic emitters | |
AU775315B2 (en) | Bow dome sonar | |
US3510698A (en) | Electroacoustical transducer | |
US2895061A (en) | Piezoelectric sandwich transducer | |
US4184093A (en) | Piezoelectric polymer rectangular flexural plate hydrophone | |
CN108435523B (en) | Droplet Flextensional Transducer | |
KR100517059B1 (en) | Transducer for underwater high-power use | |
JPH0311898A (en) | Wave transmitter-receiver | |
JP5176674B2 (en) | Underwater transmitter, driving method thereof, and composite underwater transmitter | |
JPH02309799A (en) | Transmitter-receiver | |
KR102765315B1 (en) | Flextensional low frequency acoustic projector | |
CA2300765C (en) | Pressure tolerant transducer | |
JP2626026B2 (en) | Transducer | |
US7535801B1 (en) | Multiple frequency sonar transducer | |
JP5309941B2 (en) | Acoustic transducer | |
KR20010092834A (en) | Sonic piezoelectric ceramic transducer | |
US5636183A (en) | Process and transducers submerged in a fluid for emitting low frequency acoustic waves with lightened horns | |
JP2546488B2 (en) | Low frequency underwater transmitter | |
EP0434344B1 (en) | Edge driven flexural transducer | |
JP3006509B2 (en) | Water column resonance type transducer | |
JPH08256396A (en) | Underwater acoustic transmitter | |
KR100517061B1 (en) | Underwater-use electroacoustic transducer | |
JPH02238799A (en) | Transmitter-receiver for sonar | |
JPS6143098A (en) | Low frequency underwater ultrasonic transmitter | |
JP2008078718A (en) | Transducer |