[go: up one dir, main page]

JPH03118949A - Continuous casting method and equipment - Google Patents

Continuous casting method and equipment

Info

Publication number
JPH03118949A
JPH03118949A JP25817889A JP25817889A JPH03118949A JP H03118949 A JPH03118949 A JP H03118949A JP 25817889 A JP25817889 A JP 25817889A JP 25817889 A JP25817889 A JP 25817889A JP H03118949 A JPH03118949 A JP H03118949A
Authority
JP
Japan
Prior art keywords
molten steel
mold
magnets
flow
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25817889A
Other languages
Japanese (ja)
Inventor
Koji Takatani
幸司 高谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP25817889A priority Critical patent/JPH03118949A/en
Publication of JPH03118949A publication Critical patent/JPH03118949A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE:To control flow of molten steel in a mold, to improve cleaning effect of the molten steel at meniscus part and to produce a continuously cast slab having sound material by setting two pairs of magnets having the same polarity and two pairs of magnets having the different polarities on both faces at long wall sides of a mold at the time of continuously casting the molten steel. CONSTITUTION:The molten steel is poured into the water cooling type continuously casting mold 3 having rectangular cross sectional shape from a submerged nozzle 1, and solidified shell 4 in the molten steel is formed on inner wall of the mold and pulled out from the mold 3 as the continuously cast slab. In this case, two pairs of the magnets 21 having the same polarity are set as facing at upper side faces of the long walls 3a, 3b in the rectangular mold 3 and two pairs of the magnets 22 having the different polarities are set as facing at the lower part thereof. By controlling fluidity of the molten steel in the mold by magnetic field with the electro-magnets 21, impurity is floated up and separated and breakout in the continuously cast slab caused by remelting of the solidified shell 4 is prevented, and by accelerating flow of the molten steel near the meniscus part by shifting magnet field with the electro- magnets 22, the cleaning effect of molten steel is improved and the continuously cast slab having excellent quality is stably produced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は鋳型内の溶鋼流を静磁場により制御する連続鋳
造方法及び装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a continuous casting method and apparatus for controlling the flow of molten steel in a mold using a static magnetic field.

〔従来の技術〕[Conventional technology]

連続鋳造機の鋳型内の溶鋼流に制動力を与えてその動き
を遅くすることは、溶鋼内に介在する不純物の浮上を促
進し、良好な鋳片の品質を保つ上で極めて効果がある。
Applying a braking force to the flow of molten steel in the mold of a continuous casting machine to slow its movement promotes the floating of impurities in the molten steel and is extremely effective in maintaining good quality of slabs.

このように溶鋼流に制動力を与える方法として、特開昭
57−17856号公報に開示された方法が知られてい
る。第5図はその方法に使用する装置の模式的縦断面図
、第6図はその模式的平面図であり、これらの図に示す
如く鋳型3の長辺3a、 3aに電磁コイル2,2.2
.2を配設する。そして電磁コイル2,2.2.2によ
って浸漬ノズル1から吐出される溶鋼流に対して静磁場
を作用させ、溶鋼流に誘導される電流と、静磁場との相
互作用力によって前記溶鋼流に制動力を働かせる。
As a method of applying a braking force to the molten steel flow in this manner, a method disclosed in Japanese Patent Application Laid-open No. 17856/1983 is known. FIG. 5 is a schematic vertical sectional view of the apparatus used in the method, and FIG. 6 is a schematic plan view thereof. As shown in these figures, electromagnetic coils 2, 2. 2
.. 2 will be placed. Then, a static magnetic field is applied to the molten steel flow discharged from the immersion nozzle 1 by the electromagnetic coils 2, 2.2.2, and the molten steel flow is influenced by the interaction force between the current induced in the molten steel flow and the static magnetic field. Apply braking force.

前記制動力によって溶鋼流速を抑制し、鋳型3の短辺3
b、 3bの下降流速を小さくすることにより溶鋼内の
不純物の浮上分離を促進させ、また、溶鋼塊の凝固シェ
ルへの衝突力を緩和させることによって凝固シェルの再
溶解によるブレークアウトを防止することができる。
The braking force suppresses the flow velocity of the molten steel, and the short side 3 of the mold 3
b. To promote floating separation of impurities in the molten steel by reducing the downward flow velocity in 3b, and to prevent breakout due to remelting of the solidified shell by reducing the impact force of the molten steel ingot on the solidified shell. I can do it.

しかし、前述の如き方法においては、メニスカス部近傍
の流速が小さくなるため溶鋼場面における洗浄効果が期
待できないという問題があった。
However, in the method described above, there is a problem in that the flow velocity near the meniscus portion is low, so that no cleaning effect can be expected in the molten steel scene.

前記問題を解決する方法としては、特開昭61−140
355号公報に開示された方法がある。第7図はその方
法に使用する装置の模式的縦断面図、第8図はその模式
的平面図である。この方法においては、これらの図に示
す如く鋳型3の長辺3a、 3aに電磁コイル2,2,
2.2を配設すると共に鋳型3の直上部に移動磁界型電
磁コイル5,5を配設する。そして、電磁コイル2.2
,2.2によって溶鋼流速を抑制すると共に前記移動磁
界型電磁コイル5,5によってメニスカス部近傍の溶鋼
流動を促進させることにより洗浄効果を確保する。
A method for solving the above problem is disclosed in Japanese Patent Application Laid-Open No. 61-140.
There is a method disclosed in Japanese Patent No. 355. FIG. 7 is a schematic vertical sectional view of the apparatus used in the method, and FIG. 8 is a schematic plan view thereof. In this method, as shown in these figures, electromagnetic coils 2, 2,
2.2, and moving magnetic field type electromagnetic coils 5, 5 are arranged directly above the mold 3. And electromagnetic coil 2.2
, 2.2 suppress the molten steel flow velocity, and the moving magnetic field type electromagnetic coils 5, 5 promote the molten steel flow near the meniscus portion, thereby ensuring the cleaning effect.

〔発明が解決しようとする課題〕 しかしながら、前述の如き移動磁界型電磁コイルにてメ
ニスカス部近傍の溶鋼流動を促進させる方法は、前記移
動磁界型電磁コイルが鋳型の直上部に配設されるため、
作業性が悪く、また溶鋼からの輻射熱を防ぐ装置を付加
しなければならず、非実用的であるという問題があった
[Problems to be Solved by the Invention] However, the method of promoting the flow of molten steel near the meniscus using a moving magnetic field electromagnetic coil as described above is difficult because the moving magnetic field electromagnetic coil is disposed directly above the mold. ,
There were problems in that workability was poor, and a device to prevent radiant heat from molten steel had to be added, making it impractical.

本発明は斯かる事情に鑑みてなされたものであり、同一
極性の磁極を対向させた磁石と、異なる極性の磁極を対
向させた磁石とを鋳型の長辺両側側面に備え、これらの
磁石によってメニスカス部における溶鋼の洗浄効果の確
保及び溶鋼に介在する不純物の浮上分離の促進と、ブレ
ークアウトの防止とを実現する連続鋳造方法及び装置を
提供することを目的とする。
The present invention has been made in view of the above circumstances, and includes magnets with magnetic poles of the same polarity facing each other and magnets with magnetic poles of different polarity facing each other on both sides of the long side of the mold, and these magnets It is an object of the present invention to provide a continuous casting method and apparatus that ensure the cleaning effect of molten steel in the meniscus portion, promote floating separation of impurities present in the molten steel, and prevent breakout.

〔課題を解決するための手段〕[Means to solve the problem]

本発明に係る連続鋳造方法は、鋳型の長辺両側面に対向
配置された磁石が形成する静磁場により溶鋼の流動制御
を行う連続鋳造方法において、前記鋳型の長辺両側面に
、対向する極性を同一となるようにした磁石と、対向す
る極性を異ならせるようにした磁石とを配置し、これら
の磁石が形成する夫々の静磁場によって溶鋼の流動制御
を行うことを特徴とする。
The continuous casting method according to the present invention is a continuous casting method in which the flow of molten steel is controlled by a static magnetic field formed by magnets arranged oppositely on both long sides of the mold. It is characterized by arranging magnets with the same polarity and magnets with opposing polarities of different polarities, and controlling the flow of molten steel by the static magnetic fields formed by these magnets.

また、本発明に係る連続鋳造装置は、鋳型の長辺両側面
に対向配置された磁石が形成する静磁場により溶鋼の流
動制御を行う連続鋳造装置において、前記鋳型の長辺両
側面に対向する極性を同一となるようにした磁石と、対
向する極性を異ならせるようにした磁石とを具備するこ
とを特徴とする。
Further, the continuous casting apparatus according to the present invention is a continuous casting apparatus that controls the flow of molten steel by a static magnetic field formed by magnets arranged opposite to each other on both long sides of the mold. It is characterized by comprising magnets with the same polarity and opposing magnets with different polarities.

〔作用〕[Effect]

異なる極性を対向させた磁石および同一の極性を対向さ
せた磁石の磁場分布は第9図に示すとおりであり、図中
(a)に示す異極性が対向する磁石の場合、磁極間中心
にまで強い磁場が浸透するのに対し、図中Cb)に示す
同極性が対向する磁石の場合、磁極近傍でのみ強い磁場
が存在し、磁極間中心に向かうにつれ、急速に磁場の強
さは減衰する。
The magnetic field distributions of magnets with different polarities facing each other and magnets with the same polarity facing each other are shown in Figure 9. In the case of magnets with different polarities facing each other as shown in (a) in the figure, the distribution of magnetic fields extends to the center between the magnetic poles. A strong magnetic field penetrates, whereas in the case of magnets with the same polarity facing each other as shown in Cb in the figure, a strong magnetic field exists only near the magnetic poles, and the strength of the magnetic field rapidly attenuates as it moves toward the center between the magnetic poles. .

一方、磁場が存在する領域に導電性流体を流通させると
第10図に示すような方向に電流が流れ、磁場との相互
作用力Fが発生する。従来の方法は、この相互作用力を
利用して溶鋼流を制動しようとするものである。
On the other hand, when a conductive fluid is passed through a region where a magnetic field exists, a current flows in the direction shown in FIG. 10, and an interaction force F with the magnetic field is generated. Conventional methods attempt to brake the flow of molten steel by utilizing this interaction force.

しかし、従来の方法では、ノズルからの吐出流のみに制
動力を作用させてしまうことになる。そこで、制動力を
作用させた(ない場所に同極対向の磁場分布を与えるこ
とにより、異極対向磁場をうち消すことができ、制動力
を抑制することが可能となる。
However, in the conventional method, the braking force is applied only to the discharge flow from the nozzle. Therefore, by applying a homopolar opposing magnetic field distribution to a place where no braking force is applied, the different polar opposing magnetic fields can be canceled out, making it possible to suppress the braking force.

〔実施例〕〔Example〕

以下、本発明をその実施例を示す図面に基づき具体的に
説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below based on drawings showing embodiments thereof.

第1図は本発明に係る連続鋳造方法を行うための装置の
模式的縦断面図、第2図はその第1電磁石の配置状態を
示す模式的平面図、第3図はその第2電磁石の配置状態
を示す模式的平面図である。
Fig. 1 is a schematic vertical sectional view of an apparatus for carrying out the continuous casting method according to the present invention, Fig. 2 is a schematic plan view showing the arrangement of the first electromagnet, and Fig. 3 is a schematic plan view of the arrangement of the first electromagnet. FIG. 3 is a schematic plan view showing the arrangement state.

図中3は上部に開口部を有する断面矩形状の水冷式の鋳
型であり、該鋳型3の上部には、その両側に開口された
吐出口1a、 lbを有する浸漬ノズルが配設される。
In the figure, numeral 3 denotes a water-cooled mold having a rectangular cross section and an opening at the top, and an immersion nozzle having discharge ports 1a and lb opened on both sides is disposed at the top of the mold 3.

また、第2図に示す如く、鋳型3の長辺3a、 3a上
部側面の前記吐出口1a、 lbの位置より上方の位置
には、同一の極性を有する第1電磁石21.2121.
21を、その2個を一対として鋳型3を介して対向配置
させる。そして前記第1電磁石21.21.21.21
の下方には、第3図に示す如く鋳型3を介して対向する
極性が異なるように第2電磁石22.22.22.22
を2個を一対として対向配置させる。
Further, as shown in FIG. 2, first electromagnets 21, 2121, 2121, 2121, 2121, 2121, 2121.
21 are arranged as a pair to face each other with the mold 3 interposed therebetween. and said first electromagnet 21.21.21.21
As shown in FIG.
are arranged in pairs facing each other.

前記第1電磁石2L 2L 21.21は、これらによ
って形成される静磁場内を通流する溶鋼に対してその流
速を減速させないように前記第2電磁石22゜22、2
2.22が形成する静磁場を打ち消すように磁場分布を
変更する。
The first electromagnets 2L 2L 21.21 are connected to the second electromagnets 22゜22, 2 so as not to reduce the flow rate of the molten steel flowing through the static magnetic field formed by them.
Change the magnetic field distribution so as to cancel the static magnetic field formed by 2.22.

なお、第1電磁石21.21.21.21を、対向する
極性が異なるように配置すると、磁場が磁極間中心にま
で浸透し、通流する溶鋼に強い制動力が働くため、後述
する凝固シェルの先端に不純物が捕捉されて溶鋼の洗浄
効果がなくなり、その目的とする効果を得られない。ま
た、第2電磁石22.22゜22、22はこれらによっ
て形成される静磁場内を通流する溶鋼に対してその流速
を減速させるように磁気的作用力を与える。
Note that if the first electromagnets 21, 21, 21, 21 are arranged so that their opposing polarities are different, the magnetic field will penetrate to the center between the magnetic poles and a strong braking force will act on the flowing molten steel, which will cause the solidification shell to be described later. Impurities are trapped at the tip of the molten steel, making it ineffective for cleaning molten steel, making it impossible to obtain the desired effect. Further, the second electromagnets 22, 22, 22, 22 apply a magnetic force to the molten steel flowing in the static magnetic field formed by these so as to reduce the flow velocity.

前述した如く構成された装置にて連続鋳造を行う場合、
溶鋼は前記浸漬ノズル1に供給され、その吐出口1a、
 lbより鋳型3内に吐出される。そして、吐出された
溶鋼は、まず第2電磁石22.22゜22、22により
形成される静磁場を通流する。この通流の際に溶鋼流は
前記磁場に磁気的作用力によって制動され、流速を抑制
されつつ鋳型3周壁の短辺3b、 3bに達し、下降流
A及び上昇流Bに分流される。
When continuous casting is performed using an apparatus configured as described above,
Molten steel is supplied to the immersion nozzle 1, and its discharge port 1a,
lb is discharged into the mold 3. The discharged molten steel first passes through a static magnetic field formed by the second electromagnets 22, 22, 22, 22. During this flow, the molten steel flow is braked by the magnetic force of the magnetic field, reaches the short sides 3b, 3b of the peripheral wall of the mold 3 while its flow velocity is suppressed, and is divided into a downward flow A and an upward flow B.

前記下降流Aは第2電磁石22.22.22.22によ
ってさらに制動されつつ鋳型3の下方へ流れる。
The downward flow A flows below the mold 3 while being further braked by the second electromagnet 22.22.22.22.

一方、前記上昇流Bは、溶鋼の場面にそって前記鋳型3
の短辺3b、 3bから浸漬ノズルlへ向かって通流す
るが、この通流時には、上昇流Bは第1電磁石21.2
1.21.21により形成される静磁場の範囲内にあり
、流速を減速されずに通流する。そして溶鋼は水冷式の
鋳型3で冷却されて、凝固シェル4が形成され、該凝固
シェル4は図示しないロールにより鋳型3の下方より引
き抜かれる。
On the other hand, the upward flow B flows along the mold 3 along the molten steel scene.
The current flows from the short sides 3b, 3b toward the immersion nozzle l, but at the time of this flow, the upward flow B is caused by the first electromagnet 21.2.
1.21.21, which allows the flow to flow without being slowed down. The molten steel is cooled in a water-cooled mold 3 to form a solidified shell 4, and the solidified shell 4 is pulled out from below the mold 3 by a roll (not shown).

次に前述した如き方法及び装置を用いて第1表に示す如
き条件にて実際に連続鋳造を実施した結果を第2表に示
す。但し、第1表における条件1は溶鋼の流動制御を行
わない場合、条件2は従来方法及び装置を用いた場合、
条件3は本発明方法及び装置を用いた場合、条件4は本
実施例の第1電磁石21.21.2L 21を対向する
極性が異なるように配置した場合である。また、第4図
は第1表におけるパラメータ(lI−16)の寸法を示
す寸法図であり、第1表の1.−16と第4図における
11〜l、とは夫々対応するものである。
Next, Table 2 shows the results of actual continuous casting using the method and apparatus described above under the conditions shown in Table 1. However, Condition 1 in Table 1 is when molten steel flow control is not performed, Condition 2 is when conventional methods and equipment are used,
Condition 3 is when the method and apparatus of the present invention is used, and Condition 4 is when the first electromagnets 21, 21, 2L 21 of this embodiment are arranged so that their opposing polarities are different. Moreover, FIG. 4 is a dimension diagram showing the dimensions of the parameter (lI-16) in Table 1, and 1. -16 and 11 to 1 in FIG. 4 correspond to each other.

また第2表のスラブ表層のA ji’ 、0.クラスタ
指数とは、スラブ長辺面の表面から4m内側でのアルミ
ナクラスタの個数を前記条件lの値を標準値として指数
化したものであり、スラブ内部のA fi tOsクラ
スタ指数とは、前記表面から40鶴内側でのアルミナク
ラスタの個数を、前記条件lの値を標準値として指数化
したものである。
In addition, A ji' of the slab surface layer in Table 2 is 0. The cluster index is the number of alumina clusters within 4 m from the surface of the long side of the slab, using the value of the above condition l as the standard value, and the A fi tOs cluster index inside the slab is The number of alumina clusters inside 40 Tsuru is expressed as an index using the value of the condition 1 as a standard value.

(以 下 余 白) 第2表 第2表 第2表から明らかな如く本発明においては、スラブ表層
及び内部のA j! zOsクラスタ指数が小さく、鋳
片において表面性状及び内質が良好である製品が得られ
る。
(Margin below) As is clear from Table 2, in the present invention, A j! A product with a small zOs cluster index and good surface quality and internal quality in slabs can be obtained.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く本発明に係る連続鋳造方法及び装置に
おいては、同一極性の磁極を対向させた磁石と、異なる
極性の磁極を対向させた磁石とを鋳型の長辺側面に備え
、これらの磁石の作用力によって溶鋼流速を抑制すると
共に、メニスカス部近傍の溶鋼流動を促進させるため、
溶鋼の洗浄効果の確保及び溶鋼に介在する不純物の浮上
分離の促進と、ブレークアウトの防止とが実現できる等
本発明は優れた効果を奏する。
As detailed above, in the continuous casting method and apparatus according to the present invention, a magnet with magnetic poles of the same polarity facing each other and a magnet with magnetic poles of different polarity facing each other are provided on the long sides of the mold, and these magnets In order to suppress the molten steel flow velocity and promote the molten steel flow near the meniscus by the acting force of
The present invention has excellent effects such as ensuring the cleaning effect of molten steel, promoting floating separation of impurities present in molten steel, and preventing breakout.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る連続鋳造装置の模式的縦断面図、
第2図はその第1電磁コイルの配置状態を示す模式的平
面図、第3図はその第2電磁コイルの配置状態を示す模
式的平面図、第4図は第1表に置けるパラメータの寸法
を示す寸法図、第5図は従来の連続鋳造方法に使用する
装置の模式的縦断面図、第6図はその模式的平面図、第
7図は従来の他の連続鋳造方法に使用する装置の模式的
縦断面図、第8図はその模式的平面図、第9図は磁場分
布と磁場強さを説明する模式図、第10図は制動力作用
の原理図である。 l・・・浸漬ノズル 21・・・第1電磁石磁石 3・
・・鋳型 22・・・第2電
FIG. 1 is a schematic longitudinal sectional view of a continuous casting apparatus according to the present invention,
Fig. 2 is a schematic plan view showing the arrangement of the first electromagnetic coil, Fig. 3 is a schematic plan view showing the arrangement of the second electromagnetic coil, and Fig. 4 is the dimensions of the parameters in Table 1. 5 is a schematic longitudinal sectional view of the device used in the conventional continuous casting method, FIG. 6 is its schematic plan view, and FIG. 7 is the device used in other conventional continuous casting methods. 8 is a schematic plan view thereof, FIG. 9 is a schematic diagram illustrating magnetic field distribution and magnetic field strength, and FIG. 10 is a diagram showing the principle of braking force action. l... Immersion nozzle 21... First electromagnet magnet 3.
...Mold 22...Second electric

Claims (1)

【特許請求の範囲】 1、鋳型の長辺両側面に対向配置された磁石が形成する
静磁場により溶鋼の流動制御を行う連続鋳造方法におい
て、 前記鋳型の長辺両側面に、対向する極性を同一となるよ
うにした磁石と、対向する極性を異ならせるようにした
磁石とを配置し、これらの磁石が形成する夫々の静磁場
によって溶鋼の流動制御を行う連続鋳造方法。 2、鋳型の長辺両側面に対向配置された磁石が形成する
静磁場により溶鋼の流動制御を行う連続鋳造装置におい
て、 前記鋳型の長辺両側面に対向する極性を同一とからなる
ようにした磁石と、対向する極性を異ならせるようにし
た磁石とを具備することを特徴とする連続鋳造装置。
[Claims] 1. In a continuous casting method in which the flow of molten steel is controlled by a static magnetic field formed by magnets arranged oppositely on both long sides of the mold, opposing polarities are provided on both long sides of the mold. A continuous casting method in which magnets with the same polarity and magnets with opposing polarities of different polarities are arranged, and the flow of molten steel is controlled by the static magnetic fields formed by these magnets. 2. In a continuous casting device that controls the flow of molten steel by a static magnetic field formed by magnets arranged opposite to each other on both sides of the long sides of the mold, the polarities facing both sides of the long sides of the mold are made to be the same. A continuous casting device comprising a magnet and magnets facing each other with different polarities.
JP25817889A 1989-10-02 1989-10-02 Continuous casting method and equipment Pending JPH03118949A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25817889A JPH03118949A (en) 1989-10-02 1989-10-02 Continuous casting method and equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25817889A JPH03118949A (en) 1989-10-02 1989-10-02 Continuous casting method and equipment

Publications (1)

Publication Number Publication Date
JPH03118949A true JPH03118949A (en) 1991-05-21

Family

ID=17316606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25817889A Pending JPH03118949A (en) 1989-10-02 1989-10-02 Continuous casting method and equipment

Country Status (1)

Country Link
JP (1) JPH03118949A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11347697A (en) * 1998-06-09 1999-12-21 Sumitomo Metal Ind Ltd Molten metal braking device and continuous casting method
US6332493B1 (en) * 1997-04-18 2001-12-25 Abb Ab Device for continuous casting of two strands in parallel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6332493B1 (en) * 1997-04-18 2001-12-25 Abb Ab Device for continuous casting of two strands in parallel
JPH11347697A (en) * 1998-06-09 1999-12-21 Sumitomo Metal Ind Ltd Molten metal braking device and continuous casting method

Similar Documents

Publication Publication Date Title
CN108500228B (en) Flow field control method for slab continuous casting crystallizer
EP0401504B1 (en) Apparatus and method for continuous casting
US4974661A (en) Sidewall containment of liquid metal with vertical alternating magnetic fields
JP2726096B2 (en) Continuous casting method of steel using static magnetic field
RU2247003C2 (en) Method for continuous vertical casting of metals with use of electromagnetic fields and casting plant for performing the method
JPH06504726A (en) In-mold casting method and equipment
CN101259523B (en) Electromagnetic braking device for controlling the flow of molten metal in the continuous casting mold
JP2891417B2 (en) Method for stirring and damping molten metal and apparatus for implementing the method
EP0922512A1 (en) Electromagnetic braking device for continuous casting mold and method of continuous casting by using the same
JPS62254954A (en) Control method for molten steel flow in mold of continuous casting
CN201211558Y (en) An electromagnetic braking device for controlling the flow of molten metal in a continuous casting mold
JPH03118949A (en) Continuous casting method and equipment
CN1181030A (en) Method and device for casting in a mould
EP0930946B1 (en) Continuous casting machine
US4562879A (en) Electromagnetically stirring the melt in a continuous-casting mold
JPS63154246A (en) Continuous casting method for steel using static magnetic field
JPH0471759A (en) Method for controlling fluidity of molten metal
JP3253012B2 (en) Electromagnetic brake device for continuous casting mold and continuous casting method using the same
CN1150073C (en) Electromagnetic stirring type flow control crystallizer
WO1999011404A1 (en) Method and device for continuous or semi-continuous casting of metal
JP2733991B2 (en) Steel continuous casting method
JPS61140355A (en) Electromagnetic stirrer for controlling molten steel flow in casting mold
JP3399627B2 (en) Flow control method of molten steel in mold by DC magnetic field
JP3491099B2 (en) Continuous casting method of steel using static magnetic field
JPH0199763A (en) Method for controlling molten steel discharging flow in mold for continuous casting